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Abstract 

Background  Major depressive disorder (MDD) is one of the most common psychiatric disorders worldwide. Hyperi-
cum perforatum (HP) is a traditional herb that has been shown to have antidepressant effects, but its mechanism 
is unclear. This study aims to identify the molecular targets of HP for the treatment of MDD.

Methods  We performed differential analysis and weighted gene co-expression network analysis (WGCNA) with blood 
mRNA expression cohort of MDD and healthy control to identify DEGs and significant module genes (gene list 1). Three 
databases, CTD, DisGeNET, and GeneCards, were used to retrieve MDD-related gene intersections to obtain MDD-predicted 
targets (gene list 2). The validated targets were retrieved from the TCMSP database (gene list 3). Based on these three gene 
lists, 13 key pathways were identified. The PPI network was constructed by extracting the intersection of genes and HP-
validated targets on all key pathways. Key therapeutic targets were obtained using MCODE and machine learning (LASSO, 
SVM-RFE). Clinical diagnostic assessments (Nomogram, Correlation, Intergroup expression), and gene set enrichment analysis 
(GSEA) were performed for the key targets. In addition, immune cell analysis was performed on the blood mRNA expression 
cohort of MDD to explore the association between the key targets and immune cells. Finally, molecular docking prediction 
was performed for the targets of HP active ingredients on MDD.

Results  Differential expression analysis and WGCNA module analysis yielded 933 potential targets for MDD. Three 
disease databases were intersected with 982 MDD-predicted targets. The TCMSP retrieved 275 valid targets for HP. 
Separate enrichment analysis intersected 13 key pathways. Five key targets (AKT1, MAPK1, MYC, EGF, HSP90AA1) were 
finally screened based on all enriched genes and HP valid targets. Combined with the signaling pathway and immune 
cell analysis suggested the effect of peripheral immunity on MDD and the important role of neutrophils in immune 
inflammation. Finally, the binding of HP active ingredients (quercetin, kaempferol, and luteolin) and all 5 key targets 
were predicted based on molecular docking.

Conclusions  The active constituents of Hypericum perforatum can act on MDD and key targets and pathways of this 
action were identified.
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Introduction
Major Depressive Disorder (MDD) is recognized world-
wide as a complex and seriously life-altering psycho-
logical disorder [1]. Typical clinical symptoms include 
depressed mood and loss of pleasure or interest in activi-
ties, and in severe cases can lead to suicidal behavior. 
Although many antidepressants are available to alleviate 
mild and moderate depressive symptoms, there are limi-
tations in major depressive disorder, including low effi-
cacy and high side effects [2]. It is therefore important to 
find more reliable and targeted treatments for depression 
[3, 4].

A great deal of current research into depression 
revolves around the neurotransmitter doctrine, with 
most antidepressant approaches targeting monoamine 
neurotransmitters (5-hydroxytryptamine, dopamine, and 
norepinephrine) for treatment [5, 6]. This has been shown 
to be the substance that directly affects mood [7], in addi-
tion to the other direction of immune inflammation [8]. 
Inflammation is a manifestation of immune system acti-
vation, and there is growing evidence that the develop-
ment of MDD is associated with immune activation, such 
as elevated levels of pro-inflammatory cytokines like IL-6 
and TNF, which decrease after treatment [9, 10]. It has 
been shown that traditional antidepressants have anti-
inflammatory effects and that the effectiveness of treat-
ment depends on the different immune phenotypes.

Traditional medicine has been applied for therapy for 
many human diseases [11–19]. Hypericum perforatum 
(HP) has been used in herbal medicine and traditional 
medicine for centuries. Some studies have shown that HP 
has a superior effect to placebo and is even comparable 
to standard antidepressants in patients with MDD, with 
high efficacy and safety in mild and moderate depression 
and low discontinuation rates [20, 21].

This study aims to identify the molecular targets of HP 
for the treatment of MDD. In this study, bioinformat-
ics approaches such as differential expression analysis, 
WGCNA, KEGG pathway analysis, and machine learn-
ing were used to explore the mechanism of action and 
molecular targets of HP for MDD in combination with 
signaling pathways and immune cells.

Materials and methods
The overall design of this study
We performed differential analysis and weighted gene 
co-expression network analysis (WGCNA) with blood 
mRNA expression cohort of MDD to identify DEGs 
and significant module genes (gene list 1). Three data-
bases, CTD [22], DisGeNET [23], and GeneCards [24], 
were used to retrieve MDD-related gene intersections to 
obtain MDD-predicted targets (gene list 2). The validated 
targets were retrieved from the TCMSP database [25] 

(gene list 3). Based on these three gene lists, 13 key path-
ways were identified. The PPI network was constructed 
by extracting the intersection of genes and HP-validated 
targets on all key pathways. Key therapeutic targets 
were obtained using MCODE [26] and machine learn-
ing (LASSO [27], SVM-RFE [28]). Clinical diagnostic 
assessments (Nomogram, ROC, Correlation, Intergroup 
expression), and gene set enrichment analysis (GSEA) 
were performed for the key targets. In addition, immune 
cell analysis was performed on the blood mRNA expres-
sion cohort of MDD to explore the association between 
the key targets and immune cells. Finally, molecular 
docking prediction was performed for the targets of HP 
active ingredients on MDD (Fig. 1).

Blood cohort description
The cohort of this study involved 128 whole blood sam-
ples including 64 MDD patients with generalized anxi-
ety disorder, diagnosed by the MINI questionnaire) and 
64 healthy controls. RNA isolation was performed using 
the standard PAXgene protocol on the Qiagen Bioro-
bot 8000, ensuring good quality RNA for all samples, as 
confirmed by Agilent Bioanalyzer. The RNA yield ranged 
from 0.86 to 15.05  ug from each sample, with an aver-
age of 6.25 ug. The female-to-male ratio of this cohort is 
3:1. 50 ng of RNA from each sample was converted into 
a biotin-labeled cDNA probe using NuGEN SPIA ampli-
fication. These probes were then hybridized to Affyme-
trix U133_Plus2.0 Genechips. The microarray data were 
accessed from the GPL570 (Affymetrix Human Genome 
U133 Plus 2.0 Array) platform and were previously pub-
lished as GSE98793 [29] in the GEO database (https://​
www.​ncbi.​nlm.​nih.​gov/​geo/).

Identification of differentially expressed genes in patients 
with major depressive disorder
Differential expression analysis was performed with the 
limma package of Rstudio (version 4.2.1) and regard-
ing the difference density plot we retained DEGs with 
logFC > 0.1, p < 0.05, and visualized volcano plots for 
logFC > 0.1, adj. P < 0.01 [30].

Screening of potential target genes by weighted gene 
co‑expression network analysis
The first 6000 differentially expressed genes from the 
MDD and healthy control groups of blood microarray 
data were taken to construct co-expression networks 
using the WGCNA package [31]. This was then con-
verted into a topological overlap matrix (TOM) using 
hierarchical clustering to identify panels and calculate 
signature genes. Correlations between each module 
and MDD samples or normal samples were assessed to 
select key modules as MDD-associated module genes. 

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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The key module genes were intersected with the Venn 
package of DEGs in Rstudio(version 4.2.1) to obtain 
potential target genes for MDD.

Screening for predictive target genes in Hypericum 
perforatum and predictive target genes in major 
depression
The active ingredients were selected according to the 
Traditional Chinese Medicine Systematic Pharmacol-
ogy (TCMSP) [25] database (https://​old.​tcmsp-e.​com/​

tcmsp.​php) to meet oral bioavailability (OB) ≥ 30% and 
drug similarity (DL) ≥ 0.18, and their active ingredi-
ent prediction targets were collected [25]. Relevant tar-
gets for MDD were collected in the CTD database [22] 
(http://​ctdba​se.​org/), GeneCards database (https://​www.​
genec​ards.​org/), and DisGeNET database [23] (https://​
www.​disge​net.​org/) and the Venn package intersection in 
Rstudio (version 4.2.1) was used as a predictive target for 
MDD.

Fig. 1  Graphical workflow of this study. A Identification of the workflow for the treatment of major depressive disorder with Hypericum perforatum. 
B Analysis of the databases, software, and tools used

https://old.tcmsp-e.com/tcmsp.php
https://old.tcmsp-e.com/tcmsp.php
http://ctdbase.org/
https://www.genecards.org/
https://www.genecards.org/
https://www.disgenet.org/
https://www.disgenet.org/
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Target gene pathway enrichment analysis and screening 
of predicted therapeutic target genes
Microarray data differential expression analysis and 
WGCNA analysis based on the clusterProfiler package 
for Rtudio (version 4.2.1) were performed with multiple 
comparison corrections (adjP < 0.05 as cut-off value) and 
intersected to obtain MDD potential target genes [32]. 
Target genes for HP were predicted in the TCMSP data-
base. Three disease databases were intersected for MDD-
predicted target genes. KEGGa, KEGGb, and KEGGc 
were obtained by enrichment pathway analysis. venn 
package based on Rstudio (version 4.2.1) was used to 
intersect the results of these three pathways to obtain key 
pathways and calculate enrichment numbers. All genes 
on the pathways were collected in the WEB-based Kyoto 
Encyclopedia of Genes and Genomes (KEGG) database 
(https://​www.​genome.​jp/​kegg/) and intersected with the 
HP predicted target genes to obtain the predicted thera-
peutic target genes. In addition, we visualized key path-
ways based on the preview package [33].

Protein–protein interaction networks and constructing 
component‑pathway‑target networks
To further explore the interactions between predicted 
therapeutic target genes, PPI networks were constructed 
using the STRING database [34], and the lowest interac-
tion score above 0.4 was considered significant. The PPI 
visualization network was then done using Cytoscape 
software [35]. Key protein expression sub-networks were 
screened using the Cytoscape plugin Minimum Common 
Oncology Data Element (MCODE) [26]. In addition, we 
constructed networks and visualized them in Cytoscape 
software for HP active ingredients, HP-predicted target 
genes, and key pathways for target enrichment.

Screening key targets for MDD patients by machine 
learning algorithms
Two machine learning algorithms were used in this 
study. The glmnet package of Rstudio (version 4.2.1) 
was used to perform Lasso regression analysis on 
the genes of the key subnetwork with a random seed 
of “123456” [36]. SVM-RFE analysis was performed 
on the genes of the key subnetworks using the e1071 
package of Rstudio (version 4.2.1) with a random seed 
of “1234567890”. A 10× cross-validation was applied to 
validate the model. The genes obtained from the inter-
section of the two analyses were considered potential 
therapeutic markers for MDD patients. In addition, 
a column line graph based on potential therapeu-
tic markers was constructed using the rms package, 
receiver operating characteristic (ROC) analysis was 
performed on blood RNA microarray data, and the 

AUC values of these five pivotal genes were calculated 
using the pROC package to assess their clinical diag-
nostic value and visualized [37].

Characterization of key targets for expression, correlation, 
and gene set enrichment analysis
The expression of key targets was correlated and visual-
ized based on the corrplot package in Rstudio (version 
4.2.1). The expression levels of each pivotal gene were 
analyzed based on the Wilcoxon rank sum test. GSEA 
analysis was then performed on each pivotal gene to fur-
ther understand the function of the enriched pathway.

Immune cell analysis
It has been shown that the pathophysiology of MDD is 
closely related to the immune system. Especially, our 
data are from blood that might include strong blood cell 
signals. Therefore, immune cell analysis of blood RNA 
microarray data using the CIBERSORT package based 
on 22 different immune cells was performed to corre-
late potential therapeutic markers with 22 immune cells 
[38]. CIBERSORT is a robust computational approach 
designed to measure the proportions of cells in bulk sam-
ples using gene expression profiles (GEPs). By integrat-
ing support vector regression and leveraging pre-existing 
data on expression profiles from distinct leukocyte sub-
sets, CIBERSORT effectively determines the immune 
cell composition within a bulk sample. The expression 
of potential therapeutic markers in 22 immune cells was 
also analyzed using WEB-based CIBERSORTx (https://​
ciber​sortx.​stanf​ord.​edu/) to further understand the effect 
of MDD on specific immune cells.

Construction of key target miRNA‑mRNA regulatory 
networks
In order to further explore the mechanism of action of 
key targets in depression under the condition of mini-
mizing the false positive prediction rate. miRNA pre-
dictions for key targets were performed based on six 
databases: miRDB [39], miRTarBase [39], miRWalk [40], 
RNA22 [41], RNAInter [42], and TargetScan [43]. The 
upset package of Rstudio (version 4.2.1) was used to take 
intersections and construct miRNA-mRNA networks 
based on Cytoscape software.

Molecular docking verification
Combined PDB and UniProt databases to obtain crys-
tal structures of key targets, pre-processed using Auto-
DockTools (version 1.5.6) [36, 44]. The PDB files used in 
this analysis were 2OJG [45], 1JL9 [46], 1UY6 [47], 1H10 
[48], and 5I4Z [49]. The detailed information for these 

https://www.genome.jp/kegg/
https://cibersortx.stanford.edu/
https://cibersortx.stanford.edu/
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protein structures are provided in S-Table  1. The 3D 
structures of the small molecules of the drug Through-
gut were retrieved and downloaded in TCMSP. We then 
ran AutoDock for molecular docking of macromolecules 
and ligands according to default parameters. Each pair of 
docking was conducted nine times and the lowest bind-
ing affinity was recorded. The docking models were vis-
ualized and the binding energy was displayed in a heat 
map using the pheatmap package in Rstudio (version 
4.2.1).

Results
Identification of differentially expressed genes and WGCNA 
construction in MDD patient blood
The blood RNA microarray data were standardized and 
analyzed for differences (Fig.  2A), and a final screen 
(logFC > 0.01, P < 0.05) was performed to obtain 1954 dif-
ferential genes, of which 909 were down-regulated and 
1045 were down-regulated (Fig. 2C, D), according to the 
difference density distribution plot (Fig. 2B).

The expression values of the top 6000 differential genes 
were selected to construct a co-expression network using 
WGCNA. The samples were clustered according to Pear-
son’s correlation coefficient to obtain a sample clustering 
tree, and an optimal soft threshold of 5 (R-based scale-
free topology criterion2 = 0.9) was chosen to obtain a 
scale-free network (Fig.  3A, B). A total of five modules 
(2731 black, 20 grey, 117 pink, 305 red, 2005 turquoise, 
822 yellow) were obtained by merging dynamic modules 
with DissThres set to 0.2 (Fig. 3C). MM and GS between 
modules and MDD were calculated and correlation heat 
maps were drawn (Fig.  3D–G). We selected genes from 
the peacock blue module and the yellow module to inter-
sect with DEGs and obtained 933 potential targets asso-
ciated with MDD (Fig. 4A).

Identification of the key pathways in HP based on three 
KEGG enrichments
A total of 275 active ingredient targets for HP (with 
OB > 30 and DL > 0.18) were obtained from the TCMSP 
database. The predicted target genes related to depres-
sion were crossed in three databases CTD, DisGeNET, 
and GeneCards respectively using MDD as the key-
word, and 982 predicted targets for MDD were obtained 
(Fig.  4C). We then performed KEGG pathway enrich-
ment analysis on (1) the crossover genes of differential 
genes and WGCNA key module genes, (2) predicted 
MDD targets from the three databases, and (3) HP 
active ingredient targets respectively to obtain KEGGa, 
KEGGb, and KEGGc (Fig. 4B, D, E). Finally, we crossed 
these three enriched pathways to obtain 13 key pathways 
and visualized the bubble plots (Fig. 4F, G).

Constructing component‑target‑pathway networks 
and PPI networks and selecting key networks based 
on MCODE
All genes enriched in the 13 key pathways were com-
bined and merged with the active ingredient targets 
of HP to obtain 76 predicted therapeutic target genes 
(Fig.  5A). A “component-target-pathway” network was 
then constructed (Fig. 5B). A protein interaction network 
was constructed, consisting of 76 nodes and 1426 lines 
(Fig. 5C). The key network was finally screened using the 
MCODE plugin and contained 22 candidate key genes 
(IL2, CXCL8, MAPK1, JUN, AKT1, IL4, IL1A, VCAM1, 
MYC, EGFR, IFNG, TP53, HIF1A, RB1, IKBKB, EGF, IL6, 
IL1B, CCL2, CDKN1A. HSP90AA1, MDM2) (Fig. 5D).

Machine learning‑based algorithm screens for 5 key 
targets for MDD patients
Machine learning algorithms were used to further 
explore the key targets of MDD. We performed feature 
screening by building LASSO regression models, and 
seven genes were identified as signature genes for MDD 
(Fig.  6A). Meanwhile, we used the SVM-RFE algorithm 
to evaluate the signature genes for MDD, and eight genes 
were identified as optimal signature genes (Fig. 6B). Five 
genes (AKT1, MAPK1, MYC, EGF, HSP90AA1) were 
obtained by intersecting the signature genes obtained 
from both the LASSO and the SVM-RFE models and 
were identified as key targets of HP for subsequent anal-
ysis (Fig.  6C). A nomogram for the risk assessment of 
MDD was created based on the Rms package (Fig. 6D) to 
exemplify the clinical practical value of the model.

Correlation of key targets, MDD expression 
characterization, and gene set enrichment analysis
In order to explore the association between the five key 
targets, a correlation analysis was performed (Fig.  7A). 
The results showed that the expression of HSP90AA1 
was significantly positively correlated with the expres-
sion of MYC and negatively correlated with the expres-
sion of the other three key targets. EGF was significantly 
positively correlated with the expression level of MAPK1 
(correlation coefficient of 0.9) but MYC was significantly 
negatively correlated with the expression level of AKT1 
(correlation coefficient of − 0.9).

We then further investigated the role of AKT1, 
MAPK1, MYC, EGF, and HSP90AA1 in MDD and 
looked at their expression profiles between the normal 
and MDD groups, respectively (Fig.  7B). Among them, 
the expression of MAPK1 and MYC was significantly 
higher in the normal group than in the MDD group, and 
the expression of AKT1 and HSP90AA1 was significantly 
higher in the MDD group than in the normal group, but 
there was no significant difference in EGF. In addition, 
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we searched the GeneCards database for MDD-related 
genes to reconfirm the relationship between the five 
key targets and MDD, with scores of 50, 49, 49, 49, 49, 
49, 46 for AKT1, MAPK1, MYC, EGF, and HSP90AA1, 

respectively. (N = 10,119, Median = 39, Mean = 36.04, 
SD = 10.28).

Subsequently, we performed a GSEA functional analy-
sis of these five key targets and identified multiple asso-
ciated pathways such as neutrophil extracellular trap 

Fig. 2  Identification of DEG in peripheral blood of patients with MDD. A Normalization process. B Sample expression density plot, pink indicates 
depression up-regulated gene expression and cyan indicates depression down-regulated gene expression. Where the dashed lines represent 
the mean of each of the two groups. C Volcano plot showing differential genes in MDD, red is for significantly up-regulated genes and blue 
is for significantly down-regulated genes. D Heat map showing the expression of the top 30 differential genes in the sample
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Fig. 3  Construction of the weighted gene co-expression network for MDD. A Soft threshold β = 5 and scale-free topological fit index (R2). B Sample 
clustering dendrograms with leaves corresponding to each sample. C Original and combined modules at a dynamic cut height of 0.2. D Heat 
map of module-trait correlations. 5 rows correspond to each of the 5 combined modules, 2 columns correspond to the normal and MDD groups, 
and the cells contain the corresponding correlation coefficients and P values. E Cluster dendrogram of the module trait genes. F MM-GS scatter 
plots of peacock green and yellow modules in the control group. G Scatterplot of peacock green module and blue module MM-GS of MDD group
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Fig. 4  Identification of key KEGG pathways. A DEGs mapped to WGCNA key module genes. B KEGG enrichment results for KEGGa of intersecting 
genes of DEGs and WGCNA key module genes. C CTD, DisGeNET, GeneCards database predicted gene intersection results. D KEGG enrichment 
results for KEGGb of cross-linked genes in the disease database. E KEGG enrichment results for KEGGc of active ingredient targets in Hypericum 
perforatum. F KEGGa, KEGGb and KEGGc enrichment results for cross-linked key pathways. G Number and P-value of enriched genes for the 13 key 
KEGG pathways
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formation, nicotine addiction, alcoholism, synaptic vesi-
cle cycle, and long-term depression (Fig.  7C). Of these, 
we speculate that inflammation is also implicated in the 

development of MDD based on the enrichment of neu-
trophil extracellular trap formation, S. aureus infection, 
and other pathways.

Fig. 5  Network construction for predicting therapeutic target genes. A Results of the intersection of all genes in the active ingredient target 
and key KEGG pathway of Hypericum perforatum. B The “component-target-pathway” network, with the rectangular node being the key KEGG 
pathway, the diamond node being the active ingredient of Hypericum perforatum, and the triangular node being the 76 predicted therapeutic 
target genes, with the darker colour and larger shape indicating higher association. C PPI network constructed from 76 predicted therapeutic target 
genes. D The key network obtained based on MCODE
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Immune cell level analysis
To explore the differential immune landscapes between 
the normal and MDD cohorts, we employed a robust 
deconvolution algorithm CIBERSORT to analyze the 
immune cell composition from collected samples 
(Fig. 8A). This advanced computational approach enabled 
us to accurately estimate the proportions of 22 distinct 
immune cell types. Subsequent comparative analysis 
revealed significant variations in specific immune cell 
populations between the two groups (Fig.  8B). Notably, 
neutrophils and memory B cells exhibited elevated lev-
els in the normal group compared to the MDD group, 
whereas CD8T cells, naive B cells, and monocytes were 
significantly reduced.

The differing levels of immune cells between the nor-
mal group and the MDD group could indicate several 
key aspects of how the immune system may be involved 
in the pathophysiology of MDD: (1) Altered Immune 
Response: The elevated levels of neutrophils and mem-
ory B cells in the normal group suggest a more robust or 
active immune response compared to the MDD group. 
Neutrophils are crucial for rapid response to infection 
and inflammation, indicating a potentially more effective 
innate immune function in individuals without MDD. 

Memory B cells, part of the adaptive immune system, 
suggest enhanced long-term immune memory in the 
normal group. (2) Immune Suppression in MDD: The 
reduction in CD8T cells, naive B cells, and monocytes 
in the MDD group might reflect an immune-suppressed 
state or dysregulation. CD8T cells are vital for target-
ing and destroying infected or cancerous cells, naive B 
cells are essential for generating new immune responses, 
and monocytes are important for inflammation and tis-
sue repair. Their decreased levels could imply a compro-
mised ability to initiate and maintain effective immune 
responses in MDD patients, potentially making them 
more susceptible to infections or having a less effective 
inflammatory response, which could influence mood 
or neurological function. (3) Inflammation and MDD: 
While typically associated with active immune response, 
neutrophils and other cellular components could play 
dual roles. In MDD, altered levels of these cells could be 
linked to chronic inflammation, which is often observed 
in depressive disorders. Chronic inflammation has been 
hypothesized to affect brain function and mood regula-
tion, potentially contributing to the symptoms of MDD. 
(4) Immune System Dysregulation: The distinct pro-
files of immune cells between the two groups highlight 

Fig. 6  Machine learning-based screening of key targets. A LASSO regression model. B SVM-RFE model. CV: cross-validate. C Venn diagram of two 
algorithms for screening key targets. D Columnar plot for diagnosing the risk of MDD at key targets
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Fig. 7  Correlation analysis of key targets, expression characterization, and GSEA enrichment results. A Correlation heat map of key targets, binary 
scatter plot with fitted lines on the left and correlation coefficients on the right. B Expression of key genes in blood RNA microarray data, pink 
is the healthy group and cyan is the MDD group. C GSEA enrichment results for each key gene
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Fig. 8  Immune cell analysis. A Relative proportions of 22 immune cell subpopulations in all samples in blood samples. B Differences in the levels 
of 22 immune cell types in the normal and MDD groups. (*:P < 0.05, **:P < 0.01, ***:P < 0.001, ns:no significance). C Correlation between the 22 
immune cell subpopulations. D Correlation between key targets and 22 immune cell subpopulations
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a dysregulation in the immune system associated with 
MDD. This dysregulation could be a contributing fac-
tor to the development or exacerbation of depressive 
symptoms through mechanisms such as altered cytokine 
production, affecting neurotransmitter systems, and 
impacting neuroplasticity. These findings encourage fur-
ther investigation into the specific roles of these immune 
cells in MDD and how modulation of these cells might 
serve as potential therapeutic targets for treating depres-
sion, focusing on restoring normal immune function as 
a means to improve clinical outcomes for patients with 
MDD.

To further understand the functional implications of 
these disparities, we performed a correlation analysis to 
identify potential inter-cellular relationships and their 
impact on the immunoinflammatory pathways involved 
in MDD (Fig. 8C). Our findings indicated a negative cor-
relation between neutrophils and both CD8T cells and 
monocytes, suggesting a possible competitive interac-
tion or differential regulation of these cell types in the 
immune response to depression. Similarly, memory B 
cells showed a negative correlation with naive B cells, 
potentially reflecting a shift in B cell lineage commitment 
influenced by the disease state or its associated inflam-
matory milieu. These correlations underscore complex 
immune dynamics that may contribute to the pathophys-
iology of MDD, emphasizing the need for further inves-
tigation into how these specific immune cell alterations 
influence broader immunoinflammatory pathways. By 
elucidating these mechanisms, our study not only sheds 
light on the immunological underpinnings of MDD but 
also opens avenues for targeted immunomodulatory 
therapies.

In addition, we analyzed the correlation between each 
of the key targets and immune cells (Fig.  8D). MYC 
showed a significant positive correlation with CD4 naïve 
T cells. MAPK1 showed a significant positive correlation 
with naïve B cells, monocytes, and activated CD4 mem-
ory T cells, and a significant negative correlation with 
memory B cells, eosinophils, and resting CD4 memory 
T cells. HSP90AA1 showed a significant positive correla-
tion with activated CD4 memory T cells, T HSP90AA1 
was significantly positively correlated with activated CD4 
memory T cells, T cells gamma delta, and negatively cor-
related with CD8T cells, M0 polarized macrophages. 
EGF was not significantly correlated with immune cells. 
AKT1 was significantly positively correlated with neutro-
phils and negatively correlated with naive B cells.

The positive correlation between MYC and CD4 
naive T cells suggests that MYC, a crucial regulator of 
cell growth and proliferation, might be influencing the 
development or activation of these T cells. This could be 

important in diseases where T cell function is altered, 
such as autoimmune diseases or cancers.

MAPK1, involved in transmitting chemical signals 
from the outside of a cell to the inside, shows complex 
interactions: its positive correlation with naive B cells, 
monocytes, and activated CD4 memory T cells suggests 
a role in promoting immune responses, as these cells are 
key in initiating and regulating inflammation and adap-
tive immunity. Its negative correlation with memory 
B cells, eosinophils, and resting CD4 memory T cells 
might indicate a suppressive or regulatory role in certain 
immune functions, potentially influencing allergic reac-
tions or memory responses.

HSP90AA1 is a molecular chaperone, that is impor-
tant in protein folding and protecting cells under stress, 
its positive correlations with activated CD4 memory T 
cells and T cells gamma delta, suggest a role in support-
ing active immune responses, particularly those involving 
adaptive and innate-like lymphocyte functions. Its nega-
tive correlation with CD8T cells and M0 macrophages 
might reflect a regulatory mechanism where HSP90AA1 
influences T cell cytotoxic activities and macrophage 
polarization, impacting inflammation and immune 
surveillance.

The lack of significant correlations might indicate that 
Epidermal Growth Factor (EGF) predominantly affects 
tissues via mechanisms independent of direct modula-
tion of immune cells, or that its primary roles are non-
immunological, such as tissue growth and repair.

AKT1 is kinase that pivotal in many signaling pathways 
including cell survival and proliferation. Its positive cor-
relation with neutrophils suggests a role in promoting 
neutrophil survival or activation, potentially impacting 
inflammatory responses. While its negative correlation 
with naive B cells might indicate a suppressive effect on 
the maturation or activation of B cells, affecting the adap-
tive immune response.

These patterns of correlation can help to understand 
how molecular signaling pathways interact with the 
immune system, potentially identifying targets for thera-
peutic intervention in MDD where immune regulation 
or dysfunction is a feature. Each correlation can shed 
light on the potential regulatory mechanisms at play and 
guide further research into their biological implications 
in MDD.

Regulatory mechanisms of key targets
A combination of 6 databases was used to make miRNA 
predictions for each key target and to construct the 
miRNA-mRNA regulatory network (Fig. 9). 42, 10, 6, 3, 
and 1 miRNAs were predicted for MAPK1, HSP90AA1, 
MYC, EGF, and AKT1 respectively, with hsa-miR-1827 
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being the common miRNA predicted for EGF and MYC. 
Detailed results are available in S-Tables 2.

Molecular docking verification
To predict the potential interaction effects of HP on 
these five key targets in MDD, we used three major active 
ingredients of HP, including quercetin, kaempferol, and 
luteolin, to dock with MAPK1, EGF, HSP90AA1, AKT1, 
and MYC, respectively (Fig. 10A, B). Each pair of dock-
ing was conducted nine times (detailed results are pro-
vided in S-Table  3) and the lowest binding affinity was 
recorded. The docking of any of the active ingredients 
and the five key targets resulted in the binding affinity of 
− 7.7 to − 5.8, which was less than − 5 kcal/mol, demon-
strating that HP might have good binding ability to the 
key targets in MDD patients (Fig. 10C). All of the result-
ing models are presented in Fig. 10D.

Discussion
Depression is a prevalent and difficult-to-treat global 
psychiatric disorder, with depressed mood and unre-
sponsiveness as typical symptoms, causing serious dis-
turbance to the life and work of patients [50]. Hypericum 
perforatum (HP) has good antidepressant properties and 
its efficacy has been confirmed in several clinical studies. 
Although the antidepressant effect of HP has been well 
studied, the mechanism is not fully understood [51, 52]. 
Combining biological and pharmacological principles, 
drugs do not directly target disease-related genes, but 
they can also be regulated by upstream and downstream 
molecules [53].

Bioinformatic analysis and databases have been wildly 
applied to understand human disease and contribute to 
the development of disease diagnostic and prognostics 
[54–67]. Our study emphasizes the importance of “drug 
target-disease target” in the “component-target-pathway” 
approach by combining the KEGG pathway to retrieve all 
potential biomarkers associated with Kanye Goldenseal 
and MDD, and by using machine learning to screen and 
Identify MAPK1, EGF, HSP90AA1, AKT1, MYC as key 
targets for HP treatment of MDD.

In this study, we intersected 933 MDD-related potential 
targets from differentially expressed genes and WGCNA 
key module genes, 982 predicted MDD targets from 
three disease databases, and 275 HP active ingredient 
targets for KEGG pathway enrichment analysis to obtain 
KEGGa, KEGGb, and KEGGc. These results corrobo-
rated each other and effectively reduced the probability 
of false positives. The results show that the main path-
ways are Fluid shear stress and atherosclerosis, NOD-like 
receptor signaling pathway, and C-type lectin receptor 
signaling pathway. Different fluid shear forces affect the 

expression of endothelial cell genes, and according to 
existing studies, endothelial cell dysfunction can exac-
erbate cardiovascular diseases such as atherosclero-
sis [68, 69]. Moreover, depression leads to sympathetic 
hyperactivity in the body. Platelet activation also leads 
to an increased risk of arrhythmias, which over time can 
lead to damage to small blood vessels and microvessels, 
increasing the prevalence of cardiovascular disease [70–
72]. Several studies have linked inflammatory vesicles to 
depression. NLRP1, NLRP2, and NLRP3 are all members 
of the NLR family. They are expressed on microglia and 
astrocytes as inflammatory vesicles and when activated 
produce inflammatory factors leading to neuroinflamma-
tion and thus depressive symptoms [73, 74]. In addition, 
it has been suggested that C-type lectin receptors accel-
erate nucleosome-induced oxidative stress and neuroin-
flammation in microglia, enhancing negative mood [75]. 
All of the above pathways are similar to our study, and 
we also note the now well-accepted neuroinflammation 
as a cause of endogenous depression to pave the way for 
subsequent analyses [10, 76, 77].

Previous studies have often emphasized the role of drug 
molecules in the regulation of a small number of proteins 
[78, 79]. However, individual protein molecules are only 
one member of an interplay network, and it is a range 
of signal transduction and protein interregulation that 
really affects biological response pairs. In addition to act-
ing directly on MDD targets, drugs can also act first on 
certain genes and indirectly regulate MDD through the 
proteins encoded by these genes. In order to collect the 
genes that are direct and indirect targets of drug action, 
all genes in 13 key pathways were cross-analyzed with the 
active ingredient targets of Onychomycetes to generate 
76 potential therapeutic targets.

Subsequently, we constructed a “component-tar-
get-pathway” network and calculated 22 core net-
work genes using the MCODE plug-in. Finally, AKT1, 
MAPK1, MYC, EGF, and HSP90AA1 in peripheral 
blood were identified as key targets for HP treatment of 
MDD by SVM-RFE and LASSO algorithms. The scores 
of these five key targets were searched in the Gene-
Cards database and each was higher than Median + SD 
and Mean + SD for all genes. Combined with the 
column line graph model and ROC results, AKT1, 
MAPK1, MYC, EGF, and HSP90AA1 have the poten-
tial as key therapeutic targets for the diagnosis of MDD 
[80]. A GSEA analysis of the five key therapeutic targets 
was performed. Alcoholism is mainly manifested in 
dependence on alcohol, which depletes OMEGA-3 and 
disrupts normal levels of dopamine and serotonin [81, 
82]. It also depletes vitamin B6, which converts trypto-
phan into serotonin, thus making people more prone to 
anxiety and depression. Nicotine can cause the brain 
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Fig. 9  miRNA prediction of key targets. miRNA-mRNA regulatory network, rectangles indicate predicted miRNAs and ovals indicate mRNAs
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to release dopamine to temporarily improve mood, but 
nicotine can create tolerance and addiction [83]. Some 
studies have shown that the severity and recurrence 
of depression increase as smoking rates increase [84]. 
Interestingly, we note the Neutrophil Extracellular Trap 
Formation, where several studies have suggested that 
“depression is accompanied by immunosuppression” 
and that neutrophils can release pro-inflammatory 
cytokines and neutrophil extracellular traps (NETs) 
that induce endothelial dysfunction, further recruit-
ing inflammatory cells and promoting neurological 

inflammation and enhance depressive symptoms [85, 
86].

A number of early studies have demonstrated the anti-
depressant efficacy of HP, being used in mild and mod-
erate depression, with significant effects in adolescents 
and a significant reduction in side effects [87–89]. One 
of the main antidepressant compounds considered to be 
active is Hyperforin, which has been shown to indirectly 
inhibit the reuptake of 5-hydroxytryptamine. It inhibits 
the reuptake of dopamine, glutamate, norepinephrine, 
and gamma-aminobutyric acid (GABA) by competi-
tively affecting the activity of transporter proteins, thus 

Fig. 10  Molecular docking verification. A Active ingredients of HP selected for docking analysis, DC is the Degree Centrality of the node 
in the “Component-Target-Pathway” network. B Key targets selected protein IDs and docking pockets. C Visualization of docking models 
with binding affinity. The PDB IDs are shown in parentheses
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achieving an antidepressant effect [21, 90]. But in addi-
tion to neurotransmitters, immune inflammation should 
also be taken into account [8]. In an immune cell analy-
sis, we found that depressed patients had higher expres-
sion of naive B cells, CD8T cells, CD4-activated memory 
T cells, resting NK cells, and monocytes in the periph-
eral blood than in the normal group [91, 92]. There are a 
number of studies and mouse models that confirm that 
depressed patients have reduced circulating T cells and 
regulatory B cells [93]. Secondly, studies have also men-
tioned that premature senescence of monocytes in MDD 
patients increases a more severe inflammatory response, 
particularly in patients over 28 years of age [94]. Querce-
tin may inhibit the function of TNF-α and other types 
of cytokines to reduce neuroinflammation and alleviate 
symptoms of depression [74]. Biologically and pharmaco-
logically, quercetin may also help to accelerate the degra-
dation of neurotransmitters in the synaptic gap and help 
serotonin and dopamine to work better [95]. Kaempferol 
increases the AKT/β-linked protein cascade in the pre-
frontal cortex and reduces inflammatory factor levels [96, 
97]. Lignocaine reduces IL-6 production by astrocytes, 
decreases serum levels of IL-6, TNF-α, and corticoster-
one, and increases mature brain-derived neurotrophic 
factor (BDNF), dopamine, and norepinephrine levels to 
exert antidepressant effects [98, 99]. Furthermore, and 
most notably, the neutrophil normal group was signifi-
cantly higher than the MDD group, defying the norm of 
the immunoinflammatory doctrine. With the same data 
set, we found some studies where the neutrophil MDD 
group was higher than the normal group, and some stud-
ies where the normal group was higher than the MDD 
group [100]. In our previous analysis there is a pathway 
called “neutrophil extracellular trap formation”, where the 
activation of NETosis leads to neutrophil death through 
apoptosis or necrosis, and patients with MDD have a 
stronger inflammatory response in the peripheral blood 
than the normal group, so the presence of suicidal NETo-
sis makes the neutrophil percentage in MDD patients less 
than normal. The presence of suicidal NETosis resulted 
in a smaller proportion of neutrophils in MDD patients 
than in the normal group [101]. However, because the 
formation of NETs is a dynamic equilibrium, relevant 
reports are scarce and need to be further explored in 
future studies.

The five key genes identified—AKT1, MAPK1, MYC, 
EGF, and HSP90AA1—are all significant in various cel-
lular processes including growth, survival, and prolifera-
tion, which are pivotal in numerous diseases, including 
MDD. AKT1 is a crucial player in the PI3K/Akt signal-
ing pathway, involved in cell survival, proliferation, and 
metabolism [102]. Dysregulation of this pathway has 
been associated with impaired neuronal survival and 

synaptic plasticity, which are considered central mecha-
nisms in the pathology of MDD. Alterations in AKT1 
activity can affect brain-derived neurotrophic factor 
(BDNF) levels, impacting mood regulation and response 
to stress [103]. Role in Cellular Function: MAPK1 is part 
of the MAP kinase signaling pathway, involved in trans-
mitting chemical signals from the cell surface to the 
DNA in the nucleus [104]. This gene plays a role in neu-
ronal plasticity, survival, and differentiation. Abnormal 
MAPK1 signaling has been implicated in impaired stress 
response and neuroplasticity, which are key features of 
MDD [104]. MYC is a regulator gene that codes for a 
transcription factor. It is involved in cell cycle progres-
sion, apoptosis, and cellular transformation [105, 106]. 
Although more traditionally linked with cancer, MYC is 
also important in brain development and function [106]. 
Overexpression of MYC has been suggested to influence 
brain cell metabolism and survival [107], potentially con-
tributing to the neurobiological changes seen in MDD. 
EGF is a growth factor that stimulates cell growth, pro-
liferation, and differentiation by binding to its receptor, 
EGFR [108]. EGF has been shown to promote neurogen-
esis and is involved in the neuroendocrine response to 
stress [109, 110]. Altered levels of EGF and disruptions 
in its signaling pathways have been observed in depres-
sive disorders, suggesting its role in the pathophysiology 
of MDD. HSP90AA1 is the heat shock protein 90 alpha 
family class a member 1. This gene encodes a member 
of the heat shock protein 90 family, which are molecu-
lar chaperones involved in signal transduction, protein 
folding, and degradation [111]. HSP90AA1 helps in the 
proper folding of proteins and protection against cellu-
lar stress [111]. Dysregulation of HSP90AA1 can lead to 
impaired stress response and cellular resilience, factors 
that are potentially linked to the development and sever-
ity of MDD. Each of these genes, through their respec-
tive roles in signaling pathways, neuroplasticity, and 
stress response, could contribute to the pathophysiol-
ogy of MDD, making them interesting targets for further 
research and potentially therapeutic intervention.

The diagnosis and prognosis of miRNAs have been 
demonstrated for various types of cancer, and miRNAs 
are important regulators of epigenetic mechanisms [112]. 
The field of psychiatry is also placing increasing empha-
sis on the relationship between miRNA expression and 
the regulation of proteins [113]. We predicted the corre-
sponding miRNAs based on five key targets, with a total 
of 42 miRNAs predicted for MAPK1 and has-miR-1827 
synergistically regulating MYC and EGF [114]. In the 
GeneCards database, we retrieved MDD-related scores 
for the five key targets and counted them, showing that 
they are all closely associated with MDD. Finally, we used 
molecular docking to predict the interactions between 
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HP and AKT1, MAPK1, MYC, EGF, and HSP90AA1. The 
strongest binding here was MAPK1, and linkage to the 
miRNA prediction network suggests that MAPK1 can be 
explored in depth as a potential target for HP in the treat-
ment of MDD.

Immunoinflammatory has been reported important 
for many human diseases [115–118]. Most of the previ-
ous research has been conducted using the neurotrans-
mitter theory, and the immunoinflammatory theory has 
only recently been applied to the study of depression. 
Hypericum perforatum, also known as St. John’s wort, 
has been shown in many studies to improve symptoms 
of depression, even more so than some placebos. But 
again it is still not on the list of standard antidepressants, 
so more research is needed to support this. This study 
adopts a new way of thinking to explore MDD from a 
pathway and immune-inflammatory perspective, com-
bining WGCNA, protein interaction networks, machine 
learning, and molecular docking to elucidate the mecha-
nism of action of HP for MDD. The study further iden-
tified AKT1, MAPK1, MYC, EGF, and HSP90AA1 as 
key targets for the treatment of MDD by HP. This study 
still has some limitations, and the mechanism of action 
of neutrophils in MDD patients needs to be validated in 
conjunction with animal experiments to explore the bal-
ance between the occurrence of suicidal NETs and the 
immune role it plays.

We acknowledge the limitations posed by the dis-
proportionate female-to-male ratio of 3:1 in our study 
cohort. This gender distribution reflects the higher 
prevalence of MDD among females compared to males, 
as reported in epidemiological studies [119–121]. How-
ever, this imbalance may also limit the generalizability of 
our findings across genders. To understand the potential 
impact of this gender bias, it is important to consider the 
biological and hormonal differences between genders 
that could influence the pharmacodynamics and phar-
macokinetics of natural products from HP. For instance, 
differences in hormone levels, such as estrogen, might 
modulate the bioactivity of HP compounds differently 
in males and females [122], potentially affecting the effi-
cacy and safety profiles. Further studies with a separate 
gender and balanced gender distribution are required to 
validate our findings and ensure they are applicable to 
either gender or both males and females. Additionally, 
subgroup analyses focusing on gender-specific responses 
to HP treatment could provide deeper insights into the 
molecular mechanisms underlying the gender differences 
observed in MDD response rates.

Another limitation is no external validation. We have 
reviewed previously published data and found that the 
dataset we analyzed is unique in that it includes MDD 
signals in blood, presenting a challenge for external 

validation, as comparable datasets are not available. 
To mitigate potential biases and avoid overfitting, we 
employed multiple methodological approaches. First, 
we utilized the LASSO regression model (a method that 
was wildly used in previous studies [61, 63, 67]), which 
features a shrinkage path for the coefficients, with the 
regularization parameter λ selected through cross-val-
idation. The AUC curve displayed below the shrink-
age path graphically illustrates the model’s performance 
across varying λ values, enabling the selection of an opti-
mal λ, generally near the AUC curve’s peak, to ensure 
that the model neither overfits nor underfits. Secondly, 
we implemented tenfold cross-validation in our analy-
sis, particularly in the SVM-RFE model. This technique 
is instrumental in evaluating the model’s stability and 
generalization capacity by iteratively splitting the data 
into training and test sets, thus assessing the model’s effi-
cacy across different subsets. Such a method combinding 
LASSO and tenfold cross-validation in SVM-RFE model 
not only aids in preventing overfitting but also assures 
robust predictive accuracy on unseen data.

Overfitting remains a pervasive concern in machine 
learning models, particularly given the constraints posed 
by relatively small sample sizes. In scenarios where the 
dataset is limited, the probability that the model will learn 
noise rather than underlying data patterns increases sig-
nificantly, compromising the model’s ability to generalize 
to new data. This issue is of particular importance in our 
study, where the modest sample size heightens the risk 
of overfitting. In this study, the cohort consisted of 128 
samples. Ideally, the number of samples should consid-
erably surpass the number of features to ensure that the 
model discerns genuine patterns rather than noise, thus 
minimizing the risk of overfitting. A close ratio between 
the number of samples and features may lead to overfit-
ting, which could degrade the model’s performance on 
new, unseen data [123]. It is generally accepted that hav-
ing more samples than features helps prevent this issue. 
In our analysis, the ratio of 128 samples to 22 genetic 
variables is reasonably balanced—not overly constrained 
but adequately stringent. Furthermore, to enhance model 
stability and reduce overfitting, we implemented tenfold 
cross-validation. This method involves repetitively par-
titioning the dataset into distinct training and validation 
sets, which is crucial for verifying the model’s robustness 
across different subsets of data.

Conclusions
In summary, we have used bioinformatic methods to 
identify and validate key targets of HP for the treatment 
of MDD, and then investigated the mechanism of action 
of HP for MDD through signaling pathways and immune 
inflammation, identifying AKT1, MAPK1, MYC, EGF, 
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and HSP90AA1 as key therapeutic target genes, which 
provide a theoretical basis for clinical treatment and drug 
development.
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