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Abstract
The accuracy of artificial intelligence (AI) generated contours for intact-
breast and post-mastectomy radiotherapy plans was evaluated. Geometric and
dosimetric comparisons were performed between auto-contours (ACs) and
manual-contours (MCs) produced by physicians for target structures.
Breast and regional nodal structures were manually delineated on 66 breast
cancer patients. ACs were retrospectively generated. The characteristics of the
breast/post-mastectomy chestwall (CW) and regional nodal structures (axillary
[AxN], supraclavicular [SC], internal mammary [IM]) were geometrically evalu-
ated by Dice similarity coefficient (DSC), mean surface distance, and Hausdorff
Distance. The structures were also evaluated dosimetrically by superimposing
the MC clinically delivered plans onto the ACs to assess the impact of utilizing
ACs with target dose (Vx%) evaluation.
Positive geometric correlations between volume and DSC for intact-breast,AxN,
and CW were observed. Little or anti correlations between volume and DSC
for IM and SC were shown. For intact-breast plans, insignificant dosimetric dif-
ferences between ACs and MCs were observed for AxNV95% (p = 0.17) and
SCV95% (p = 0.16),while IMNV90% ACs and MCs were significantly different.The
average V95% for intact-breast MCs (98.4%) and ACs (97.1%) were compara-
ble but statistically different (p = 0.02). For post-mastectomy plans, AxNV95%
(p = 0.35) and SCV95% (p = 0.08) were consistent between ACs and MCs,
while IMNV90% was significantly different.Additionally,94.1% of AC-breasts met
ΔV95% variation <5% when DSC > 0.7.However,only 62.5% AC-CWs achieved
the same metrics,despite AC-CWV95% (p = 0.43) being statistically insignificant.
The AC intact-breast structure was dosimetrically similar to MCs. The AC AxN
and SC may require manual adjustments. Careful review should be performed
for AC post-mastectomy CW and IMN before treatment planning. The findings
of this study may guide the clinical decision-making process for the utilization
of AI-driven ACs for intact-breast and post-mastectomy plans. Before clinical
implementation of this auto-segmentation software, an in-depth assessment of
agreement with each local facilities MCs is needed.
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1 INTRODUCTION

Recent advancements in deep learning (DL) have
led to substantial development of DL-driven auto-
segmentation (AS) algorithms, which have been rapidly
advancing to expedite radiation treatment planning
compared to the time-consuming manual segmenta-
tion process. Studies have shown that AS substantially
increases the efficiency of the treatment planning
process1–4 and helps to reduce inter-observer vari-
ability in target and organs-at-risk (OAR) delineation.
5–8 Although AS target volumes have emerged as
an active research area with promising results,3–5,9–11

AS has been more commonly implemented for OAR
delineation for various disease sites.12–17 Accurate
AS of both target structures and OAR is necessary
for adaptive radiotherapy, as the adaptive treatment
planning process should be completed within a cou-
ple of minutes following image acquisition while the
patient is in the treatment position.18 However, AS
faces challenges in its performance and clinical use
especially for target definition considering the seri-
ous impact of errors in radiation treatment,19 which
may lead to partial or complete miss in target-
ing tumors and over-irradiating surrounding healthy
tissue.

With the advancement in DL-driven AS, which has
shown greater accuracy compared to atlas-based AS
methods and has become the mainstream approach
7,20–24 multiple commercial artificial intelligence (AI)
or DL-driven algorithms became available for routine
clinical use.25–33 Recently, several commercial systems
have implemented full automation of target contours for
breast cancer treatment in addition to OARs (Thera-
panacea,MVISION,Limbus AI & Radformation).Despite
the potential benefits of AS in streamlining the labor-
intensive breast and nodal target delineation, there still
remain challenges to overcome, particularly concern-
ing defining the “ground truth” for target segmentation.
The lack of a concrete definition for the ground truth in
target segmentation may be due to variations between
physicians based on their experience levels, contour-
ing styles, or clinical protocols used as guidelines for
target contours.34–37 In addition, commercial algorithms
pose different challenges compared to in-house DL
algorithms since the software vendors typically do not
provide the users with access to the patient data used
to train the algorithm and the training process of the
algorithm is not disclosed to the users. Nonetheless,
many of them employ the U-Net architecture, provide
AS for organs at risk of various disease sites, includ-
ing the brain, head and neck, thorax, abdomen, and
pelvis.38 Therefore, it is essential for users to perform
comprehensive assessments using local patient data to
evaluate the effectiveness, accuracy, and limitation of
the algorithm and to identify when and how algorithms

fail to generate accurate segmentation prior to clinical
deployment.33

Prior to the clinical deployment of commercial algo-
rithms,it is crucial to thoroughly assess both the geomet-
ric and dosimetric impacts of utilizing auto-segmented
target structures compared to physician-drawn target
structures. The assessments determine whether the
accuracy and reliability of the algorithms are clinically
acceptable for a particular clinic,which may have patient
characteristics different from other hospitals or those of
the cohorts used to train the algorithms. Currently, there
are very few studies investigating the impact of using AS
algorithms for breast and regional nodal structures, as it
is still relatively new.31 As a consequence, there is a lack
of guidelines on how to clinically implement the commer-
cial AS algorithms of these target structures, and little is
known about their performance.

Our goal is twofold. First, a commercial DL-driven
algorithm, AutoContour (RADformation, USA)39,40 is
being validated retrospectively with geometric and
dosimetric parameters using patient data from our
institution. Second, the study aims to determine the
geometric parameters of the breast and regional
node target structures and physician contouring styles
that correlate with consistent dosimetric distribu-
tion between AS using AutoContour and the gold
standard of physician manually-segmented contours
(MC).

We investigate how target volumes and target geome-
tries, such as width and length, affect geometric accu-
racy. Our evaluation provides valuable insights into the
dosimetric impacts of utilizing AS breast and regional
nodal structures and may lead to the guidelines for the
adoption of AS in the clinic. This study serves as a
paradigm on how to evaluate DL algorithms for other
target structures as they become available.41,42 Further-
more, this study pioneers as a blueprint for assessing
AS technology for disease sites, other than breast
treatment volumes, as clinics implement AS with new
structures.

2 METHODS

2.1 Patient data collection and
processing

The data collection process includes population all
consecutive breast and chestwall (CW) patients that
was treated at our institution between January 2021
and December 2022, excluding treatment plans that
do not fit our study criteria. The patient selection cri-
teria include a prescription dose of 5040 cGy (180
cGy per fraction), no re-irradiation cases, no intensity
modulated radiotherapy (IMRT) or volumetric modulated
arc therapy (VMAT), and no bilateral breast/CW cases.
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In this Institutional Review Board-approved study, the
planning data for 66 breast cancer patients (34 intact
breast, 32 post-mastectomy chest wall) were utilized. All
patients received 3D conformal radiotherapy (3DCRT).
Prior to treatment, all patients received a CT simulation
(Siemens Definition AS CT simulator Siemens Health-
ineers, Munich, Germany) in the supine position using
a technique with 120 kVp, 198 mAs, and 3 mm slice
thickness. The structures of interest for intact-breast
treatment included “Breast_Eval”, total axillary nodes
(AxN), internal mammary nodes (IMN), and supraclav-
icular lymph nodes (SC). “Breast_Eval” was defined as
the breast structure cropped 5 mm from the skin and
hereinafter known simply as breast. AxN included all
three axillary nodal levels. The structures of interest
for post-mastectomy radiation treatments included AxN,
IMN,SC,and “Chestwall_Eval”,which was the CW struc-
ture cropped 5 mm from the skin and hereinafter known
simply as CW. As part of the standard treatment plan-
ning process, the structures of interest were manually
delineated in our treatment planning system, Eclipse
(Varian Medical Systems, Palo Alto, CA, USA) by one
of two attending radiation oncologists (MD1, n = 27,
MD2, n = 39). The two radiation oncologists possess
extensive experience in treating patients with breast
cancer. One MD has 30 years of experience, while the
other MD has 20 years of experience. Their extensive
backgrounds are underscored by numerous publica-
tions focusing on breast cancer and the intricacies of
breast contours.Radiation treatments were planned with
four fields where the breast and CW target volumes were
treated with two tangentially-opposed fields, and the
regional nodes were treated with two anterior/posterior
oblique fields for a standard mono-isocentric 3DCRT.

2.2 Target auto-segmentation software

The processing of the AS target volumes was per-
formed within the Radformation AutoContour software
(Radformation, New York, USA), which is AI-based,
and functioned as a plug-in within Eclipse. Radforma-
tion AutoContour was chosen for this study because
it is the only AS tool readily available at our specific
institution and works seamlessly with our current treat-
ment planning system, Varian Eclipse. The volumes
for the breast/CW, AxN, SC, and IMN were retrospec-
tively generated within AutoContour and exported back
to Eclipse. No manual modification was performed
on the automatically-segmented-contours (AC). The
entire automatic contouring process took 1−2 min per
patient.

The ACs generated via the AutoContour software
were compared against the corresponding physician’s
MC structures. Different quantitative metrics were used
to geometrically and dosimetrically evaluate the similar-
ity between the AC and MC structures.

2.3 AutoContour geometric evaluation

The volumes of AC in cubic centimeters measured
within Eclipse were compared with the corresponding
MC volumes. The MC and AC volumes were then trans-
ferred to Velocity Oncology Imaging Informatics System
(Varian Medical Systems, CA, USA) for the computation
of the Dice similarity coefficient (DSC), mean surface
distance (MSD), and Hausdorff Distance (HD) for each
patient.

DSC is a metric that assesses the spatial overlap of
two sets and ranges from 0 to 1,with 1 indicating perfect
overlap and 0 indicating no overlap. The DSC is given
by:

DSC = 2 × |X ∩ Y |

|X | + |Y |
(1)

where X is the structure of interest (i.e.,AC) and Y is the
ground truth (i.e., MC).

MSD and HD are defined respectively as:

MSD = mean (d (X, Y ) , d (Y, X )) (2)

HD = max (d (X, Y ) , d (Y, X )) (3)

where d(X, Y ) and d(Y, X ) are the forward and back-
ward distances, respectively from X to Y. The MSD and
HD metrics measured the mean and maximum spa-
tial distance, respectively, between two structure sets,
where perfect overlap would yield a distance of 0 cm.
The correlation of these metrics on MC and AC tar-
get volume was assessed via the Pearson correlation
coefficient r.

To determine if the performance of AC was physician-
agnostic, we sorted the data per physicians (i.e., MD1
and MD2) and performed a subgroup analysis accord-
ingly. As further investigation to determine if the perfor-
mance of AC can be predicted by geometric parameters,
the length for each three-dimensional direction was ana-
lyzed. These parameters may provide reliable metrics
in predicting whether certain structure types or sizes
would achieve a better resemblance between AC and
MC.

2.4 AutoContour dosimetric evaluation

Using the clinically delivered treatment plan, a radiation
dose parametric assessment was carried out compar-
ing target coverage considering MC and AC target
structures. The dosimetric parameter selected for the
breast/CW,AxN,and SC was the V95%,which represents
the percentage of the planning target volume (PTV) that
received at least 95% of its prescribed dose. For the
IMN, V90%, the percentage of PTV that received at least
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F IGURE 1 Overall study workflow that includes data selection in AURA, data preparation in Eclipse Contouring and Radformation Auto
Contour, data export in Varian Eclipse, and data analysis in Eclipse, Velocity, Excel, and Python. AURA, Aria reporting system.

90% of its prescribed dose, was selected due to the vol-
ume and location of the structure with respect to the
treatment field edge to spare various OARs including
the humeral head.43,44 The dosimetric parameters were
selected as part of the plan quality evaluation for each
specific anatomic site.45,46 The absolute value of the dif-
ference in the Vx% or Vx% for the MC and AC structures
was computed and reported as a |ΔVx%| and given by:

ΔVx% =
MCVx% − ACVx%

MCVx%
× 100% (4)

where MCVx% and ACVx% are the PTV percentage of
MC and AC, respectively, that received at least x% of
its prescribed dose. x% is 90% for IMN, and 95% for
breast/CW,AxN,and SC.Perfect overlap of the two con-
tours would lead to no difference in the target coverage.
We assessed the correlation of |ΔVx%| with the volume
of the target organ being considered. Similar to the geo-
metric assessment, the correlation was assessed using
the Pearson correlation coefficient r.

The AC target dose coverage (V90% for IMN and
V95% for breast/CW, AxN, and SC) for intact- and
post-mastectomy-breast plans were assessed using
a one-tail t-test. Dosimetric-geometric correlation of
ACs was evaluated using the target dose difference
between ACs and MCs (ΔVx%) versus DSC. A DSC
metric of ≥0.7 is often considered a satisfactory volume
match.47–50

The overall workflow of the study is shown in Figure 1,
which includes, data selection, data preparation, and
data exporting prior to data analysis. The analysis
includes geometric evaluations (performed in Varian
Velocity and Python script) and dosimetric evaluations
(performed in Varian Eclipse). Data are evaluated and
classified using a detailed Excel spreadsheet.

F IGURE 2 Physician-dependent performance of AC for the SC.
The volumes of MC are systematically larger than the AC volumes
for MD1, which is not observed for MD2. The identity line is plotted in
black. AC, automatically-segmented contours; MC,
manually-segmented contours; SC, supraclavicular nodes.

3 RESULTS

3.1 Geometric evaluation

We found a large influence on geometric accuracy
dependent on the target structures considered (Table 1).
The breast structure demonstrated the best segmen-
tation performance assessed via DSC, HD, and MSD
averaged over our collected dataset. Mastectomy status
had an impact, in that AC structures were significantly
less accurate for the CW compared with the breast.
Based on the DSC for different lymph node struc-
tures, AC had good agreement with MC for the AxN,
some agreement with the SC, and little agreement with
the IMN. Looking solely at volume agreement, good
physician-agnostic performance of AC was observed in
all but the SC (Figure 2). Looking closer at the SC, MD1
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TABLE 1 Geometric accuracy quantified with Dice similarity coefficient (DSC), Hausdorff distance (HD), and mean surface distance (MSD)
averaged over our entire patient dataset.

Breast CW AxN SC IMN

DSC 0.85 ± 0.06 0.71 ± 0.20 0.70 ± 0.09 0.54 ± 0.14 0.33 ± 0.17

HD (mm) 38.07 ± 12.59 38.49 ± 25.76 36.3 ± 14.74 41.00 ± 24.01 41.81 ± 16.00

MSD (mm) 4.32 ± 1.70 6.90 ± 8.52 5.22 ± 2.27 9.69 ± 6.29 8.99 ± 5.38

Note: Superior segmentation performance was seen with the intact breast relative to the post-mastectomy chestwall (CW). The axillary node (AxN) were the most
successfully auto-contoured structure of the nodal structures.

systematically contoured larger than ACs, whereas the
MCs from MD2 did not exhibit this characteristic.

When considering the correlation between contour
volumes and a geometrically accurate AC based on
DSC (Figure 3), a positive correlation was found
between the MC volume and the DSC for the breast
(r = 0.428), CW (r = 0.413), and AxN (r = 0.211). Lit-
tle positive or even anti-correlation was observed for the
IMN (r = 0.088) and SC (r = −0.359) respectively.

To provide a geometrical metric in predicting the
performance of AC, the lengths in three directions of
each structure were tabulated against the correspond-
ing DSC data as shown in Figure 4. There is minimal
correlation between the length and DSC in most struc-
ture sets. Correlations can be observed in the x- and
y-dimensions of the SC (Figure 4d,e), which repre-
sent the left/ right and superior/ inferior orientation
respectively. When SC are over 70 mm in x- and/or y-
dimensions, 3.8% of the SC structures have a DSC
of higher than 0.7. When SC structures are less than
70 mm in x- and/or y-dimensions (Figure 4d,e, respec-
tively),34.6% of the SC structures have a DSC of higher
than 0.7. Therefore, upon review of the AC structures,
SCs > 70 mm in x- and/or y-directions have no correla-
tion with MCs. There might be greater confidence that
SCs with less than 70 mm in x- and/or y-dimensions
would have close resemblances with MCs compared to
the larger SCs (Figure 4d,e).

3.2 Dosimetric evaluation

As shown in Table 2, for intact-breast plans, insignifi-
cant differences between ACs and MCs were observed
for AxNV95% and SCV95%, while IMNV90% ACs and MCs
were significantly different. The average V95% for the
breast MCs and ACs were comparable but statistically
different. The results of CW plans (Table 3) are simi-
lar to that of breast plans. For CW plans, AxNV95% and
SCV95% were also consistent between ACs and MCs,
while IMNV90% was significantly different. The mean
values of CWV95% are comparable with no statistical
difference.

Figure 5a shows 94.1% breast ACs meeting both
ΔV95% < ± 5% and DSC > 0.7, while only 62.5% CW
ACs meet this metric, despite AC-CWV95% being sta-

tistically insignificant (Tables 2 and 3). For AxN, a low
percentage of plans (67.65% of breast and 56.25% of
CW plans) meet the DSC > 0.7 and ΔV95% < ± 5%
metric (Figure 5b). Similarly for SC, even a lower per-
centage of plans (14.71% of breast and 9.38% of CW
plans) meet the DSC > 0.7 and ΔV95% < ± 5% met-
ric (graph not shown). For IMN, which is small and on
the radiation field edge, it shows a significant difference
between MC and AC in V90% coverage for both breast
and CW plans (Table 2).All except for one IMN case had
DSC values < 0.7 (graph not shown).

Considering the dosimetric results, the use of a
3DCRT technique for these treatments is important to
note as it defines gradient of the prescription dose
falls off from the target contour. There is probably less
demand for an accurate contour in-plane for 3DCRT
compared to more conformal plan techniques such as
static gantry IMRT or VMAT. The out-of -plane dose dis-
crepancies are essential (Figure 6),as the field aperture
will be defined based on the superior/inferior extent of
the targets.

4 DISCUSSION

This study investigates the clinical performance of a
commercial DL-driven AS software for the breast, CW,
and regional nodal structures for external beam radi-
ation therapy treatment planning for breast cancer.
While there are studies previously published consider-
ing the geometric and dosimetric difference between
the manual- and auto-contouring process for head and
neck,51 pelvic, and abdomen treatments,49 there has
yet to be any guidance on incorporating DL-driven seg-
mentation tools for radiotherapy of the breast/CW and
regional nodal structures.

This study is the first investigation, to the best our
knowledge, that performs a clinically relevant assess-
ment of the clinic-specific performance of the Radfor-
mation AutoContour software in the anatomical targets
of the breast/CW and regional nodal structures using
local or clinical-specific patient data. Our study found
that for certain structures, particularly intact-breast and
AxN, a commercial DL-driven AS tool trained with an
external dataset was able to achieve good physician-
agnostic segmentation performance without much sec-
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F IGURE 3 DSC versus the MC volumes in cubic centimeters for the considered target structures. Correlation is denoted by the PCC.
Positive correlation between the two quantities was observed for (a) the breast, (b) CW, and (c) AxN. Anti-correlation and weak correlation were
observed for the (d) SC and (e) IMNs, respectively. AxN, axillary nodes; CW, chestwall; DSC, Dice similarity coefficient; IMN, internal mammary
nodes; MC, manually-segmented contour; Pearson correlation coefficient; SC, supraclavicular nodes.

ondary manual edits and correlated with good dosimet-
ric performance.For other structures,specifically the CW
and SC, the AC provided a reasonable starting point
but would require manual editing for clinical acceptability.
Our results showed that there was limited geometric and
dosimetric agreement considering the AC of the IMNs
and that the AC model will require more vendor tuning.
IMNs were more geometrically and dosimetrically sensi-
tive to contour variations, possibly because of the small
volume and its location near field edges.

It is important to note that the outcome of this study
is dependent on several factors, including the vendor’s

method in data training of the DL-driven tool, the type
of data used in each model’s development, whether
both intact-breast and post-mastectomy CW patients’
data were included in the data training, and definition of
the ground truth for the DL-driven software. There was
some physician dependence noted in our clinic in the
SC, where one of the attending MDs utilized a different
contouring atlas than the other MD and the accuracy of
AC SC depends on the length in the lateral (x) or supe-
rior/ inferior (y) directions. Our results show that shorter
SCs (< 70 mm) have better agreement between AC and
MC. This is an example where a generalized model that
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F IGURE 4 DSC versus the lengths in three dimensions of target structures. (a)–(c) AxN in x-, y-, and z-directions are denoted by AxN(X),
AxN(Y), and AxN(Z), respectively. (d)–(f) SC in x-, y-, and z-directions are denoted by SC(X), SC(Y), and SC(Z), respectively. (g)–(i) IMNs in x-, y-,
z-directions are denoted by IMN(X), IMN(Y), and IMN(Z), respectively. AxN, axillary nodes; DSC, Dice similarity coefficient; IMN, internal
mammary nodes; SC, supraclavicular nodes.
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TABLE 2 Mean and standard deviation (SD) of automatically-segmented contour (AC) and manually-segmented contour (MC) with
p-values between MC and AC structures for intact-breast plans.

Intact Breast plans (n = 34)

Mean SD
p(T < = t)
one-tail

Plans with DSC > 0.7 and
ΔV95/90 < ± 5%

Breast V95% MC 98.36 1.95 0.014 94.12%

AC 97.18 2.38

AxN V95% MC 95.53 6.58 0.167 67.65%

AC 93.92 7.01

SC V95% MC 91.01 18.37 0.083 14.71%

AC 84.61 19.26

IMN V90% MC 84.61 19.26 0.000 0.00%

AC 61.66 27.58

Note: V95% and V90% represent the percentage of the planning target volume (PTV) that received at least 95% and 90%, respectively, of its prescribed dose. The
axilliary nodes, supraclavicular nodes, and internal mammary nodes are denoted by AxN, SC, and IMN, respectively.

TABLE 3 Mean and standard deviation (SD) of automatically-segmented contour (AC) and manually-segmented contour (MC) with
p-values between MC and AC structures for post-mastectomy chestwall plans.

Post-mastectomy breast plans (n = 32)

Mean SD
p(T < = t)
one-tail

Plans with DSC > 0.7 and
ΔV95/90 < ± 5%

CW V95% MC 96.90 2.91 0.191 62.50%

AC 96.04 4.71

AxN V95% MC 93.31 13.09 0.352 56.25%

AC 92.07 12.82

SC V95% MC 91.18 17.43 0.084 9.38%

AC 84.92 18.49

IMN V90% MC 83.46 29.35 0.001 3.13%

AC 61.31 26.22

Note: V95% and V90% represent the percentage of the planning target volume (PTV) that received at least 95% and 90%, respectively, of its prescribed dose. The
CW, axilliary nodes, supraclavicular nodes, and internal mammary nodes are denoted by CW, AxN, SC, and IMN, respectively.

F IGURE 5 ΔV95% versus DSC for (a) breast and CW and (b) AxN in intact-breast and post-mastectomy breast plans. AxN, axillary nodes;
CW, chestwall; DSC, Dice similarity coefficient.
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F IGURE 6 Two examples of out-of -plane discrepancies between MC and AC. (a) Out-of -plane discrepancies between MC (red) and AC
(cyan) of AxN; (b) Out-of -plane discrepancies between MC (green) and AC (burgundy) of breast. These cases would have reduced dosimetric
agreement in terms of the V95% relative to in-plane accuracy, as the field aperture for a 3DCRT would be defined by the superior and inferior
borders of the target. V95% represents the percentage of the PTV that received at least 95% of its prescribed dose. 3DCRT, 3D conformal
radiotherapy; AC, automatically segmented contour; AxN, axillary node; MC, manually-segmented contour; PTV, planning target volume.

agrees with all observers may not be possible for the
current AI software. Therefore, internal review and local
validation should be performed for all AC structures prior
to clinical implementation.

Considering the correlation between the target vol-
umes and |ΔV95%|, there are two possible interpretations
of the anti-correlation. First, structures with larger vol-
umes result in more comparable MCs and ACs, and
better spatial overlap of the AC results with that from
the MC leads to more dosimetric agreement. This is
supported by the results seen from Figures 2–5, which
showed a positive correlation between DSC and the MC
volume. The second is that larger organs have a larger
field size considering the 3DCRT treatment technique
utilized in this patient cohort. This may have led to a fur-
ther reduction in the demands for an accurate in-plane
contour, relative to smaller structures with more selective
aperture openings.

This study does have limitations that should be con-
sidered. Our clinical site only performs breast, CW,
and regional nodal treatments with a 3DCRT tech-
nique, hence our current study only includes 3DCRT
breast and CW treatments. In the future, a larger multi-
institutional data set can be included to study plans
in other institutions with intensity-modulated techniques
that produce a more conformal dose around the tar-
geted. Additionally, we only considered 66 patients in
our dataset. It is likely that there are unique cases (e.g.,
unique anatomy,clinical history,or pathological findings)
not included in the trained model that may challenge
the segmentation software more, leading to more varia-
tion in geometric and dosimetric performance for breast
cancer patients. These unique cases may require vol-
ume adjustments that deviate from a standard protocol
based on clinical judgment with an individualized treat-

ment approach. With a larger dataset, we will be able to
subcategorize data factors (such as gender, age, imag-
ing and planning protocols) to enrich the significance of
the study results.

Throughout this study, the authors encountered vari-
ous challenges,encompassing data selection,collection,
preprocessing, and evaluation. During the process of
data selection and collection, we deliberately excluded
data that might bias the results, considering factors
such as prescription,prior irradiation, treatment modality
(3D vs. IMRT), and cases involving bilateral condi-
tions. However, we acknowledge the potential benefit
of incorporating such data categories in future studies
if they become adequately represented in our dataset.
Additionally, the challenge of acquiring sufficient data,
particularly in the realm of AI research, is a common
obstacle.At our institution, it took a considerable amount
of time to accumulate a diverse dataset of breast cases.
To address these challenges, we intend to collabo-
rate with other radiation oncology teams to incorporate
multi-institutional data in future research endeavors.

In the course of this study, significant effort was ded-
icated to data preprocessing to ensure data validity
and consistency. Notably, discrepancies arose regard-
ing the definition of the CW structure between the
AutoContour software and the protocol utilized by one
of our MDs. Consequently, we manually verified and
regenerated chest wall contours cropped 5 mm from
the skin to align with the AutoContour protocol. These
discrepancies underscore the importance of standard-
ized guidelines and protocols across institutions to
mitigate such variations resulting from evolving clinical
practices.

There were challenges in identifying meaningful met-
rics to evaluate the accuracy of the AutoContour
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software. The results are dependent on various factors,
including the contour size, shape, and spatial relation-
ship to the target structures. Consequently, our findings
offer comprehensive guidance on the effectiveness of
individual structures, delineating those that statistically
perform well and those that do not. The parameters
we opted for in this paper are widely used and eas-
ily comprehensible for most readers. Additionally, to
ensure efficiency and consistency in the study work-
flow, we chose to utilize software already integrated
into our institution’s routine clinical operations. The met-
rics we utilized are accessible and generated through
commercial software, Velocity (Varian, Siemens Healthi-
neers,CA,USA).Furthermore, this streamlined workflow
facilities seamless collaboration with other institutions
equipped with Varian Velocity and potentially expands
our dataset size in the future.We are planning to incorpo-
rate more inclusive metrics such as mean HD, minimum
HD, volume correlation, relative absolute volume differ-
ence, and specificity in our future study using larger
datasets from multi-institutions.

To mitigate these limitations, we have implemented
several solutions, including maintaining a detailed
spreadsheet to track all cases,adhering to standardized
contouring protocols, and implementing cross-checking
procedures to identify and rectify data outliers stemming
from human errors. Furthermore, we plan to establish
proper quality assurance procedures for target volume
auto segmentation in future studies.

This study can be extended in multiple promising
directions for future work.Firstly, re-planning the 3DCRT
treatments on the AC targets and assessing how the
dose is delivered to the MC targets and surrounding
OARs relative to the clinically delivered plan might pro-
vide a more comprehensive perspective as to the true
dosimetric impact of AC in this anatomical site.Secondly,
performing a time assessment of AC with physician
adjustments of each target structure and comparing that
with the time for physician contouring from scratch would
yield the potential workflow impact of AC use.52 Fur-
thermore, the continuation of this study can be changed
from a retrospective approach to a prospective approach
to evaluate manual contours that used AI tools as a
supportive tool by enrolling patient datasets in clinical
trials.

Moving forward, studies such as these will be impor-
tant for implementing more AI-based tools into the
Radiation Oncology clinic. NRG Oncology consensus
papers53 mention the future use of AI, not only for AS,
but for other workflow improvements during image reg-
istration, treatment planning,and even radiation delivery.
As more clinics move in the direction of AI-based
tools, there will unavoidably be questions pertaining
to how these tools should be properly assessed and
implemented following purchase. This study presents a
framework for this in the context of AS;however, this can

be expanded to the broader scope of the implementa-
tion of AI-tools to Radiation Oncology in general. The
tool must be assessed using local patient data, prac-
tice habits, styles, and workflows, with proper oversight
of all members of the Radiation Oncology team. With
all of these steps in place, we as a field can move for-
ward into the next generation of AI-assisted Radiation
Oncology, to the end of providing better care to our
patients.

In summary, we present a clinically-relevant perfor-
mance analysis of a commercial AS tool, Radformation
AutoContour software, for the segmentation of the
breast/CW and regional nodal structures. This tool has
the capacity to greatly improve the throughput and work-
flow of radiation treatment planning for this anatomical
site.However,organ-specific assessments of the tool are
recommended to gain an understanding of the segmen-
tation agreement with the local contouring physicians
and how practice differences may lead to agreement or
otherwise.

5 CONCLUSION

The AC breast structure was geometrically and dosi-
metrically similar to physicians’ MCs, which could be
used for treatment planning without modification for
our clinic. AC AxN and SC may require some manual
adjustments. Careful review should be performed for
AC CW before treatment planning. Our results show
that AC IMN is not usable yet in a clinic without care-
ful reviewing and extensive editing. The SC MC and AC
volumes agreed better for smaller lengths in both lat-
eral and superior/ inferior directions. Thus, the findings
of this study may guide the clinical decision-making pro-
cess for the utilization of DL-driven AS for intact- and
post-mastectomy breast plans.Since AI contouring algo-
rithms are specific to the training data set and various
protocols, practitioners, and unique patient anatomies,
local validation is essential for each clinic prior to the
implementation of any AI contouring tools in a clinical
setting.
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