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Abstract

Neuroscience research has entered a new phase of key discoveries in the realm of neurogenomics 

due to strong financial and intellectual support for resource-building and tool development. The 

previous challenge of tissue heterogeneity has been surmounted by the application of techniques 

that can profile individual cells at scale. Moreover, the ability to perturb genes, gene regulatory 

elements, and neuronal activity in a cell type-specific manner has been integrated with gene 

expression measures to uncover functional underpinnings of the genome at a systems level. 

While these insights have necessarily been grounded in model systems, now is the opportunity to 

apply these approaches in humans and human tissue due to further advances in human genetics, 

brain imaging, and tissue collection. We acknowledge that there will likely always be limits 

to the extent to which we can apply our genomic tools developed in model systems to human 

neuroscience; however, as we describe here, the neuroscience field is now primed with the optimal 

foundation for tackling this ambitious challenge. Importantly, the application of systems-level 

network analyses to these datasets will facilitate a deeper appreciation of human neurogenomics 

that cannot otherwise be achieved from directly observable measures.

Introduction

The human brain is considered one of the final frontiers in the biological sciences, and 

functional genomics and systems biology can provide unique insights into molecular 

mechanisms at genome and brain-wide scales. Over the last decade, the (Brain Research 

Through Advancing Innovative Neurotechnologies) BRAIN Initiative and the Human Brain 

Project (and others; see below) have spurred innovation into the study of basic mechanisms 

and translational approaches to understand the nervous system. These investments have 

aided in fast-tracking neuroscience research to catch up with, and arguably surpass, other 

ongoing long-term research programs such as those in cancer. Since we last discussed the 

pace of functional genomics and systems biology in neuroscience almost 15 years ago1, 
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there has been remarkable progress in both tool development and discoveries. For example, 

deep transcriptomic mapping at the cell-type level has been carried out to generate brain 

atlases as well as detailed brain transcriptomic datasets from hypothesis-testing studies. 

These cell-type genomic datasets have been linked with circuit mapping or physiological 

measures and genomic tools have been harnessed to directly manipulate brain circuits or 

behavior (e.g.,2). However, many of these insights have been derived from and applied 

to model systems such as rodents or non-human primates. Because we cannot directly 

experiment on humans in the same manner as in model systems, the direct applicability of 

many of these findings to the human brain remains unknown. Thus, the neuroscience field 

needs to be more thoughtful about how we leverage model system data to understand human 

brain function and consider ways we can use summative network analysis to tease additional 

meaning from available human snapshot datasets.

As detailed below, our understanding of the human brain is slowly being updated and 

refined from cell types to circuits to behavior by embracing the windfall of technological 

resources that have become available in the last decade. Advances in genomics have been 

integrated with other approaches such as viral tools or electrophysiological measurements 

in single cells or circuits across brain regions. Foundational improvements in genomics 

have been derived from increases in the length of reads in sequencing data. For example, 

longer sequencing reads can be harnessed to determine the impact of gene isoform usage 

in cell type function in an RNA-sequencing experiment. The cost of sequencing per 

byte of information has also decreased, yielding greater depth of data for approachable 

costs viable to single labs. As another example, this has resulted in greater numbers of 

whole genomes being sequenced with improved insights into a number of brain disorders 

using genome wide association studies (GWAS)3–5. The isolation of single cells, whether 

by flow cytometry or droplet-based methods and followed by any number of genomic 

approaches, has underscored the complexity of the human brain at cellular resolution2,6. 

These findings include characterization of the heterogeneity of rare cell types such as 

vascular cells or microglia7,8, cell types or cell states related to disease8–12, the relationship 

between chromatin state and gene expression at cellular resolution13,14, the identification 

of human-specialized cell types15–17, developmental lineage information with or without 

cellular barcoding18–20, and the presence of somatic single nucleotide variants in single 

neurons21,22.

Unlike model systems or even other tissues in humans, the human brain is challenging 

to access in living individuals (with some exceptions). Thus, neuroscientists have gone 

to great lengths to 1) determine the similarities and differences between the human brain 

and the brains of other mammals, at multiple scales, for the purposes of interpreting 

modeling results and therapeutic testing; 2) develop ex vivo systems that capture a 

portion of living human brain tissue; and 3) examine molecular, developmental, and 

functional properties of human brain cells derived from pluripotent stem cells. Even though 

neuroscience had to initially play “catch-up” to other fields for the past decade with respect 

to embracing and applying functional genomics approaches, we believe neuroscience is 

now at the forefront of all fields with respect to developing and integrating functional 

genomics into most types of research questions. There is now a strong foundation in 

basic principles of mammalian brain development and function from a genomics and 
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systems biology perspective that has been discovered in model systems. Moreover, the 

mainstay of neuroscience, electrophysiology, has been paired with measures of genetic 

output (optogenetics)23 or genome-wide expression (Patch-seq)24. Brain disease-focused 

researchers (e.g., in autism and neurodegenerative disorders) have also leaned into applying 

these genomic approaches in their arsenal of tools. Thus, we believe the next era of 

functional genomics should be focused directly on the human brain. Ongoing advances 

in human genetics can be coupled with our growing appreciation of human brain genomics 

and function. In this perspective, we outline the progress that has been made and where we 

think there are still exciting opportunities for expansion.

Surveying the transcriptome

In the last decade, high throughput genomics technologies have transformed the data 

resources that inform neuroscience research, especially with regard to human neuroscience. 

These technologies have become a mainstay in neuroscience research and across the 

community, spurred in part by the immense multi-billion dollar investments of the NIH 

BRAIN Initiative. These efforts across three consortium and dozens of ancillary programs 

have focused heavily on tool development for the characterization of single-cells within 

the brain25. Such efforts brought together individuals from across disciplines and enabled 

the marriage of multiple modalities in the characterization of the brain. Both individual 

and multiomic measurements have expanded our understanding of how cell type-specific 

properties are correlated to one another14,25–30 through studies mostly focused on mouse 

brain atlasing. Through these efforts, we now understand that snapshot measurements using 

conventional single-cell transcriptional approaches can capture much of the cell type and 

functional diversity that exists within the brain. Across human samples from both the normal 

brain and in the contexts of brain diseases and disorders, these datasets are transformation 

in their ability to provide a reference (Box 1) for hypothesis generation, validation of 

model system experiments, and development of new analytical methods. However, important 

details of brain function can only be captured by integrating information between modalities. 

The takeaways from these human and model system efforts highlight 1) electrophysiological 

and morphological features cannot be fully predicted by transcriptomics26, 2) spatial context 

allows for more heterogeneity than transcriptional analysis alone31, and 3) epigenetic 

profiling provides essential nuance, especially when considering state transitions or 

development14.

In human samples, beginning with bulk transcriptomics, characterizations of steady 

state expression have been foundational in understanding the brain and the spinal 

cord, highlighting important gene programs activated across brain regions and during 

development. While the nature of how atlases are generated has evolved, the initial RNA-

based ISH and microarray atlases of the adult and developing human brain from the Allen 

Brain Institute32,33 are still widely and effectively used as a reference for benchmarking 

studies across human analyses and systems. With the advent of single-cell approaches, this 

concept of an atlas has expanded immensely. Efforts from the BRAIN Initiative, the Human 

Cell Atlas, the CZI Tabula Sapiens, and other initiatives by individual labs have begun to 

coalesce on a transcriptomic definition of how many cell types likely exist in the mouse and 

human brains, and the newest efforts are achieving these analyses in the context of spatial 
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cell type distributions as well34. These data are collected in repositories such as dbGAP, 

the NeMO archives, CellxGene browsers, Synapse or the UCSC Cell Browser35–38 and are 

detailed further in Box 1.

Ultimately, these studies of steady state expression rely entirely on transcriptomic 

measurements and have not yet fully expanded to the other measurement modalities 

being used in rodent systems. Some of these challenges derive from more complicated 

methodologies being used in human samples, such as the notable phenomenon of lipofuscin 

in adult human brains when trying to implement spatial approaches34. Others, such as 

electrophysiological measurements, require access to specialized samples and long-term 

culture conditions39,40 to enable relevant characterizations.

As a result, existing surveys of human cells have been highly transcriptome-centric, with 

some measurements of open chromatin or methylation state41,42. While these measurements 

in the single-cell space have generally risen in quality, making broad cell typing possible, 

there remain limitations regarding the utility of these datasets. For example, the advent of 

single-nuclei sequencing43 has enabled study of hard to dissociate tissues, especially adult 

brain samples and banked human specimens. Yet, this approach (as well as single cell 

profiling) can still suffer from excessive ambient RNA content, a phenomenon that releases 

cytoplasmic RNA into the cell suspension prior to analysis, impeding the accuracy of the 

single-cell nature of the experiment44. These issues have been particularly challenging when 

studying glial ratios in samples, because these populations have an increased probability of 

mis-typing due to their naturally lower numbers of expressed genes. Additionally, even when 

the modalities represent samples well, gaps in terms of brain regions, developmental stages, 

or certain disease states exist across model organisms. These gaps are especially pronounced 

in the context of human dataset acquisition where sample availability and scope of existing 

consortia have not yet yielded comprehensive cell type atlases.

The ongoing consortia efforts pursuing atlases of the human brain present an interesting 

paradox to researchers working in spaces that would benefit from these atlases of the normal 

or diseased brain. The resources and distribution methods of consortia can be hypothesis 

generating and incredibly useful to individual labs, but the missing data points across 

regions, time points, and disease states can diminish the utility of current human datasets. 

However, the cost and the chance to be usurped by larger groups decreases the incentive 

and the opportunity for smaller groups to pursue the filling of these gaps. In the field, 

transparency about the planned scope of large institutes and consortium efforts paired with 

advances in lower cost technologies for sampling single-cell profiles would help fill these 

gaps more efficiently. Importantly, researchers studying human biology and disorders are 

the most well positioned to vet and optimize data generated from these technologically 

challenging approaches and are well positioned to plug the holes in terms of “missing” 

datasets and modalities related to human neuroscience.

Characterizing the Synapse with Omics

The nervous system is uniquely characterized by complex information flow through 

synapses, junctions between neurons and sometimes other cell types. The human brain 
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is thought to contain on the order of 600 trillion to a quadrillion synapses45, and 

synaptic dysfunction or even minor dysregulation is implicated in numerous developmental, 

psychiatric, and neurodegenerative disorders. Importantly, compared to other species, 

humans have more synapses per neuron46. Thus, tools to study synaptic biology are 

necessary to truly understand brain biology. Moreover, in light of the thousands of cell 

types being identified from the atlas efforts described above, the characterization of cell 

type-specific synaptic interactions with other populations is a tantalizing link between 

phenotypes, behavior, and steady state measurements. Transient synaptic connections are 

a hallmark of key developmental processes as well, notably between the thalamocortical 

afferents and transient cell types and substructure of the developing cortex for example47,48, 

establishing the study of synapses via genomic biology a unique and essential feature of next 

generation neuroscience.

Notable progress has been made in this sphere. Bulk proteomic characterizations have been 

generated from various species and across disease contexts, especially in the context of 

normal brains and neurodegenerative diseases. However, recent work is also emphasizing 

the interesting heterogeneity to be found between cell type-specific proteomic studies of 

the synaptic proteome. Given the challenges of measuring electrophysiological properties 

accurately in human tissues, studies of synapse biology at the bulk or single cell level 

provide a unique glimpse into human-specialized processes from preserved tissues. For 

example, recent efforts exploring proteomics of synapses during development highlighted 

potential insight into mechanisms of neoteny in humans49. In the context of aging and 

neurodegeneration, profiles have identified disease associated synaptic proteins in ALS50 

and Alzheimer’s disease51, as well as synaptic proteins subject to age-related changes52 or 

even those that seem to be resistant to these types of degradation52,53.

Synapses present a unique challenge, because not only is there a large number of synapses in 

the human brain, but the specific properties of these synapses are likely quite diverse. Given 

the size of the human brain, synapses are often located far from the cell body and associating 

a synapse with the originating cell is incredibly challenging. New tools to characterize 

single-cell gene expression of synapses with droplet-based capture approaches54 are 

beginning to change our ability to understand the composition and heterogeneity of synapses 

as well as how they are dysregulated in disease states such as Alzheimer’s. However, these 

approaches do not solve the question of what cell type the interacting cells are and are 

also somewhat controversial regarding whether they accurately measure synapses55,56. Thus, 

additional innovations in this space are required to fully understand the heterogeneity of 

synapses within the human brain. Other strategies to interrogate this problem are emerging, 

for example, recent innovations in capturing single dendrites highlighted key properties of 

local translation in rat neurons57. Importantly, these results are highlighting the opportunities 

to gain information from sub-cellular analyses that move beyond nuclear transcripts54, 

emphasizing the need to engage in more comprehensive synaptic single-cell analysis, 

especially because this is accessible in the human context.

Beyond the contents of what exists in a synapse specifically, understanding where this 

information is being shared has important implications for how individual cell types 

communicate with cells from different regions. This will enable a better understanding 
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of how single cells can contribute to circuits that ultimately underlie behavior and may 

be dysregulated in cases of disease. Early pioneering efforts in rodents to characterize this 

important link between cells and function harnessed the unique properties of rabies viruses 

that infect the nervous system and propagates via retrograde axonal transport58. Engineered 

modifications of this system eliminated the extreme impacts of the virus and instead allowed 

for targeted tracing of an individual, genetically labeled cell, usually from the rodent 

brain59. As single-cell technologies have emerged, these types of approaches can now be 

paired with single-cell analysis enabling linkage between an individual cell and the cells it 

communicates with. Use of these approaches in neurons and between glial populations have 

expanded our understanding of how presynaptic networks are structured and what proportion 

of interaction partners belong to specific classes60, including identifying a role for axon 

guidance molecules in glial interactions61. These approaches are now being extended to the 

spatial context, integrating both cell type and connection location with in situ sequencing 

on brains previously infected with custom synaptic tracers62. Parallel tools with some cell 

specificity are adeno-associated viral strategies that label cell types of interest63 and can 

be used in ex vivo slices to map projections and morphologies64. However, an important 

caveat of these tracing tools in the context of human biology is that they can only be applied 

to slices of live tissue, limiting their utility to intra-cortical relationships, for example. 

These tools, while still evolving rapidly, extend the ability to fully understand synaptic 

function but thus far require manipulatable in vivo systems for full scale characterization, 

such as model organisms ranging from rodents to non-human primates. However, human 

neurons are characterized by a number of unique properties including decreased intrinsic 

excitability, increased apical dendrite length, and more circuit compartmentalization65. 

Given the challenges of directly assessing these properties in human explant cultures, 

progress in the ability to utilize xenotransplantation of human pluripotent stem cell derived 

developing neurons into mouse brains is an exciting approach to explore the development 

of human neuronal morphology and circuits66,67. Using these tools, it has been observed 

that human neurons mature within the rodent brain but intrinsically maintain their neoteny 

(prolonged developmental timeline)65; these types of experimental models are promising 

systems in which to apply the expanding toolkit of single-cell approaches to study synaptic 

biology. To derive value from these tools directly in the context of human biology, it is 

imperative to adapt these tools to live postmortem culture models of human tissue, explore 

their utility in in vitro human model systems, and connect the tracing findings from rodent 

models to other measures of gene expression and synaptic proteomes. These adaptations 

will determine whether any of these characteristics can be inferred from measures that are 

acceptable in the human context.

Moving from lists to networks

As detailed above, technological improvements together with consortia and initiatives have 

resulted in vast amounts of genomic data, much of which are relevant to the human brain. 

The efforts have yielded catalogs of genes that are associated with cell types, developmental 

trajectories, and/or disease status. However, one of the greatest challenges posed by these 

datasets is determining how to consolidate and prioritize the information. In other words, 

which genes are most crucial for a particular developmental process, phenotype, or disease? 
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Since a single gene cannot determine a specific cell type, we need to consider genes in 

groups or networks. In the era of bulk tissue RNA-sequencing, this challenge was facilitated 

by the use of approaches to mine the relationships among patterns of gene expression 

in a way that was agnostic to other known genomic or biological information. Weighted 

gene co-expression network analysis (WGCNA) is a popular approach to systematize brain 

genomic datasets1. This method groups genes into modules based on their patterns of 

co-expression. Within each module, the genes that appear to be most linked to the pattern 

of co-expression can be prioritized as hub genes. It is worth noting that when starting 

with a bulk genomics dataset, WGCNA is useful for pulling out co-expression signatures 

related to cell types68. For single cell datasets, WGCNA is useful to apply to already 

defined major cell types or to datasets with dynamic cell type-specific expression, as in the 

case of a developmental dataset (Figure 1). For example, in the developing human brain 

where dynamic patterns of gene expression make defining subtypes of cells challenging, 

modules can be generated by cell type then re-clustered to obtain cleaner subclusters69. 

In other studies of human primary tissue and/or organoids, WGCNA has been applied to 

observe how defined networks change across developmental time or between species70,71. 

The use of WGCNA and related co-expression methods will be key to apply to the realm of 

underexplored human brain regions and disease states. The re-invigoration of gene networks 

into the human neurogenomics field could provide additional color into how biological 

processes are not necessarily always completely parallel to cell type. We would like to note, 

however, that while WGCNA is still relevant in the era of single cell modalities, application 

of WGCNA to single cell datasets may be limited when cell type heterogeneity is already 

apparent and defined. Moreover, because single cell datasets tend to be more sparse with 

many zeros (whether due to technical or biological reasons), the implementation of WGCNA 

may be challenging due to sparsity or the number of data points. Sparsity can be addressed 

by deeper profiling per cell type (e.g. with SMART-seq or Fluidigm)15,72, imputation of 

missing data points or pseudobulking values for genes across cell types73,74.

Other methods such as gene regulatory networks (GRN)75 are therefore important and 

needed to mine single cell datasets to determine functional relevance. At its simplest level, 

implementation of GRN essentially identifies the genes regulated by transcription factors 

and builds this out at scale into a network. In a scRNA-seq dataset, this translates to 

determining transcription factor motifs at cell-type resolution (Figure 1). Thus, one can 

graph putative co-regulated (via the same transcription factor) genes in a cell type-specific 

manner. GRN can not only be applied to scRNA-seq but also to single cell chromatin data 

such as snATAC-seq. The layering and integration of both RNA and chromatin datasets is 

key for building functional networks, especially in human brain datasets, since perturbations 

to test functional outcomes are limited. The combination of RNA and chromatin at the 

cell type level facilitates identifying genes and regulatory mechanisms (via motif and 

variant mining in areas of the genome that are differential across brain states (development, 

disease, etc.)) and correspond to changes in gene expression. While applying some of the 

latest GRN methods to multimodal datasets has been shown to improve the predictive 

power of the GRN approach overall (e.g., MIRA, SCENIC+, and Dictys), there are still 

limitations even to these recent, benchmarked approaches in that some types of data such as 

validated TF binding sites or enhancer-promoter links are not sufficiently observed76. One 
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of the important challenges for all these approaches with respect to human datasets, is the 

relatively constrained ability to confirm any of the outcomes. Both WGCNA and GRN are 

predictive rather than definitive of causation. In other words, these are hypothesis-generating 

approaches that need to be independently validated. For GRN-generated TF networks, it 

might be possible to validate the target genes of a specific TF using cell type specific 

transposase and tagmentation approaches such as single cell CUT&Tag77. We envision such 

approaches could adapt the use of antibodies to TFs (compared to validated antibodies for 

histone modifiers) and apply the approach to human brain samples.

Beyond frequently used approaches such as WGCNA and GRN, additional methods are 

emerging to mine multimodal genomic datasets. A causal inference approach, CoCoA-diff, 

has been applied to single cell RNA-seq data from Alzheimer’s disease brain tissue, 

facilitating the prioritization of cell type specific genes that are likely to be drivers of disease 

state78. One recent machine learning approach that included human brain tissue is the 

Geneformer tool79. Single cell RNA-seq data from human brain tissue was included within 

the large training dataset Geneformer used, and the networks predicted the contribution of 

copy number variants (i.e., dosage) of developmental disease genes with higher accuracy in 

neurons compared to random cells from throughout the body. There is much excitement 

about applying artificial intelligence approaches such as deep learning to single cell 

transcriptomics80. However, there are still challenges (in general81) and unknowns in how 

such tools might predict functional networks in a system like the human brain that is not 

amenable to perturbation except in select ways.

Hypothesis testing of integrated datasets can be carried in human datasets via in silico 

approaches such as CellOracle82 or genomic perturbation methods such as PerturbSeq83 or 

massively parallel reporter assays (MPRAs)84,85. These manipulations in a human context, 

however, require accessible models of the human brain and either immense scale in terms 

of cell number or limited gene sets because of the number of cells per guide RNA required 

for robust conclusions. These types of manipulations are the ideal scenario in which stem 

cell-derived models of human neurons or organoid systems of normal development or 

neurodevelopmental disorders can enable relevant perturbations. However, because of the 

in vitro nature of these models, benchmarking existing datasets from primary samples and 

including ample cell line and technical replicates is essential to ensuring that the phenotypes 

observed are not artifacts of the system.

Finally, many studies, especially those funded through BRAIN-initiative grants, are tasked 

with setting goals across the modalities of RNA and chromatin as already mentioned, 

but now also include spatial approaches due to available technology. Since single cell 

approaches necessarily dissociate tissue to profile individual cells, the implementation of 

spatial transcriptomics can be used to either independently generate or validate cellular 

genomic datasets across human brain subregions (e.g., a human cortical section)86. A 

limitation of human spatial transcriptomics is the sheer size of the human brain relative 

to the imaging window. However, one could imagine tiling together datasets across larger 

regions of the human brain to make key spatially-relevant insights. Another consideration is 

the sheer amount of imaging time that might be needed (and computationally intensive 

analysis) to cover large sections of the human brain. However, as these hurdles are 
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surmounted, spatial transcriptomics could be scaled to slice cultures of larger areas of human 

brain and integrated with additional approaches that interrogate functional measures such as 

connectivity and viral gene manipulations, further bridging the genotype to phenotype gap.

Integrating genetic and phenotypic data

An ultimate goal of studying the human brain is to piece together the mechanisms that 

underlie our behavior, particularly with regard to those traits that distinguish us from other 

species such as language. One way to achieve this is by profiling genetic and genomic 

information across a wide range of individuals with varying phenotypes. This can be 

achieved by comparing datasets from neurotypical individuals with those who have brain 

disorders with distinct behavioral symptoms such as neurodevelopmental (e.g., autism 

spectrum disorder (ASD) or schizophrenia) or neurodegenerative (e.g., Alzheimer disease 

(AD)) disorders). Since it is not feasible to perturb humans genetically like we do in model 

systems, we can instead compare data from neurotypical individuals to those with disease 

to infer correlations between genes and behavior in the human brain (Figure 2A). These 

studies necessarily either use peripheral tissues such as blood or saliva (for DNA variants) 

in living individuals or postmortem tissues for brain access. While DNA polymorphism and 

copy number variant information have revolutionized our understanding of the contribution 

of both rare and common variants to risk for these brain diseases87–89, it is still not entirely 

clear how DNA alterations in these risk factors impact brain cells in a functional manner. 

In other words, how can we infer causality from DNA all the way to behavior/disease via 

cells and circuits? This is a significant gap in knowledge that the neurogenomics field should 

address over the next decade. In addition, we are challenged to identify how developmental 

pressures and/or brain activity intersect with genetic risk in the absence of datasets derived 

directly from brain tissue. Thus, researchers need to be innovative in how postmortem 

brain tissue can be harnessed to understand functional outcomes. One logistical challenge 

in leveraging postmortem tissues is that humans have diverse lifestyles and demographics, 

and thus available datasets are not always well matched (e.g., by age, other demographics, 

drug or treatment conditions, or brain region). Large scale datasets can mitigate some of 

these issues. For example, the UK Biobank dataset currently contains genetic data from 

hundreds of thousands of individuals with corresponding demographic information as well 

as some phenotypic information and brain imaging from tens of thousands of individuals90. 

These datasets have been used to make a number of important insights into how genetic 

variants correlate with both structural and functional brain measures and mining these 

datasets has identified specific genes that may underlie these phenotypes as well as link to 

particular brain disorders91. One disappointing outcome from these and related studies has 

been the inability to identify significant genetic signals that correspond to task-based fMRI 

measures92, in other words, the genetics underlying human behavior. It is not clear if further 

increases in sample size or refinement of imaging methods or behavioral tasks will alter this 

outcome.

Another recent innovation is the integration of human brain imaging with postmortem 

brain gene expression datasets (Figure 2B). In these comparisons, the datasets are derived 

from two different cohorts of people but the relatively stability of these measures 

across neurotypical populations has led to key insights about genomic underpinnings of 
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brain morphology, size, lamination, and cell types93 as well as functional resting state 

measures94,95. These functional imaging datasets typically rely upon large repositories of 

imaged cohorts such as from the IMAGEN or Human Connectome Project for neurotypical 

individuals or disease relevant consortia such as ABIDE for ASD. Many of these integrative 

studies also use RNA-seq data from the human brain atlas generated by the Allen Brain 

Institute94, but an increasing number of studies are beginning to add additional human 

postmortem RNA-seq datasets95,96. Moreover, the inclusion of imaging and/or genomic 

datasets from individuals with a number of disorders such as depression, schizophrenia, 

ASD, and other neurodevelopmental disorders has resulted in the identification of genes 

that have patterns of expression that vary in a disease context96–99. Interestingly, these are 

not necessarily the same genes that are associated with genetic variant risk, suggesting a 

complex interplay of genetic risk and functional genomic outcomes. Beyond the use of data 

from disease cohorts, there are efforts to correlate genomics and brain imaging with specific 

behavioral repertoires relevant to humans such as language100. All these studies have laid 

the groundwork for human brain gene prioritization as well as insights into how groups of 

genes correlate together with respect to a number of brain functions or disease states. A 

caveat to these studies is that the postmortem tissue data are derived from separate cohorts 

of individuals than those who underwent imaging. Therefore, the demographics of each 

population can be challenging to match especially if disease or developmental datasets are 

considered.

Another important source of gene expression datasets (e.g., RNA-seq and/or ATAC-seq) 

derived from human brain tissue is surgically resected brain tissue. The use of these tissues 

precludes issues surrounding independent group correlations as this tissue can be obtained 

from individuals who undergo prior brain imaging (structural or functional), intracranial 

stimulation or electrophysiological measures such as electroencephalograms (EEG) (Figure 

2D). For example, a within-subjects study identified the gene expression patterns associated 

with specific oscillatory activity during a memory recall task, uncovering specific genes 

that are likely important for normal human memory function101. Of course, a major caveat 

to the use of surgically resected tissue is that all the individuals providing tissue undergo 

operations for a medical condition such as medication-resistant epilepsy or cancer. The 

use of rapid autopsy tissue could fill a gap with respect to the availability of tissue from 

individuals with non-brain disease and access to the entire brain rather than where surgery 

dictates. Regardless, neither surgical nor rapid autopsy sources are likely to provide an 

abundant resource for brain tissue for genomics from individuals with cognitive disorders 

like ASD or AD. Therefore, between group correlations need to be made for integrating 

genomics with brain function in these cases.

At the cell type level, biophysical phenotypes can be integrated with genomic measures 

through approaches such as Patch-seq in which individual cells undergo patch clamp 

measurements followed by scRNA-seq24. Patch-seq has been used at scale to compare 

human and mouse cortical cells, identifying features that have been modified in human brain 

cells and might be at risk in certain disorders2. These efforts could be further expanded by 

manipulating disease-relevant genes or cell types in organotypic slice culture derived from 

surgical resections and/or rapid autopsy brain tissues. Human brain slice cultures can be 

kept viable for several weeks and are amenable to viral transduction40,102. Again, applying 
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these techniques to brain tissue from individuals with specific brain disorders like ASD 

or AD would be limited. But high-quality gene expression and regulation measures from 

postmortem tissues can be obtained, and information applied to physiological studies such as 

key disease-relevant gene manipulation in the organotypic slice culture.

Importantly, for all these integrated studies, detailed phenotypic information related to the 

donor of the tissues is key in order to correlate genomic features with either demographics, 

disease-relevant phenotypes, or technical considerations. Coordinated brain banks that have 

high standards of best practices are making these tissues readily available to qualified 

researchers (e.g., NIH NeuroBioBank for control as well as several types of brain disorders 

and Simons Foundation BrainNet for ASD and control tissue). A challenge for these brain 

banks is to collect enough samples across the developmental and age-related epochs that 

are impacted by disease state. Even though the post-mortem tissue samples will reflect 

steady-state levels of expression, the use of Hi-C and ATAC approaches have already given 

insight into some aspects of molecular/chromatin features that are dynamic13,36,103–105.

An option to fill in any missing knowledge of how DNA variants lead to alterations in 

behavior, via changes in cell type expression patterns or brain circuits in humans, is to 

harness the power of non-human primate (NHP) models. NHP models that are ethically 

amenable to gene manipulation (e.g., marmoset or macaque) are still evolutionarily distant 

from humans and harbor many genomic differences at the cell type level16,17. However, their 

brain gene expression patterns and circuits also share many features with the human brain25. 

Thus, each model system such be selected based on the specific hypothesis that relates to 

human behavior. For example, a songbird model could be ideal for a study of vocal learning 

over even great apes, which do not have observable vocal learning.

Human data sharing

As the genomic tools to study neuroscience improve and expand in scale to address technical 

challenges associated with human samples, the number of studies utilizing donated surgical, 

biopsied, or postmortem tissues is expanding rapidly. Numerous organizations, including 

funding agencies such as the NIH are simultaneously pushing for increasingly open access 

to this data, including the raw sequencing reads. Scientifically this is reasonable because 

tools for alignment, parsing isoforms, and other applications to improve differential gene 

expression are improving and expanding while traditional repositories such as dbGAP or 

SYNAPSE are onerous to navigate bureaucratically. More streamlined access would allow 

speed and efficiency for tools that are yet to be conceptualized, much less developed.

However, as the tools to utilize these raw sequences improve, so also do the technologies 

to infer identifiable characteristics within these data. For example, while short read, 

low coverage 3’ enriched sequencing once was impossible to use for the identification 

of SNPs, tools and models now make relatively high confidence SNP calling in these 

sequencing datasets feasible and have been used for scientifically exciting applications such 

as demultiplexing identity in sequencing runs106, tracing potential lineage relationships 

between cells107,108, or identifying tumor subclones in single-cell studies109.
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These same tools, when paired with the expanding repository of human sequencing in 

scientific and social contexts, are quickly approaching adaptability for identifying not only 

individuals but also their kin. This poses ethical risks with regards to most consent forms 

where deidentification is a condition of the research use of a sample and increasing societal 

risks to individuals and their relatives. Spelling these risk factors out directly (Figure 3) is 

not alarmist, but rather is specific in terms of the harms that can arise when sequencing 

data is not fully protected; more comprehensive access must come with legal protections 

against these harms. The considerations on family are particularly salient when dealing with 

postmortem tissues that are archived with older consent forms; not only might the research 

uses extend beyond those originally planned, but new technologies may expand the impact 

of identifying previously unknown genetic risk factors to surviving relatives who may not 

have been consulted during the donation process.

Thus, we as scientists and the broader community must consider what types of firewalls 

to protect data and community guidelines of scientific conduct must be maintained when 

housing, sharing, using, or publishing these sensitive data types. Additionally, when thinking 

about what aspects of the data or metadata will be shared, protections for future potential 

uses of this data must be considered in policy and scientific decision making now.

Conclusions and future directions

Data integration across modalities remains a challenging frontier in human brain genomics. 

However, as access to human brain tissues with associated phenotypic information increases, 

the gap between genes and behavior should narrow. Advances in chemistry and brain 

imaging may facilitate mechanisms to query gene expression in vivo. Certainly, the 

possibility to image the activity of a living human brain at single cell resolution might 

be achievable110 and resultant data could be integrated with independent genomic measures.

Most importantly, the neuroscience community has come a long way from reluctant 

use of genomic methods and hypothesis-generating approaches to embracing technology 

that profiles the brain agnostically at cellular resolution or integrates electrophysiological 

measures with gene expression. While significant progress has been achieved in these 

domains within model systems, in the next decade, neuroscience research is certain to push 

the boundaries of what is possible in observing and manipulating human brains. These 

new approaches will enable additional characterization of human biology, and existing 

integrative analysis approaches overviewed here can continue to drive cohesive biological 

understanding of existing and emerging datasets. The functional understanding of how genes 

influence the human brain across scales from cells to circuits will usher in a new era of 

neuromodulation and gene manipulations. Thus, we propose that a continuation of efforts 

to delve into genomic features of the human brain and how these features vary across cells, 

circuits, and behaviors will be rewarded with a rich appreciation of how the human brain 

evolved, develops, functions, and dysfunctions. Determining how these genetic features 

directly affect behavior via cells and circuits is a challenging feat in the human brain that 

may require new technological advances. These achievements will not only enhance how we 

understand human behavior but also have therapeutic value.
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BOX 1.

Relevant Human Single-Cell Dataset Repositories

Key examples of published human brain single cell datasets together with the location 

and type of data.

Dataset Repository Type(s) of 
Data Sample Publications

Human Brain 
Development

NeMO, GEO, 
Individual Archives

sc/snRNA-
seq, 
scATAC-seq

Nowakowski et al 201769, Fan 
et al 2018111, Zhong et al 
2018112, Polioudakis et al. 
2019113, Fan et al 2020114, 
Ziffra et al 202114, Eze et al 
2021115, Bhaduri et al 20216, 
Smith et al 2021116, Ramos 
et al 2022117, Braun et al 
2022118, Herring et al 2022119, 
Cameron et al 2023120

Adult Human Brain Allen Brain Atlas 
data portal, GEO, 
NeMO

snRNA-seq, 
snATAC-seq

Hodge et al 201972, Krienen 
et al 2020121, Bakken et al 
2021122, Ma et al 202216, 
Caglayan et al 202317

Neurodevelopmental 
and Neuropsychiatric 
Disorders

PsychENCODE 
Knowledge Portal, 
GEO

sc/snRNA-
seq

Wang et al 201836, Velmeshev 
et al 201912, Gandal et al 
202210

Alzheimer’s Disease Alzheimer’s 
Disease Knowledge 
Portal (subset of 
Synapse)

Bulk profiles 
and snRNA-
seq

Hodes et al 2016123, Mathys et 
al 201911

Other 
Neurodegenerative 
Disorders

dbGAP, GEO snRNA-seq Tryka et al 201438, Schirmer 
et al 2019124, Bressan et al 
2023125

Interactive Browsers UCSC Cell 
Browser, 
CellXGene

sc/snRNA-
seq, 
scATAC-seq, 
others

Speir et al 202135, Tabula 
Sapiens Consortium et al 
202237
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Figure 1: Mining human brain single cell datasets to infer regulatory mechanisms.
Human brain tissue can be queried for genomic information at the RNA and chromatin level. 

However, these datasets require further applied analysis to understand the dynamic nature of 

the datasets. WGCNA can be used to understand cell type composition and contributions as 

well as the dynamic nature of cell type development. Gene regulatory networks (GRN) can 

be applied to infer which transcription factors (TFs) might be important for co-regulation 

of sets of genes in a given cell type. Since these regulatory mechanisms cannot be directly 

tested in vivo in human, they can instead be tested in either human brain slice culture or 

model systems (e.g., rodent or monkey) using CRISPR-based tools.
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Figure 2: Integrative approaches to use human brain tissue to uncover multimodal systems 
related to genomics.
A) Brain imaging can be combined with peripheral DNA profiling to infer genetic variants 

that may underlie brain size or function. B) Brain gene expression and chromatin state data 

from post-mortem tissues can be integrated with functional MRI measures to understand 

how gene expression patterns may underlie brain activity. C) Human post-mortem tissues 

can be used to confirm findings from all other approaches. D) Ex vivo brain slice 

cultures can be acquired from surgical patients and use to integrate physiological and gene 

expression measures from the same individual.
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