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Abstract

Automatic pavement disease detection aims to address the inefficiency in practical detec-

tion. However, traditional methods heavily rely on low-level image analysis, handcrafted fea-

tures, and classical classifiers, leading to limited effectiveness and poor generalization in

complex scenarios. Although significant progress has been made with deep learning meth-

ods, challenges persist in handling high-resolution images and diverse disease types.

Therefore, this paper proposes a novel approach based on the lightweight Transformer

Patch Labeling Network (LTPLN) to enhance the efficiency of automatic pavement disease

detection and overcome the limitations of existing methods. Firstly, the input images

undergo histogram equalization preprocessing to enhance image quality. Subsequently, the

images are evenly partitioned into small patch blocks, serving as inputs to the enhanced

Transformer model. This enhancement strategy involves integrating feature map labels at

each layer of the model to reduce computational complexity and enhance model lightweight-

ness. Furthermore, a depthwise separable convolution module is introduced into the Trans-

former architecture to introduce convolutional bias and reduce the model’s dependence on

large amounts of data. Finally, an iterative training process utilizing the label distillation strat-

egy based on expectation maximization is employed to update the labels of patch blocks

and roughly locate the positions of pavement diseases under weak supervision. Experimen-

tal results demonstrate that compared to the baseline model, the proposed enhanced model

achieves a reduction of 2.5G Flops computational complexity and a 16% speed improve-

ment on a private pavement disease dataset, with only a 1.2 percentage point decrease in

AUC accuracy. Moreover, compared to other mainstream image classification models, this

model exhibits more balanced performance on a public dataset, with improved accuracy

and speed that better align with the practical requirements of pavement inspection. These

findings highlight the significant performance advantages of the LTPLN model in automatic

pavement disease detection tasks, making it more efficiently applicable in real-world

scenarios.
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1. Introduction

With the rapid pace of urbanization, a multitude of issues such as cracks, potholes, and other

irregular road conditions have emerged, significantly impacting road service life and posing

threats to public safety. Timely and precise automated detection plays a crucial role in facilitat-

ing prompt road maintenance and enhancing traffic infrastructure. Traditional methods for

road disease detection typically rely on traditional image processing [1], manually crafted fea-

tures [2], and classical classifiers [3]. While these methods operate on relatively straightforward

principles, they struggle with defining and extracting features related to diverse diseases, lead-

ing to poor generalization. In recent years, propelled by the swift advancements in image pro-

cessing technology and deep learning theory within the domain of computer vision, deep

learning-based road disease detection methods have exhibited notable advantages [4], gradu-

ally supplanting traditional approaches. Given the intricacies of road environments, the swift

and accurate identification of abnormal pavement conditions has become an urgent and piv-

otal challenge in this sector.

Current methods for pavement disease detection primarily target specific pavement issues,

notably cracks, loose areas, and potholes [5,6], with a significant portion of these studies focus-

ing on pavement crack segmentation [7,8]. In contrast, our study places greater emphasis on

identifying whether roads exhibit any form of disease and achieving swift detection of road

images with anomalous conditions. The scope of road surface diseases we aim to detect in this

paper extends beyond cracks, scattered areas, and potholes to encompass a wider range of ail-

ments, such as repairs, rutting, and even deficiencies in traffic and safety infrastructure along

roadways. We term this study automated road disease detection, which can be seen as a general-

ization of routine road inspection tasks. This task serves as a crucial preliminary step for pave-

ment disease segmentation and represents the core process for pinpointing pavement diseases.

Despite being categorized as a binary classification problem for road images, this task poses sig-

nificant challenges. These challenges stem partly from the uneven illumination, color discrepan-

cies, and complex backgrounds present in road imagery. Furthermore, the diverse array of road

diseases, coupled with the potential absence of road facilities, adds to the complexity of the task.

Image classification methods based on deep learning primarily encompass convolutional

neural networks (CNNs) such as ResNet [9], DenseNet [10], and EfficientNet [11]. However,

these CNN models typically resize images to fixed low resolutions before conducting classifica-

tion based on the entire image. This resizing process results in the loss of significant image

information, particularly for high-resolution images. For instance, ResNet’s input is fixed at

224×224, whereas our road images generally exceed 1200×900 in resolution. The large image

size hampers detection model efficiency and makes it challenging to meet real-time require-

ments for automated road disease detection. Moreover, diseased areas often constitute only a

small portion of the entire image. Global-based CNN methods may be susceptible to noise and

background variations; for instance, the widely used YOLO series methods [12,13] can lose

substantial image information, leading to disease leakage issues. The YOLO method relies on

sampling the partition grid of the entire image, and due to the limited receptive field of the

convolutional kernel, target features depend solely on local convolution of high quality. There-

fore, this paper introduces a novel lightweight Transformer-based patch labeling network

(LTPLN) to address automated pavement damage detection. The LTPLN model captures rela-

tionships between all pixels through its unique global operation, harnessing contextual image

characteristics and compensating for CNN’s local operation limitations. Its lightweight model

structure effectively fulfills real-time detection requirements.

In LTPLN, pavement images undergo segmentation into multiple 16-patch blocks. Subse-

quently, the lightweight Swin transformer serves as the model’s backbone network, responsible
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for inferring the labels of these patch blocks. The final road image detection results are

obtained by performing maximum pooling on the inferred patch block labels. However, this

method is limited by the use of only image-level labels. To address this limitation, we draw

inspiration from the Expectation-Maximization Patch Label Distillation (EMPLD) strategy

[14], which is based on the EM algorithm. This strategy iteratively updates LTPLN solely based

on image-level labels. Unlike detection mechanisms based on convolutional CNNs, LTPLN

can not only assess detection results at the image level but also roughly pinpoint disease loca-

tions within road images through EMPLD in a weakly supervised manner.

The main contributions can be summarized as follows:

1. To the best of our knowledge, we are the first to investigate the task of automated detection

of road diseases, which extends beyond specific diseases like cracks, loose areas, and

potholes.

2. We have introduced a comprehensive road disease detection dataset, collected from real-

world scenarios, covering a wide range of road disease issues. Existing road disease datasets

typically include around four disease types, whereas ours comprises over 8,000 high-resolu-

tion road surface images, encompassing a greater variety of diseases.

3. We propose a novel Transformer-based automated road surface damage detection method,

named the lightweight Transformer-based patch labeling network (LTPLN). This method

not only leverages image information efficiently for rapid detection of road diseases but

also provides rough localization of the diseases based solely on image labels.

4. We conducted extensive experiments, systematically and empirically comparing the latest

state-of-the-art CNN methods in automatic road disease detection. Our work demonstrates

a more balanced performance in terms of recognition accuracy and efficiency, better meet-

ing the practical requirements of road detection tasks.

2. Related work

2.1 Traditional methods

Traditional pavement disease detection methods primarily rely on low-level image analysis,

handcrafted features, and classic classifiers. For instance, Shi et al. [15] proposed the CrackFor-

est method, which combines random structured forests and integral channel features for auto-

matic road crack detection. Another method uses a filter bank composed of multi-directional

Gabor filters to detect road cracks [16]. Pan et al. [17] utilized images acquired by Unmanned

Aerial Vehicles (UAVs) and employed KNN, SVM, random forests, and neural networks to

identify pavement cracks and potholes. Hajidemetriou et al. [18] employed traditional Support

Vector Machines (SVM) to detect pavement patches. Nhat-Duc Hoang [1] used texture feature

extraction and stochastic gradient descent logistic regression for the automatic detection of

loose asphalt pavements. Although these traditional methods are relatively simple, they face

significant limitations in defining and extracting diverse disease features, leading to poor gen-

eralization capabilities and limited effectiveness in complex scenarios.

2.2 Deep learning-based methods

With the remarkable success of deep learning in various applications, more researchers have

applied advanced deep learning methods to pavement disease detection. Zhang et al. [19] used

Convolutional Neural Networks (CNN) to detect crack points for pavement crack segmenta-

tion. A VGG-16 DCNN pre-trained on ImageNet was used to classify pavement images as
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"crack" or "no crack". Xia [20] employed the Single Shot MultiBox Detector (SSD) [21] net-

work to localize pavement diseases. Other researchers used well-known object detection

frameworks such as YOLO v2, Faster RCNN, and RetinaNet to locate pavement diseases [22–

25]. Fan et al. [26] developed a novel automatic pavement crack detection system that uses

CNNs to determine if pavement images contain cracks, followed by adaptive thresholding

methods to segment the cracks. These deep learning-based methods exhibit significant advan-

tages over traditional methods, demonstrating higher accuracy and efficiency. However, they

still face challenges in handling high-resolution images and diverse types of diseases.

2.3 Object detection and image classification

Object detection is a fundamental and challenging problem in computer vision that has gar-

nered extensive attention over the past few decades. Traditional detectors typically use sliding

window methods to collect object proposals, then represent them with handcrafted features

such as Haar wavelets [27], Histograms of Oriented Gradients (HOG) [28], and Local Binary

Patterns (LBP) [29,30]. Learning-based representations like Fisher Vectors (FV) have also

been popular in object detection tasks [31]. In recent years, deep learning methods have

become mainstream in object detection, leveraging deep convolutional networks to learn

robust high-level feature representations. Deep learning-based object detection methods can

be divided into two categories: two-stage detectors and one-stage detectors. Two-stage detec-

tors include RCNN [32], SPPNet [33], Fast RCNN [34], Faster RCNN [35], and Feature Pyra-

mid Networks [36]. One-stage detectors jointly optimize object proposal selection and

classification, with YOLO [37], SSD [38], and RetinaNet [39] being representative examples.

Despite their success in general object detection, these methods face challenges when applied

to pavement disease detection due to the need to handle high-resolution images and meet real-

time detection requirements.

2.4 Challenges in pavement disease detection

Pavement disease detection tasks can be divided into three categories: pavement crack seg-

mentation, pavement crack localization, and specific pavement damage detection. However,

comprehensive pavement disease detection (not limited to specific types of diseases) has yet to

be systematically studied. Existing datasets such as the Crack Forest Dataset (CFD) [40],

CrackTree200 [41], and Crack500 [42] primarily focus on pavement crack segmentation and

only contain disease images, limiting their applicability in comprehensive pavement disease

detection research. In this study, we introduce a novel deep learning method called the Light-

weight Transformer Patch Label Network (LTPLN) for the automatic detection of various

pavement diseases. Our collected comprehensive pavement disease detection dataset comes

from real-world scenarios, covering a broader range of pavement disease problems, including

over 8,000 high-resolution pavement images, providing more extensive and diverse data com-

pared to existing datasets.

2.5 Lightweight Transformer Patch Label Network (LTPLN)

To address the limitations of traditional and deep learning-based methods, we propose the

LTPLN method. Unlike CNNs, which typically resize images to a fixed low resolution, LTPLN

processes high-resolution images by dividing them into multiple 16-patch blocks. A light-

weight Swin Transformer serves as the backbone network, inferring the labels of these patch

blocks. The inferred patch block labels are then max-pooled to obtain the final detection

results. To enhance detection performance, we adopt the Patch Label Distillation (EMPLD)

strategy based on the Expectation-Maximization algorithm, which iteratively updates the
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LTPLN based on image-level labels. This approach allows LTPLN to evaluate detection results

at the image level and coarsely localize disease locations in pavement images through weak

supervision. Our experimental results show that LTPLN demonstrates a better balance

between accuracy and efficiency compared to state-of-the-art CNN methods, making it more

suitable for practical pavement detection tasks.

3. Lightweight transformer

The lightweight Transformer network has become a popular technique in practical applica-

tions because it combines the advantages of the Transformer model with higher efficiency and

lower computational costs. This is mainly attributed to several improvements:

1. Reduced Parameters:The lightweight Transformer network achieves lightweightness by

reducing the number of parameters in the model. This is often done by reducing the num-

ber of hidden units per layer or the number of layers. Fewer parameters mean less computa-

tion and memory consumption, making the model more suitable for running in resource-

constrained environments.

2. Simplified Structure:Lightweight Transformer networks typically adopt simplified struc-

tural designs, such as reducing the number of attention heads or using simpler attention

mechanisms. This simplification reduces the model’s complexity and computational

requirements while maintaining performance.

3. Feature Reuse:Lightweight Transformer networks may also introduce feature reuse mecha-

nisms by sharing computation results between different layers, reducing redundant compu-

tations. This effectively utilizes computational resources and improves model efficiency.

In summary, the effectiveness of lightweight Transformer networks lies in their ability to

maintain the advantages of the Transformer model while achieving higher efficiency and

lower computational costs through techniques such as parameter reduction, structural simpli-

fication, and feature reuse. This makes them suitable for various resource-constrained

applications.

3.1 Swin transformer

The Swin Transformer (Swin-T) algorithm [43], introduced by Microsoft Research at the

ICCV conference in 2021, employs a hierarchical construction method akin to convolutional

neural networks (CNNs) while leveraging the Vision Transformer model [44] to attain multi-

scale detection capabilities. This model incorporates the Windows Multi-Head Self-Attention

(W-MSA) mechanism for long self-attention to reduce computations and utilizes the Shifted

Windows Multi-Head Self-Attention (SW-MSA) mechanism with a mobile window for self-

focused multi-head operations. Notably, the SW-MSA mechanism addresses information iso-

lation between Windows, a challenge encountered with W-MSA. The Swin Transformer Tiny

model, characterized by minimal parameters, is depicted in Fig 1. Using the Swin Transformer

model for pavement disease image classification is illustrated in Fig 1. The network structure

of Swin Transformer is composed of four stages, with each stage containing several Swin

Transformer Blocks. The Swin-base model used in this paper contains 2, 2, 18, and 2 Swin

Transformer Blocks in the four stages, respectively. For the input pavement disease images, the

Swin Transformer uses a 4x4 window in the image segmentation layer to segment the images,

and the segmented window images are flattened in the channel direction. The height and

width of the original image are reduced to 1/4 of the original size, and the number of channels

becomes 16 times the original. In the first stage, the image patches are converted into one-
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dimensional vectors through linear mapping and input into the Swin Transformer Block. In

each subsequent stage, the image patches are downsampled through the image patch merging

layer. The final output passes through a global pooling layer and a fully connected layer to

obtain the classification result of the disease.

The core workflow of the Swin-T model comprises three main parts, illustrated in Fig 2.

The structure of the two Swin Transformer Blocks is shown in Fig 2. Swin Transformer Blocks

always appear in pairs. This is because, in the first block, the Swin Transformer replaces the

multi-head self-attention (MSA) module of the original Transformer with the window multi-

head self-attention (W-MSA) module. W-MSA does not compute the attention between all

pixels in the entire image; instead, it divides the image into several windows and computes the

attention between pixels within each window, without interacting with other windows.

Here’s the refined version of the description:

1. The input image undergoes segmentation in the block segmentation layer, where adjacent

4x4 pixels form individual blocks. The resulting feature vectors are flattened along the chan-

nel dimension and then linearly transformed via the linear embedding layer.

2. The model employs four stages to generate feature maps of varying sizes. The last three

stages utilize block fusion for downsampling, followed by repeated stacking of Swin Trans-

former Block modules. Each Block module integrates both W-MSA and SW-MSA struc-

tures, typically used in pairs.

3. The final connection consists of standard normalization, global pooling, and fully con-

nected layers for image classification tasks.

The Swin Transformer has demonstrated strong performance across various computer

vision tasks such as image classification, object detection, and image segmentation. However,

its computational demands are considerable, necessitating further lightweight model improve-

ments for effective deployment in road automation detection applications.

3.2 Modified transformer

Given the demanding requirements for high-speed and precise automated pavement disease

detection, we have implemented lightweight enhancements to Swin-T while upholding its

accuracy. These specific improvements, depicted in orange in Fig 2, are detailed as follows:

Fig 1. Architecture of Swin-T model.

https://doi.org/10.1371/journal.pone.0309172.g001
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1. Integration of the Token Fusion Module (TM) [45]: This lightweight model outcome, TM,

has been strategically inserted between the SW-MSA and the multilayer perceptron within

each Swin-T Block. This integration significantly reduces the computational burden of the

model.

Fig 2. Architecture of Swin Transformer Block.

https://doi.org/10.1371/journal.pone.0309172.g002
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2. Incorporation of the Depthwise Separable Convolution Module (DW) [46]: Recognizing

the challenge of Transformer models relying heavily on extensive training data, we have

introduced the DW module into the multi-layer perceptron. This inclusion enables the

model to effectively adapt to smaller datasets.

The resultant lightweight model, enhanced with TM and DW modules, is denoted as

MSTTM (Modified Swin Transformer Tiny Model).

3.2.1 Token merging. After segmenting the image into multiple small patch blocks and

converting them into marker vectors, the Transformer self-attention mechanism computes the

relationships among each marker vector and all others. This results in a model complexity pro-

portional to the square of the input marker vectors, necessitated by the Transformer architec-

ture for processing high-resolution images. To mitigate the computational burden, a

commonly adopted method is to prune the marker vectors, albeit at the cost of reduced

computational accuracy. However, this pruning strategy presents several drawbacks. Firstly, it

entails introducing supplementary neural networks to compute scores for each marker vector

and decide which ones to retain. Secondly, pruning may lead to the loss of critical information,

necessitating careful determination of the appropriate pruning ratio.Given these limitations,

the introduction of Token Fusion Modules without additional training emerges as an effective

lightweight alternative within the Swin Transformer model framework, particularly when

compared to marker vector pruning. This approach not only reduces computational complex-

ity but also sidesteps the challenges associated with information loss and the need for addi-

tional neural network components.

The self-attention mechanism inherently captures the correlation between marker vectors

during the transpose and query matrix dot product operations.As shown in Fig 3, Specifically,

it calculates attention weights by extracting the query (Q), key (K), and value (V) matrices of

each marker vector, thereby gauging the similarity between them. This similarity can be quan-

tified using the cosine distance of the bond matrix mean.

In the Token Fusion Module positioned between the SW-MSA module and the MLP, the

self-attention calculations within the SW-MSA module ascertain the similarity between

marker vectors, ensuring seamless propagation of marker vectors through the MLP post-

fusion. A binary soft matching algorithm within a specific Token Fusion Module swiftly iden-

tifies and matches similar marker r vectors, thereby accurately reducing redundant marker

vectors. The process unfolds as follows:

Fig 3. Token merging module.

https://doi.org/10.1371/journal.pone.0309172.g003
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1. Divide the input marker vectors into sets A and B within the module.

2. For each marker vector in set A, find its most similar counterpart in set B and establish

connections.

3. Retain the top r most similar connections.

4. Merge the still-connected marker vectors with the average value of each item.

5. Output the amalgamated set as the final result.

The reduction in feature map output at each stage after Token Fusion effectively reduces

computational load in subsequent stages, contributing to the model’s lightweight design. Addi-

tionally, to illustrate the impact of Token Fusion further, a visual analysis of the fusion process

was conducted, as depicted in Fig 4. During fusion, marker vectors corresponding to the same

background block merge, while those from different background blocks remain distinct. This

approach ensures that fused marker vectors do not introduce excessive interference in disease

target identification.

3.2.2 Depthwise separable convolution. The challenges faced by Transformer models in

image classification tasks, such as their dependency on large training datasets compared to

CNN models, are well-understood. One fundamental reason for this requirement is the

absence of CNN-like convolution pooling in Transformers, which aids CNNs in achieving

robust detection even with smaller datasets. While Transformers excel at capturing global con-

text through their self-attention mechanism, they may lack prior knowledge, necessitating

extensive data for learning.To enhance classification accuracy and introduce convolution

properties into the Swin-T model, we have introduced convolution operations, specifically

deeply separable convolution. This addition aims to strike a balance between improving model

performance and meeting the lightweight requirements essential for efficient processing.

Depth separable convolution mainly consists of point-by-channel volume and channel-by-

channel convolution. Specifically, a channel-by-channel convolution is only responsible for

the information processing of one channel to generating a new feature graph, which is

weighted based on the positions of the global input feature graph in the channel direction.

Fig 4. Token merging for visualization. Republished from Fig 4 under a CC BY 4.0 license, with permission from

Feng LIU, original copyright 2024.

https://doi.org/10.1371/journal.pone.0309172.g004
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Compared with the conventional convolution, the depth of separable convolution has a large

reduction in the number of parameters and calculation, which is more in line with the require-

ments of lightweight. As shown in Fig 5, the number of parameters (Params) of conventional

convolution is 108, and the calculated quantity (FLOPs) is 2700; the number of point convolu-

tion is 12 and the calculated amount is 300; the number of parameters for channel convolution

is 27, and the calculated quantity is 675. However, compared with the number of parameters

of conventional convolution 108 and 2700, the overall number of deeply separable convolution

is 27 + 12 = 39 and the overall computation is 675 + 300 = 975, decreasing about 2/3. It can be

seen that the deeply separable convolution can better meet the lightweight requirements for

the same inputs and outputs.

Fig 5. Conventional convolution and depthwise separable convolution.

https://doi.org/10.1371/journal.pone.0309172.g005
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In the process of using deeply separable convolution, the input data of the Swin-T model

MLP module is first adjusted to a two-dimensional feature schema, and then goes through 11

convolution, GELU activation function and Dropout operations. Then the depth separable

convolution is added, and after 11 convolution and Dropout operation, the final output is

adjusted to one-dimensional sequence format. Such a design helps the model to introduce

inductive bias and improve the model performance under lightweight requirements.

4. Transformer patch label network

4.1 Method overview

The methodology behind this approach draws inspiration from recent breakthroughs in

Transformer research for computer vision [43–46]. By amalgamating advanced computer

image processing techniques with machine learning algorithms, our model design aims to

achieve continuous improvements in performance. In our Token fusion patch labeling net-

work (TPLN), the initial step involves preprocessing road images using contrast-limited adap-

tive histogram equalization (CLAHE) to mitigate adverse effects stemming from uneven

lighting conditions. Subsequently, the processed images are segmented into patches, and

LTPLN endeavors to predict patch labels. Finally, pavement image labels are derived through

maximum pooling of their patch labels. Central to our methodology is LTPLN. However,

training LTPLN directly poses challenges due to the absence of patch labels during training;

only image labels are available. To circumvent this limitation, we propose an EM patch block

label distillation strategy to iteratively optimize LTPLN, leveraging reasonably initialized patch

labels. The model structure is illustrated in Fig 6.

4.2 Preprocessing and input

Because the pavement images were taken at different times and in different areas, the images

had severe uneven illumination. To suppress the negative effects of illumination, the pavement

images were processed with CLAHE. Empirical analysis shows that this pretreatment can

improve the detection performance. Traditional convolutional neural networks (Convolu-

tional Neural Networks, CNN), such as Faster RCNN, YOLOv3 and YOLOv7, usually require

Fig 6. LTPLN model structure diagram. Republished from Fig 6 under a CC BY 4.0 license, with permission from

Feng LIU, original copyright 2024.

https://doi.org/10.1371/journal.pone.0309172.g006
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smaller input image sizes, such as 460×460 and 320×320, while the road images on our dataset

are taken from on-board cameras and mobile phones, and the image sizes are large. The

method in this paper is to adjust the high-resolution images to 384×384 size images, and then

divide the images into patches and realize detection by using the LTPLN model as the back-

bone network. In this way, the image global information can be fully utilized, and patch labels

can be generated. In this paper, simply following the non-overlapping image block strategy

and fixing the patch size to 96×96, the size size of the backbone network input for feature

extraction was set to 384×384. Suppose that each image is divided into m 96*96 blocks. Such

steps can be expressed mathematically as follows:

xi ¼ HðIiÞ≔fpi1; � � � ; p
i
t; � � � p

i
mg ð1Þ

where xi is the i-th preprocessed image, H(Ii) is the CLAHE operation, and pit represents the t-

th patch of the image. And m is the number of patches, m is 4×4 = 16.

4.3 Model

In this paper, the lightweight LTPLN network optimized by Token fusion (TM) and deep sepa-

rable network (DW) is selected as the label for inferred patch of the backbone network. The

model is represented as follows:

git ¼ Maðp
i
tÞ ð2Þ

where M(•) is the mapping function of the model, and α is its associated network parameter. Is

the predicted value of the true patch block label git 2 ð0; 1Þ equal to 1 when a disease is present

and equal to 0 when there is no disease. Because only the whole image tag yi is available, and

the patch block tag lit has no real tag available, this hinders the normal training of LTPLN. In

this section, the LTPLN is trained by using an iterative method called a label distillation strat-

egy based on the EM algorithm. The basic idea is to provide a reasonable patch label initializa-

tion for training LTPLN and to retrain LTPLN against the new labels inferred by the previous

version of LTPLN. These steps were performed iteratively until convergence. Considering the

training step M and the label reasoning step E, the iteration scheme is very similar to the idea

of the expectation maximization (EM) algorithm, and the patch labels will be gradually refined

during the iteration because patches from normal pavement images are always normal, so

these reliably labeled data and diseased pavement images enable continuous iterative optimiza-

tion of LTPLN.

1. Initialization of the patch label~litð0Þ ¼ yi � f0; 1g treats the image label as the initial label of

its patch. In this case, patch labels from normal pavement images are credible, while patch

labels from diseased pavement images are suspicious because the diseased areas generally

do not cover all areas of the image.

2. Maximization (M) Step: To obtain the network parameter of LTPLN αj in the j th iteration.

3. Expectation (E) Step: Step E is to use the trained LTPLN to infer the label of the patch.

According to Eq 2, each patch can obtain a label prediction value, called the confidence

equal number gitðjÞ. Then, an image-based level-aware threshold (Image Rank Threshold,

IRT) protocol is used to adaptively update the labels of each patch based on the confidence

score. Only the patch label for the diseased road image is updated here, because the patch

label for the normal image should always be 0 ("normal"). The IRT is the core of the E-step.

Image-based level perception threshold (Image Rank Threshold, IRT): patch pt in disease

image xi is updated by IRT: disease patch should meet the condition: the ratio patch with
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confidence score higher than the number of diseases to the total number sj−1 1 in the previous

iteration, and the initialization can be automatically calculated in each iteration,s0 = 0.5;

Such a label updating strategy can be mathematically denoted as follows:

~lttðjÞ ¼
1; gitðj� 1Þ

< minðsj� 1; tiðrÞÞand yi ¼ 1

0; others
ð3Þ

(

4. Prior knowledge is biased toward cross-entropy (Prior Knowledge Biased Cross-Entropy,

PKCB): We believe that the labels of lesion patches produced by LTPLN in the last iteration

are more reliable than lesion blocks with lower scores, and that the improved LTPLN

should also suppress normal patches with high confidence scores. Therefore, the distribu-

tion of confidence scores and the patch labels obtained in the last iteration was considered

as prior knowledge and combined to design a weighted scheme for cross-entropy. We

introduce this new cross-entropy loss called prior knowledge bias Prior Knowledge Biased-

Entropy (PKBCE) into LTPLN.

Lj ¼ �
1

nm

Xn

i¼1

Xm

t¼1

gitðj� 1Þ

sj� 1

f~l itðjÞlogðg
i
tðjÞÞ

þð1 � ~l itðjÞÞlogð1 � gitðjÞÞ

ð4Þ

the
gi
tðj� 1Þ

sj� 1
is considered as the normalized version of gitðj� 1Þ

, and a higher gitðj� 1Þ
implies that the

corresponding patch is paid more attention to the next training.

4.4 Output

After the optimization of LTPLN converges, the trained LTPLN model is used to label the

patches of test images. The detection label of a test image xi is obtained by applying maximum

pooling to its patch labels, yi ¼ maxðf~l itj8tgÞ. This strategy ensures that the final detection

label inference is independent of the number of patches in an image. Consequently, our model

is capable of handling images of any resolution.

Algorithm 1 presents the specific steps of our approach.
Algorithm 1. LTPLN pavement disease detection.
1: [Initialization]
2: ~litð0Þ ¼ yi � f0; 1g

3: While
Xn

i¼1

Xm

t¼1
j~litðj� 1Þ

� ~litðjÞj > 0 do

4: [M-step]
5 Training Mα(●) with {xi|8t}, f~litðj� 1Þ

j8t; ig and αj−1 using the losss in Eq 4
6: [E-step]
7: Obtaining the gitðjÞ for each patch and updating the labels of all
patches based on Eq 3 with r and sj−1
8: Updating sj and the loss function in Eq 4 based on new labels
9: end while
10: The detection label is the maximum pooling of the labels of its
patches inferred by the trained LTPLN.
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5. Experiments and analysis

5.1 Data sets and evaluation metrics

5.1.1 Data set. In this experiment, we utilized two datasets: the private training dataset

(PTD) and the publicly tested dataset (OTD). The PTD underwent random partitioning into

training, validation, and test sets, maintaining a ratio of 7:2:1. Subsequently, the OTD was

employed to assess the model’s performance and select the optimal model from the PTD based

on its performance on the OTD’s test set.

(1) The private dataset PTD comprises the Guangzhou Road Research Institute road pavement

disease detection dataset (GZDL-BD), encompassing 80,000 images obtained from on-

board video capture and human photography. This dataset encompasses various disease

types, including pit, transverse fissure, longitudinal fissure, massive fissure, crack, loose,

embrace, and vehicle-related issues. These diseases were broadly categorized into line fis-

sure, mass fissure, pit, and other types. Fig 7 illustrates the distribution of these disease

types. To construct the training set, we randomly selected 12,820 diseased pavement images

and 12,000 normal pavement images from GZDL-BD, while the remaining dataset was allo-

cated to the test set. The test set comprised 2,129 images of diseased road surfaces and 2,000

normal images. The GZDL-BD dataset is publicly available and can be accessed at https://

doi.org/10.5061/dryad.6t1g1jx6w.

(2) The public dataset OTD is a combination of two commonly used pavement disease data-

sets: the Crack Forest Dataset (CFD) [40] and the Automatic Pavement Disease Detection

Dataset (RDD2022) [47]. Initially, the CFD contained 155 images with a resolution of

Fig 7. Disease distribution map of the GZDL-BD.

https://doi.org/10.1371/journal.pone.0309172.g007
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480×320, while the RDD2022 dataset featured four types of road diseases: longitudinal,

transverse, massive (cracked), and pits. Since these datasets focus on road disease detection

tasks, all samples are disease images (positive samples), lacking normal images (negative

samples). To address this, normal images were synthetically generated by replacing diseased

pixels with adjacent normal pixels. Subsequently, low-quality generated normal images

were filtered out, retaining only high-quality ones. The CFD dataset then comprised 255

diseased images and 214 recovered normal images, while the RDD2022 dataset contained

800 diseased images and 850 recovered normal images. These integrated images form the

Open Test Dataset (OTD) for testing. Notably, the pavement disease detection model dis-

cussed in this section was exclusively trained on the GZDL-BD dataset without any fine-

tuning on the OTD. This decision was based on the model’s ability to generalize across

datasets, including TLIN and other state-of-the-art methods.

5.1.2 Evaluation indicators. The detection of pavement diseases through image classifica-

tion is fundamentally a binary classification task. To evaluate the performance of our proposed

method, we employ three key metrics: precision, recall, and the area under the receiver operat-

ing characteristic curve (AUC). These metrics were specifically chosen due to their relevance

to the research objectives and their ability to provide a comprehensive assessment of the meth-

od’s effectiveness.

Precision measures the accuracy of the positive predictions made by the model. It is defined

as the ratio of true positive predictions to the total number of positive predictions (both true

and false positives). Mathematically, precision P is expressed as:

P ¼
TP

TP þ FP
ð5Þ

where TP represents the number of true positives and FP represents the number of false posi-

tives. Precision is crucial in the context of pavement disease detection because a high precision

indicates that the model is effective at identifying diseased samples without mistakenly labeling

normal samples as diseased. This reduces the risk of unnecessary maintenance actions based

on false positives.

Recall (or sensitivity) measures the model’s ability to correctly identify all true positive

cases. It is defined as the ratio of true positive predictions to the total number of actual positive

cases (true positives and false negatives). Mathematically, recall R is expressed as:

R ¼
TP

TP þ FN
ð6Þ

where FN represents the number of false negatives. Recall is particularly important in this

research because missing diseased samples (false negatives) can have serious consequences,

potentially leading to unsafe road conditions. Therefore, a high recall is essential to ensure that

the model detects as many true positive cases as possible.

AUC (Area Under the Curve of the Receiver Operating Characteristic) provides a compre-

hensive measure of the model’s ability to distinguish between positive and negative classes

across different threshold settings. The AUC value ranges from 0 to 1, with higher values indi-

cating better overall performance. AUC is mathematically defined as:

AUC ¼
1

NP � Nn

XNp

i¼1

XNn

j¼1

Y
ðSi > SjÞ ð7Þ

PLOS ONE LTPLN:Automatic pavement distress detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0309172 October 10, 2024 15 / 24

https://doi.org/10.1371/journal.pone.0309172


where Si and Sj are the scores of the positive and negative samples, respectively, Np and Nn rep-

resent the number of positive and negative samples, and P is the indicator function that equals

1 if Si> Sj and 0 otherwise. AUC is valuable because it reflects the model’s potential perfor-

mance independent of any specific threshold, providing a robust indicator of its overall dis-

criminative ability.

These metrics were selected because they align with the primary research objectives of accu-

rately detecting and classifying pavement diseases. Precision and recall directly address the

need to minimize false positives and false negatives, respectively, which are critical for practical

applications in road maintenance and safety. AUC, on the other hand, offers a holistic view of

the model’s performance across various threshold settings, ensuring that the assessment is not

biased by a particular threshold choice.

By using these evaluation metrics, we can thoroughly assess the proposed method’s perfor-

mance, ensuring that it meets the necessary standards for practical implementation in pave-

ment disease detection and classification tasks. This comprehensive evaluation helps to

validate the effectiveness of the method and its potential for real-world applications.

5.2 Experimental environment

The experimental setup utilized an Intel Core i7-9700 processor running at 3.00 GHz with 412

GB of memory, alongside an NVIDIA TITAN GPU for graphics processing. The model was

developed using the PyTorch framework within a Python 3.8 programming environment,

leveraging CUDA 11.4 parallel architecture for enhanced computational performance. During

training, the batch size was set to 16 due to GPU memory constraints, with an input size of

384×384. The training process comprised 200 epochs, utilizing the Adam optimizer with an

initial learning rate of 0.001 and dynamic learning rate adjustment. A Dropout value of 0.2

was employed to prevent overfitting. Fig 8 illustrates the model’s loss convergence over train-

ing time, demonstrating no signs of overfitting.

Fig 8. Model the experimental results curve.

https://doi.org/10.1371/journal.pone.0309172.g008
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5.3 Ablation experiments

To evaluate the impact of various improved modules on model performance, we designed five

sets of experiments to analyze different improved modules for each set of experiments using

the same training parameters. The detection results of the model performance are shown in

Table 1, and each module is superimposed in sequence. Comparing the performance of Swin-

T and Swin-T + Token fusion (+TM), adding Token fusion provides a 16% improvement in

FLOPs and FPS speed metrics by about 24%, indicating that the Token fusion module can

accelerate the model to some extent and help reduce the computational amount. Although the

AUC and Precision decreased by 3.4% and 0.035 from the baseline model, this is consistent

with the expectation of sacrificing partial precision in a lightweight model. The introduction of

deeply separable convolution (+DK) caused the system to increase AUC by 1.2% and Precision

by 0.013 due to some inductive bias, but the model FLOPs only slightly increased by 1.4%. The

data preprocessing (+CLAHE) of the improved model improved the AUC by 0.3% and 0.003

without changing FLOPs and speed, indicating that the image preprocessing operation can

improve the recognition accuracy of the model. Finally, the model was trained (+ EM), and

the image patch block successfully learned the label information from the whole image. The

above improvement strategy finally achieved 14% decrease in FLOPs and 16% improvement

in the AUC loss of 1.2% and Precision score decrease of 0.011, demonstrating the effectiveness

of the four improvement methods in the balance of speed and accuracy.

In addition, the resolution of the images taken by the on-board camera is 2560*1440 in the

daily inspection task of actual road diseases, the detection time requirement is 15 FPS, and the

classification accuracy requirement is greater than 90%. After the deployment of the model in

the cloud service platform, the reasonable time of each image is about 15ms, and the image to

be tested is divided into 16 small patches of 9696 size into the model (model input size is

384×384), which meets the actual requirements of automatic detection time, and the final

detection speed is about 23 fps. At the same time, the classification AUC accuracy of the

improved model has reached 93.6%, which is already fully competent in terms of detection

accuracy [48].

5.4 Comparison of the experiments

In order to evaluate the detection performance of the improved model, we conducted compar-

ative experiments with the mainstream image classification models, including a variety of clas-

sic common image classification networks (such as ResNet series [9], DenseNet series [10],

EfficientNet series [11] and Vision Transformer series [49]), and the latest achievements in the

field of image classification (ConvNext series [50,51] and EVA series [52,53]). The experimen-

tal results are shown in Table 2, where the input image dimensions are 384×384. By comparing

the table, it can be found that although the convolutional neural network ResNet-34 is better

than the improved model in both FLOPs and speed (FPS), its accuracy is 7.2% lower than that

of the improved model. However, the DenseNet169 and EffecientNet-v2 models, although

Table 1. Comparative results of the ablation experiments.

Model Precision Recall AUC/% PLOPs/G FPS

Swin-T 0. 935 0. 935 95.3 17. 5 50

+TM 0. 900 0. 901 92.1 14. 7 62

+DK 0. 913 0. 891 93.2 14. 9 60

+CLAHE 0. 916 0. 905 93.5 14. 9 60

+EM 0.924 0.925 94.2 15.0 58

https://doi.org/10.1371/journal.pone.0309172.t001
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having smaller FLOPs, are inferior to the improved models in both accuracy and speed. The

MobileViT-v2 model achieved the best performance in detection speed, but there is still a gap

in accuracy. Finally, although the improved model decreased by 0.9% and 1.8% compared with

the AUC index of ConvNext-T and EVA02 models, the speed increased by about 16% and

480%, which is more in line with the requirements of industrial real-time detection. Therefore,

considering the detection accuracy and speed, the improved model has a more balanced per-

formance in the homemade data set than the current mainstream model of image

classification.

Table 3 shows the results of the contrast experiments on the RDD2022 dataset. According

to the data in Table 3, our method showed relatively outstanding performance on the

RDD2022 dataset, achieving an AUC of 90.10%, which is comparable to other high-perfor-

mance models. At the same time, our method, with a model size (Size) of 384, maintains a low

number of parameters (Params) and computational burden (PLOPs / G) at 27.50M and

13.89G, respectively.In contrast, other high-performance models such as EVA-G/14 and

ViT-H/14 showed similar performance in terms of AUC, with values of 90.50% and 89.60%,

respectively, but with significantly higher model sizes (336), number of parameters (1013.01M

and 632.46M), and computational burdens (445.56G and 363.64G). This indicates that while

these models perform well, their complexity and resource requirements limit their practical

applicability compared to our method.On the other hand, models like MobileViT-v2 and Effi-

cientNet-v2 performed well in terms of parameter number and computational burden, with

parameters of 14.25M and 13.65M, and computational burdens of 12.35G and 8.16G, respec-

tively. However, their lower AUC scores (83.90% and 83.20%) highlight their inferior perfor-

mance compared to our method in the image classification task.

In summary, our method performs well in both comprehensive performance and computa-

tional efficiency, making it suitable for image classification tasks that require high performance

and low computational burden. The improved model demonstrates significant advantages

over larger, high-precision models with similar input sizes, offering notable improvements in

Table 2. Results of comparison experiments.

Model AUC PLOPs/G FPS

Resnet-34 87. 4 14. 6 68

DenseNet169 91. 1 13. 7 32

EffecientNet-v2 90. 6 11. 6 28

MobileViT-v2 90. 5 9. 8 73

ConvNext-T 95. 1 17. 8 50

EVA02 95. 8 87. 5 10

Ours 94.2 15.0 58

https://doi.org/10.1371/journal.pone.0309172.t002

Table 3. Results of comparison experiments on public dataset.

Model Size AUC Params/M PLOPs/G

EVA-G/14 336 90.50 1013. 01 445. 56

ViT-H/14 336 89.60 632. 46 363. 64

Swin-L 384 88.10 196. 74 100. 28

ResNet-101d 320 84.00 44. 57 23. 82

MobileViT-v2 384 83.90 14. 25 12. 35

EffecientNet-v2 288 83.20 13. 65 8. 16

Ours 384 90.10 27. 50 13. 89

https://doi.org/10.1371/journal.pone.0309172.t003
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both accuracy and computation. Therefore, on the RDD2022 public dataset, our improved

model shows excellent accuracy and speed adaptability.

Additionally, we acknowledge the potential limitations or biases in the comparison meth-

ods: Performance may vary across different datasets. While we used the RDD2022 dataset, fur-

ther experiments on other datasets are necessary to validate the generalizability of our model.

High-parameter and high-computation models may perform better with ample computational

resources. However, in resource-constrained environments, such as mobile or edge devices,

our model’s lower parameter count and computational burden offer significant advantages.

More complex models like EVA-G/14 and ViT-H/14 may excel in specific tasks but add to

training and deployment challenges. Our model strikes a balance by maintaining high perfor-

mance with lower complexity and computational demand, enhancing its practicality for real-

world applications.

LTPLN is detected by judging whether there are small pieces of disease in the image, which

is different from the traditional detection mechanism. In this strategy, the labels of the patches

in the images are roughly inferred that contain important information to explain and even

benefit the resolution of subsequent tasks we visualize the inferred labels with the confidence

scores of the patch blocks from the two test images in Fig 9. The observations suggest that the

disease patches labels inferred by our approach can further locate disease regions at the disease

patch level without any prior positional information for training.

6. Discussion

The discussion revolves around the efficacy of the proposed Lightweight Transformer Patch

Label Network (LTPLN) for automated pavement damage detection in comparison to tradi-

tional methods and other deep learning-based approaches.

Advantages Over Traditional Methods: Traditional road disease detection methods, relying

on traditional image processing and hand-crafted features, suffers from poor generalization

and difficulty in defining diverse disease features. In contrast, LTPLN, leveraging deep learn-

ing and Transformer architecture, shows significant advantages in feature extraction and

Fig 9. Patch confidence score visualization plot. Republished from Fig 9 under a CC BY 4.0 license, with permission

from Feng LIU, original copyright 2024.

https://doi.org/10.1371/journal.pone.0309172.g009
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generalization. By modeling pixel relationships through global operations, LTPLN effectively

utilizes image context, compensating for CNNs’ limitations in local operations.

Improvement Over CNN-based Approaches: While CNN-based models like ResNet, Den-

seNet, and EfficientNet are popular for image classification, they face challenges in handling

high-resolution images efficiently. LTPLN addresses this issue by segmenting road images into

patches and inferring patch labels using the lightweight Swin Transformer backbone network.

This approach not only improves detection accuracy but also meets real-time detection

requirements due to its efficient model structure.

Model Efficiency and Adaptability: LTPLN’s lightweight design, incorporating Token

Merging and Depthwise Separable Convolution modules, reduces computational burden with-

out compromising accuracy. The Expectation-Maximization Patch Label Distillation strategy

further optimizes LTPLN iteratively based on image-level labels, enhancing model adaptability

to limited data scenarios. This adaptability is crucial for real-world applications where data

availability may be limited.

Comparative Analysis: Comparative experiments with mainstream image classification

models demonstrate LTPLN’s superiority in terms of detection accuracy, speed, and computa-

tional efficiency. While models like ResNet-34 and DenseNet169 have lower accuracy and effi-

ciency metric, LTPLN achieves a balance between high performance and low computational

burden, making it suitable for real-time detection tasks.

Dataset Performance: Evaluation on the RDD2022 dataset showcases LTPLN’s outstanding

performance in terms of AUC, model size, and computational burden. Its ability to achieve

high accuracy with a relatively lightweight model structure demonstrates its effectiveness in

handling complex image classification tasks efficiently.

Future Directions: Future research could focus on further optimizing LTPLN’s architecture

for specific road disease detection tasks, exploring additional data augmentation techniques to

enhance model robustness, and investigating transfer learning strategies for adapting LTPLN

to different road environments.

In conclusion, LTPLN emerges as a promising solution for automated pavement damage

detection, offering a balanced performance in terms of accuracy, speed, and computational

efficiency, and demonstrating adaptability to real-world data constraints.

7. Conclusion

For the problem of poor robustness of automatic pavement detection, a lightweight Trans-

former patch-based label network (LTPLN) is proposed. LTPLN by inserting Token fusion

module to make the model more light, and then use the depth of separable convolution to

enhance the classification ability of lightweight Transformer, and then use EM label distillation

strategy, only using image label to identify whether the road is disease, and weak supervision

iterative training network model can roughly speculate the disease position in the image.

Meanwhile, a dataset of road disease detection named GZLD was constructed to evaluate the

effectiveness of LTPLN. The experimental results demonstrate the superiority of the present

method compared with the mainstream CNN method, and also show that LTPLN is able to

locate the disease regions without any prior information about the location. The experimental

results show that LTPLN performs excellent in automatic pavement disease detection, the rec-

ognition accuracy is close to the current best performance, and the identification and process-

ing speed also meet the real-time requirements. The next step is to continue to collect high-

quality road disease datasets to achieve accurate target detection of common road diseases.

Although the proposed Lightweight Transformer Patch Labeling Network (LTPLN) has

demonstrated significant performance advantages in automatic pavement disease detection,
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there are still potential limitations that need further exploration. Firstly, due to the diversity

and complexity of pavement diseases, the current model may have limitations in handling spe-

cific types or scenarios of diseases. Therefore, future research could explore more fine-grained

feature representations and model structure designs to improve the model’s ability to recog-

nize different types of diseases. Secondly, the current model still exhibits some coarseness in

locating diseases under weakly supervised learning, necessitating further optimization of the

localization algorithm to enhance precision. Additionally, the dataset used in this study may

have certain biases, so future work could consider using more comprehensive and realistic

datasets for validation and testing.

Future research directions could include but are not limited to: (1) Improving the model’s

feature representation and learning capabilities to enhance recognition and localization accu-

racy of diverse diseases; (2) Exploring the model’s generalization ability across datasets and

scenarios to ensure robustness in different environments; (3) Combining advanced data aug-

mentation techniques and transfer learning methods to further improve model performance

and generalization; (4) Investigating the integration of pavement disease detection with other

domains such as image segmentation, object detection, etc., to explore more application sce-

narios and possibilities.
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