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Summary

Aberrant preterm infant gut microbiota assembly predisposes to early life disorders and persistent 

health problems. Here, we characterize gut microbiome dynamics over the first three months 

of life in 236 preterm infants hospitalized in three neonatal intensive care units using shotgun 

metagenomics of 2,512 stools and metatranscriptomics of 1,381 stools. Strain tracking, taxonomic 

and functional profiling, and comprehensive clinical metadata identify Enterobacteriaceae, 

Enterococci, and Staphylococci, as primarily exploiting available niches to populate the gut 

microbiome. Clostridioides difficile lineages persist between individuals in single centers, 

and Staphylococcus epidermidis lineages persist within and, unexpectedly, between centers. 

Collectively, antibiotic and non-antibiotic medications influence gut microbiome composition to 

greater extents than maternal or baseline variables. Finally, we identify a persistent low diversity 

gut microbiome in neonates who develop necrotizing enterocolitis after day of life 40. Overall, 

we comprehensively describe gut microbiome dynamics in response to medical interventions in 

preterm, hospitalized neonates.

Graphical Abstract

eTOC

Preterm neonates undergo numerous interventions. Thänert, Schwartz, and Keen et al. use multi-

omics to show that antibiotics and other drugs alter gut microbiome development, more so than 

prenatal factors. Microbiome development stagnates before necrotizing enterocolitis ensues, but 

only among infants who experience this devastating complication after 40 days of life.
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Introduction

Newborns acquire microbes during and after delivery in all body sites from their mothers 

and the environment1. Neonates continue to accrue microbes in their gut microbiome, 

an organ essential for immune and nutritional development2. Microbiome development is 

shaped by diverse factors, including environment, mode of delivery, antibiotic exposures, 

diet, and gestational age3–8. Worldwide, 10.6% of all infants are born prematurely9 

(defined as birth before the 37th week of gestation) and many require months-long 

initial hospital care in neonatal intensive care units (NICU)10. NICU hospitalization 

and accompanying necessary interventions, including antibiotics and altered feeding 

interventions that differ from the home environment, can dramatically influence the 

developing gut microbiome4,11,12. In contrast to the rapid acquisition of commensal 

anaerobes observed in their term counterparts, the preterm infant gut is initially seeded 

by bacteria that include nosocomial pathobionts of hospital origin including Staphylococci, 

Enterococci, and Enterobacteriaceae4,13,14. These nosocomial pathobionts are abundant 

in the stool of infants born preterm, frequently dominate their host’s gut microbiome 

(to >50% of the overall community), and are transmitted between infants in the NICU 

environment11,13–17. The specific clinical variables and exposures governing pathobiont 

and commensal entrance and exclusion into the preterm microbiome remain incompletely 

understood.

The hospitalized preterm neonatal gut microbiome undergoes dynamic, choreographed 

development with species acquisition, in vivo evolution of individual microbes and 

the community collectively, and species loss, which are each governed by microbe-

microbe, microbe-host, and exogenous factors2,4,11,18–20. Frequent antibiotic administration 

exacerbates this dynamicity by rapidly reshaping the content of the developing gut 

microbiome11,15. These rapid microbiome shifts have been well characterized in other 

dynamic populations such as adults with inflammatory bowel disease and traveler’s 

diarrhea21,22, but the relative contributions of each factor that dictate how the microbiome 

changes in hospitalized preterm neonates are largely undetermined. Much is known about 

the impact of antibiotics on the preterm gut microbiome11,12,19,20. However, we understand 

little about the early-life impact of other factors, together referred to as the exposome23, 

including comorbidities and non-antibiotic medications, many of which are known to have 

in vitro effects on human gut bacteria24. This is an important knowledge gap, because 

extremely low birthweight infants are routinely exposed to more medications, and for 

longer durations, than their higher birthweight counterparts in the same neonatal units25. 

The exposome varies in isolation and combination across intervals in neonatal care25, 

and the effect on microbiome composition and function is poorly understood. Importantly, 

alterations in specific functional units (e.g., genes, pathways) encoded in bacterial genomes, 

including those affecting immune homeostasis, can explain microbiome responses to 

perturbations not captured by taxonomic composition alone26–28. Thus, it is critical to study 

the presence or absence of both specific taxa and encoded microbiome genetic content to 

determine an infant’s susceptibility to infections and pathologies, and, more importantly, 

identify the precipitants of changes in community composition26,29.
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In addition to unique medications and exposures, preterm neonates are at immense 

risk for devastating pathologies influenced by the gut microbiome, most notably 

necrotizing enterocolitis (NEC)30–34 and bloodstream infections caused by gut-resident 

pathobionts15,35,36. NEC is a necroinflammatory gastrointestinal disorder affecting ~5–10% 

of all very low birthweight infants in the US and remains fatal in 15–40% of cases37. 

Prediction of NEC prior to onset has been elusive, perhaps because a wide spectrum of 

disease presentation exists, and variable times to onset in the first several months of life33,38. 

Failure of the immature preterm neonatal immune system to control pro-inflammatory 

responses to an inciting gut microbiome is thought to be at the heart of NEC etiology33,39. 

Studies have variably reported reduced microbiota diversity, increased abundance of 

Enterobacteriacae, and under-representation of obligate anaerobes in the prelude to disease 

onset30,32,34,39. However, consistent compositional and functional signatures of microbiome 

communities preceding NEC, the identification of which would be essential to establish 

reliable biomarkers, remain elusive30–33,38–40.

Here, we sequence 1479 stools from 96 very low birthweight preterm infants, and analyze 

them with 409 previously sequenced stools from 92 additional preterm infants from the 

same cohort11,12,34,40 to comprehensively and precisely define gut microbiota assembly in 

preterm infants hospitalized in three NICUs in the central United States. We interrogate 

independent variables that are components of the NICU exposome, including antibiotic 

and non-antibiotic treatments, along with dependent variables of microbiome taxonomic 

and functional development during hospitalization. We use strain-resolved metagenomic 

assembled genomes (MAGs) to identify microbial dynamics within and between individuals 

in response to maternal factors and NICU interventions over time. Finally, we compare 96 

infants without NEC using a 2:1 match to 48 infants with NEC, interrogating an additional 

624 stools using shotgun metagenomics and metatranscriptomics to investigate taxonomic 

and functional microbiome signatures which may precede NEC onset.

Results

Gut microbiota assembly in hospitalized preterm infants

To characterize bacterial succession in the preterm gut, we performed fecal shotgun-

metagenomic sequencing on 1479 stool samples (Data S1) collected at near-daily frequency 

from 96 preterm infants without NEC hospitalized in NICUs in St. Louis, Missouri (54/96, 

56%), Oklahoma City, Oklahoma (32/96, 33%), and Louisville, Kentucky (10/96, 10%). 

These infants were part of a prospective cohort investigating the bacterial etiology of NEC 

among preterm infants but who did not develop NEC during hospitalization (Figure 1A, 

Data S1–S2)34,40. They were born at a mean gestational age (standard deviation) (GA) of 

26.4 (2.5) weeks, with a mean birthweight of 938 g (273); 48/96 (50%) were female (Data 

S2).

Gut microbiota development of hospitalized preterm infants has previously been described 

as following a common pattern, proceeding from initial dominance of Staphylococcus 
and other Bacilli in virtually all infants, to communities defined by pathobionts4,40. 

Our shotgun metagenomic data support these choreographed trajectories of the earliest 

microbiota assembly in preterm infants. The gut microbiota of preterm infants in our cohort 
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diversified rapidly over the first month of life (Figure 1B, Figure S1), accruing taxa (Figure 

1C, S1), and transitions from Staphylococcus epidermidis dominance to communities 

defined by potential pathobionts, specifically Klebsiella pneumoniae, Enterococcus faecalis, 

and Escherichia coli (Figure 1C, S1A). We recapitulate prior data4,11 demonstrating that 

pathobionts such as Enterobacteriaceae, E. faecalis, and S. epidermidis are highly prevalent 

and often dominate the microbiota of individual infants with >50% abundance (Figure S1B–

C). Notably, we also find putatively beneficial early life colonizer microbes2,41, including 

Bifidobacterium spp. and Veillonella spp. (Figure S1A, S1C), demonstrating that important 

commensals are acquired even during hospitalization in the NICU.

Staphylococcus epidermidis and Clostridioides difficile strains are shared among infants

The earliest preterm gut microbiota is influenced by microbes acquired from the NICU 

environment4,13,14,17. While our study did not include environmental samples, strain-

sharing between unrelated individuals is indirect evidence for environmental acquisition. 

Thus, to characterize species-specific microbe acquisition from environmental sources 

systematically, we co-assembled, binned, and taxonomically annotated infant-specific 

metagenome-assembled genomes (MAGs). We de-replicated a total of 1176 high- (n=864 

MAGs, ≥90% completeness, ≤5% contamination) and medium- (n=312 MAGs, ≥50% 

completeness, ≤10% contamination) quality MAGs (Data S3), generating a set of 197 

species-level representative genomes. Using this MAG database, we profiled species-specific 

pairwise average nucleotide identity (ANI) values for all metagenomic sample pairs using 

inStrain (see Methods)42 to identify instances of strain-sharing between unrelated infants.

We identified a total of 28,251 instances in which the same strain (≥99.999% popANI) was 

detected in multiple specimens across all species and sample pairs, of which 26,378 (93.4%) 

were from samples collected from the same infant over time. Eighty-two (85.4%) of the 96 

infants studied shared at least one strain of at least one bacterial species with another infant. 

We specifically counted strain-sharing events only when ≥2 unique samples from the same 

infant pair shared a strain, to limit false positive associations. Strains of S. epidermidis and 

C. difficile were the most frequent species identified in stool samples of multiple, unrelated 

infants (Figure 1D, E). We did not observe a correlation between strain-sharing events 

and prevalence (p=0.53, Spearman). Strain-sharing events for S. epidermidis were more 

frequently observed than for other species with comparable cross-cohort prevalence (Figure 

1D, Chi Square, p<0.001), indicating that environmental vectors may disproportionally 

contribute to their spread in the NICU or that these species are well-adapted to persist in 

the hospital environment. Strain sharing events for C. difficile were also more likely for its 

prevalence than other species (Figure 1D, Chi Square, p<0.05). S. epidermidis prevalence 

decreased with increasing day of life and was positively associated with carbapenems and 

glycopeptide exposure (Figure 1F). Conversely, C. difficile prevalence increased with day 

of life in the NICU and was negatively associated with administration of aminoglycosides, 

4th generation cephalosporins, and carbapenems (Figure 1F). These observations suggest 

organism-specific dynamics of acquisition and spread, potentially associated with distinct 

environmental influences.
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Surprisingly, we inferred 359 S. epidermidis strain sharing events across hospital systems 

(Figure 1E). To exclude the possibility that laboratory contamination explained this 

commonality, we randomly selected never-thawed stools from infant pairs hospitalized in 

three different centers (St. Louis, Louisville, and Oklahoma City) predicted to share S. 
epidermidis (n=21 pairs) and C. difficile (n=10 pairs) strains by sequence analysis. We then 

isolated single colonies from these stools and performed metagenomic sequencing, which 

corroborated our direct from stool sequencing that demonstrated within-hospital sharing 

of C. difficile and cross-hospital strain-sharing of S. epidermidis (Figure S2). Specifically, 

14/21 (67%) and 7/10 (70%) of inStrain-predicted sharing events of S. epidermidis (Figure 

S2A–B) and C. difficile (Figure S2C–D), respectively, were validated with culturing using 

a relatedness cutoff of 99.999% popANI (Figure S2B,D, solid line). Strain sharing of 

Enterobacteriaceae, E. faecalis, and administered Bifidobacteria probiotics15,29 has been 

demonstrated within NICUs, and Enterobacteriaceae, Enterococcus faecium, Acinetobacter 
baumannii, and commercial probiotics43,44 in adults in ICUs. The identified network of S. 
epidermidis strains shared across large spatiotemporal distances suggests that specific strains 

are uniquely adapted to persist in the NICU environment.

Microbiome shifts introduce pathobionts and antibiotic resistance into the preterm gut 
microbiome

Changes in gut microbiota composition can rapidly alter microbial cues to the 

host’s immune system21. Such ‘microbiome shifts’ are thought to contribute to the 

pathophysiology of gastrointestinal disorders and infections in adult populations, such as 

inflammatory bowel disease and traveler’s diarrhea21,22. These events are characterized 

by interval community alterations between samplings that exceed the boundaries set 

by regularly observed intra-patient variation and are indistinguishable from inter-patient 

variation21,22.

To characterize the frequency, cause, and consequences of taxonomic microbiota shifts, 

we profiled Bray-Curtis dissimilarity in samples consecutively collected from the same 

participants. The composition of consecutive samples within a 20-day period were more 

similar to each other than to those from unrelated individuals (Figure S3A–B), allowing us 

to set a threshold for detecting microbiome shift events. We identified 131 microbiota shift 

events (Figure S3, 1.36/patient), defined as within-individual between-sample Bray-Curtis 

dissimilarity greater than the average dissimilarity of between-individual comparisons21,22 

(Figure S3B). Shift events occurred significantly earlier than the average postnatal day of 

sample collection (Figure S3C, P=1.34e−07, two sample t-test), indicating greater instability 

closer to birth, and were associated with taxa appearances as well as disappearances (Data 

S19). Overall, shifts indicated punctuations of microbiome destabilization with dramatic 

changes in pathobiont abundance (Figure 2A, left) as well as discrete introductions (Figure 

2A, right). Shifts were significantly more likely to introduce pathobionts (i.e., E. cloacae, 

E. coli, E. faecalis, and K. pneumoniae), into the preterm gut compared to non-shift sample 

pairs (Figure 2A, P≤0.01, permutation test). Shifts also depleted putatively beneficial taxa, 

including Bifidobacterium longum and Veillonella species as well as the same pathobionts 

introduced above (Figure S3). Common pathobionts introduced in shifts usually persisted 
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over the subsequent 10 days (Figure 2B), suggesting that these community alterations have 

lasting influence on the developing preterm gut microbiome.

We also found that exposure to antibiotics in the prior 14 days, especially to broad-

spectrum agents like 3rd and 4th generation cephalosporins, carbapenems, glycopeptides, 

and lincosamides, was associated with microbiome shifts (Figure S4A). Alternatively, 

it is also possible that the microbiome changes prompted clinical changes leading to 

antibiotic administration. Notably, antibiotic resistance genes not previously identified in 

the same infant’s gut microbiome were introduced during microbiota shifts compared to 

non-shift timepoints (Figure 2C, T-test P<0.001). These genes encode diverse mechanisms 

of antibiotic resistance (Figure 2D), including broad spectrum ß-lactamases (Figure S4B), 

suggesting that pathobionts introduced around shifts may proliferate because of their 

antimicrobial resistance gene repertoire. Consequently, our data suggest that microbiome 

shifts may act as a prime moment of vulnerability for clinical changes necessitating the 

introduction of antibiotics or antimicrobial-resistant pathobionts into the gut of hospitalized 

preterm infants, which further disrupt microbiome development.

The NICU exposome shapes microbiota development during hospitalization

In addition to antibiotics, hospitalized preterm infants are frequently exposed to a spectrum 

of host-directed medications and interventions45,46. These and other variables, such as 

mode and hospital of birth, maternal prenatal exposures, and infant diet, are collectively 

known as the ‘exposome’ and shape preterm infant gut microbiome trajectories5,11,12,47,48. 

To comprehensively characterize how the NICU exposome affects the preterm infant gut 

microbiota assembly and functional maturation during hospitalization, we integrated the 

1479 metagenomic profiles of 96 infants generated above with shotgun metagenomic 

data from 409 stools from 92 different preterm infants from the same study population, 

described in previous work11,12. From this set, we synthesized 1,888 taxonomic profiles 

(Data S4) from 188 preterm infants collected over the first 88 days of life with extensive 

clinical metadata, including baseline variables, maternal information, antibiotic therapies, 

dietary exposures, and non-antibiotic medications (Data S5). Because of the rapid change 

of microbiota composition over the first weeks of life and the microbe-specific effects of 

some drugs4,11,24,49, we hypothesized that postnatal exposures would affect microbiome 

composition more individually and collectively than prenatal exposures. To address this 

hypothesis, we profiled the impact of metadata and the NICU exposome on Bray-Curtis 

dissimilarity of the gut microbiome (Figure 3A) using repeat-measures permutational 

analysis of variance (repeat PERMANOVA). As expected, given the longitudinal nature 

of our study, sample ID explained 60% of taxonomic and 59% of functional variance 

of the gut microbiome (Data S19, p=0.003). We divided variables into three categories: 

baseline/maternal/diet, antibiotic, and non-antibiotic medications, and found that only 3/27 

(11%) of baseline/maternal/dietary variables were significantly (p<0.1) associated with 

taxonomic variance (Fig. 3B, Data S19). Postnatal age was the most explanatory feature 

(p=0.003), explaining 4% of taxonomic (Fig. 3A) and 6% of functional variance (Data 

S19). Cumulative formula and breastmilk exposure collectively contributed 1% to taxonomic 

variance. No other tested baseline or maternal variables, including hospital site, delivery 

mode, and gestational age were significantly associated with microbiome taxonomy or 
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functional potential in the first 3 months of life (p>0.1, Data S19). In subsequent analyses, 

we focused on postnatal age instead of postconceptional age as we have previously 

done40 because gestational age was not significantly associated with metagenomic variation 

(p>0.05, Figure 3, Data S19). To further define the impact of postnatal age on microbiome 

variation, we divided our cohort into 10 DOL windows with samples from infants DOL 

> 50 lumped together. We found that postnatal age was significantly associated (p<0.005) 

with microbiome development in all DOL windows with the largest effect of 1.5% variance 

explained from samples at the highest DOL in our cohort (DOL 51–88, Data S19). As 

maternal and baseline variables have been associated with microbiome differences in term 

infants5,19,50, these data lead us to hypothesize that in preterm infants hospitalized in the 

NICU, early-life exposures contribute more to microbiome development than do prenatal 

exposures.

Collectively, 6/11 (55%) of antibiotic class exposures in the prior 14 days were significantly 

associated with microbiome taxonomic composition, and contributed 6% variance (Fig. 

3B, Data S19). Surprisingly, 17/25 (68%) of non-antibiotic medication exposures in the 7 

days prior to sample collection were associated with taxonomic composition, collectively 

contributing 10% variance (p<0.1, Fig. 3A–B, Data S19). Because medications in the 

NICU are often used concurrently, we determined how frequently medications were co-

administered to understand the influence of non-antibiotic medications. We found that apart 

from the co-administration of ampicillin and gentamicin, vancomycin and gentamicin, and 

caffeine and gentamicin, most medication exposures did not overlap (Figure S5). Taken 

together, these findings suggest that the dynamics of microbiota assembly in the NICU 

during the first weeks of life are ordained by postnatal environmental exposures to a greater 

extent than by prenatal biology.

Antibiotic and non-antibiotic treatments affect early-life microbiome composition

To identify how the NICU exposome shapes taxa abundance trajectories, we implemented 

per-feature general linear mixed models (GLMMs) using MaAsLin251. We included 

participant, hospital site, and study (this study, Gibson et al11, or Gasparrini et al12) as 

random effects and evaluated all 62 baseline/maternal/diet, antibiotic, and non-antibiotic 

medication variables (Figure 3B, Data S5). This method corrects for known confounders 

and deconvolutes the effects of concurrent exposures but does not address the interactions 

between variables51. Although prenatal and maternal variables did not explain overall 

taxonomic variance (Figure 3B, Data S19), pre-birth maternal outpatient antimicrobials and 

increased gestational age were each associated with increases in single species (Figure 3C, 

q≤0.05). We hypothesized that prenatal and baseline variables might be more important very 

early in life because we did not observe that they drove microbiome composition overall 

(Figure 3B). We then reduced our dataset to 190 samples from 73 participants from the first 

10 DOL and evaluated only the 27 baseline/maternal/diet variables and similarly found no 

maternal or baseline variables impacting taxonomy (q>0.05, Data S19). We conclude that 

maternal and baseline variables have minimal impact on early-life microbiome composition 

for preterm hospitalized infants.
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Increasing postnatal age was associated with decreases in S. epidermidis, S. warneri, and C. 
avidum (Figure 3C) consistent with what we observed on the smaller cohort above (Figure 

S1C). DOL was also associated with increases in anaerobes such as 2 Veillonella spp., 

C. difficile, Finegoldia magna, and 2 Clostridium spp. as well as potentially pathogenic 

Enterobacteriaceae such as 5 Klebsiella spp. and E. coli (Figure 3C, Data S19). Cumulative 

dietary exposures, coded as fraction of days exposed to formula or breastmilk prior to a 

sample, were associated with alterations in key potential pathogens such as Klebsiella, E. 
coli, and Staphylococcus spp. (Figure 3C). Collectively, antibiotic administration within 

the 14 days prior to a sample was associated with abundance decreases of 24 species and 

increases of 5 species (q≤0.05, Figure 3D, Data S19). Aminoglycoside exposure within 

the prior 14 days, the most common exposure in our cohort affecting 946/1888 (50%) 

of samples, was associated with decreased abundance of F. magna, S. aureus, and C. 
difficile with increased abundance of S. epidermidis (Figure 3D). β-lactam antibiotics 

were associated with decreases of Enterobacteriaceae with the strongest effect of fourth 

generation cephalosporins in decreasing E. coli abundance (coefficient = −3.1, q=0.007). 

Penicillins (ampicillin, ticarcillin-clavulanate, ampicillin-sulbactam) and third generation 

cephalosporins were associated with decreased abundance of numerous Klebsiella species 

(Figure 3C). Recent third generation cephalosporins were also associated with increased 

E. faecalis abundance, which is likely due to their intrinsic cephalosporin resistance52. 

Vancomycin was associated with decreased abundance of E. faecalis consistent with known 

susceptibility52 and Veillonella dispar, which may reflect susceptibility given strain-level 

variation of Veillonella spp.53. Veillonella spp. were also depleted by recent exposure to 

first generation cephalosporins (coefficient = −1.3, q=0.03) and lincosamides (coefficient = 

−3.7, q=0.001). Thus, we demonstrate abundance decreases of many potential pathogens 

(Enterobacteriaceae, Staphylococcus spp., E. faecalis) as well as putatively beneficial 

taxa including Veillonella. While we posit that the observed changes are likely due to 

direct killing of susceptible bacteria from the administered antibiotic, we cannot rule out 

that abundance changes may be secondary to the time gap between the last dose of 

antibiotics and sample production with concomitant increases in other microbes or the 

co-administration of ampicillin or vancomycin with gentamicin (Figure S5). Indeed, we 

have demonstrated co-exposure of these antibiotics can alter gut microbiome abundance 

of Enterococcus and Enterobacteriaceae distinctly than when they are administered 

separately15.

We next investigated specific associations between non-antibiotic medications and 

gut microbiome taxonomic content. Unlike antibiotics, which were largely associated 

with taxonomic decreases, non-antibiotic medication exposures were associated with bi-

directional changes, with 41 increases and 38 decreases of key taxa with overall prevalence 

greater than 10% (q≤0.05, Figure 3E, Data S19). Interestingly, the coefficient of change 

was often greater for non-antibiotic than antibiotic exposures (Figure 3C–E), effects 

that have been observed in adults with cardiometabolic disease54. 85 individual species 

were significantly associated (q≤0.05) with non-antibiotic exposures. Klebsiella spp. were 

the most frequently impacted genus accounting for 26/79 (32%) of associations with 

medications affecting greater than 1% of samples. Oral multivitamins and famotidine 

were associated with increases of 6 Klebsiella spp. and fentanyl, midazolam, and calcium 
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gluconate were associated with decreases of 8 Klebsiella spp. (Figure 3E, Data S19). 

Caffeine, the most common medication overall affecting 1668/1888 (88%) of samples, 

was associated with decreased C. difficile, increases in two Klebsiella spp., and increased 

E. faecalis (Figure 3E). Oral iron, affecting nearly 1/3 of samples, was associated with 

decreases in S. epidermidis and K. michiganensis and increases in V. dispar and F. magna. 

Though some of these changes may result from the increased age of iron supplementation 

(43 days in exposed versus 22 days in unexposed infants, Data S5), these data also suggest 

that iron supplementation may lead to increases in beneficial Veillonella and Finegoldia, 

reflecting a more mature microbiome composition55. Fentanyl exposure in 467/1888 (25%) 

of samples was associated with decreased relative abundance of E. faecalis, Cutibacterium 
avidum, F. magna, 3 Klebsiella spp., and V. dispar. These decreases might be related to 

opioid-induced changes in motility or secondary to other microbial changes leading to 

differences in the intestinal micro-environment56. E. faecalis abundance increases were 

commonly associated with non-antibiotic medications including steroids (dexamethasone 

and hydrocortisone), iron, multivitamins with iron, and cholecalciferol. Interestingly, 

enterococci must acquire iron for virulence and anaerobic growth in the intestine57,58. 

Collectively, these results demonstrate taxonomic abundance changes associated with 

antibiotic and non-antibiotic exposures or the medical conditions for which they were 

administered for both pathobionts and key gut commensals in the preterm infant gut during 

NICU hospitalization.

Developmental trajectory of functions encoded by the preterm gut microbiome

Functions encoded by gut microbes are critical for infant development, because they provide 

vital nutrients, educate intestinal immunity, and mediate gut barrier function, important 

for the defense against bacterial infections of gut origin5,19,26,27. Despite its central role 

for infant health, our understanding of the functions encoded by the NICU-preterm gut 

microbiome remains rudimentary.

To better understand the kinetics of gut microbiome development, we established 

detailed trajectories of functional assembly of preterm gut microbiota. To do this, we 

mapped our shotgun metagenomic microbiome functional profiles (Data S7) to 1381 

metatranscriptomes from the same stools (Data S8–S9), to capture the transcription of the 

encoded metabolic potential. Generally, taxonomic potential and expression corresponded 

to the taxonomic composition of the preterm gut microbiome, with pathway richness 

and transcription increasing during postnatal development (Figure S6A–E). However, we 

found considerable variation in transcription by functional group. Expression of core 

functional groups, including glycolysis and nucleoside/nucleotide biosynthesis found in 

virtually all microbiomes, changed less over postnatal development than did expression 

of genes encoding amino acid biosynthesis, carbohydrate degradation, or fatty acid and 

lipid biosynthesis (Figure 4A). Critically, amino acid and fatty acid biosynthesis by the 

microbiome are considered important for host immune modulation and development3,59,60, 

highlighting that the transcriptional trajectories of these functional groups during postnatal 

maturation may directly affect infant health. Enterobacteriaceae dominated the expression 

of pathways changing during postnatal development, with genomes of Escherichia spp., 

Klebsiella spp., and Enterobacter spp. responsible for their transcription (Figure 4B, 
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C). Conversely, the transcriptional contribution of key commensals, including Veillonella 
and Clostridium species (Figure S6G), was less pronounced than the dominant effect of 

pathobionts on the transcriptional landscape during the first weeks of life.

Because we found evidence that the NICU exposome shapes the taxonomic composition 

of the preterm gut microbiota (Figure 3), we hypothesized that the environment also 

influences the transcription of genes encoding functional trajectories. Thus, we implemented 

GLMMs as described above and comprehensively characterized the impact of the 

NICU exposome on the expression of metabolic pathways. We identified a substantial 

impact of dietary, antibiotic, and non-antibiotic medications on the transcription of key 

metabolic units, including secondary metabolite, amino acid, vitamin, and fatty acid 

biosynthesis (Figure 4D). While antibiotics and most non-antibiotic medications were 

largely associated with reduced expression of metabolic potential, chlorothiazide and 

dexamethasone were associated with increased expression of multiple functional pathways. 

Importantly, transcriptional microbiome restructuring was not restricted to single pathways 

but frequently affected multiple functionalities (Figure 4D), highlighting the vast and 

overlooked impact of the NICU exposome on the preterm gut metatranscriptome.

We next asked if the observed transcriptional response was an indirect consequence of taxa 

abundance alterations or was driven by transcriptional regulation. To answer this question, 

we profiled concordance between taxonomic responses to NICU exposures on the DNA 

and RNA content using GLMMs. We found that while negative transcriptional responses to 

antibiotics were largely explained by taxa depletion rather than regulation, pathways were 

often downregulated in response to non-antibiotic medications and diet exposures (Figure 

4E). Specifically, transcriptional responses to milk formula and Vitamin D3 were mostly 

unexplained by taxa depletion, suggesting active transcriptional regulation by the intestinal 

microbiome in response to early-life exposures.

Multi-omics analysis supports a variant microbial population as a risk factor for a subset 
of NEC

Previous work suggested that aberrant developmental progression of the preterm gut 

microbiome plays a fundamental role in the development of NEC30,32,34. Here, we used 

multi-omic characterization of the intestinal microbiota in hospitalized, non-NEC preterm 

infants to systematically query gut microbiome developmental trajectories of infants that 

developed NEC at any point during their NICU stay for differences in bacterial composition 

or function. We generated 624 longitudinal shotgun metagenomic and transcriptional 

profiles of the pre-NEC gut microbiome in 48 infants (see Methods, Data S1, S10–13). 

Comparisons were performed using a 1:2 matched case-control study design (Figure 1A), 

where controls were matched to cases based on NICU location (St. Louis, Louisville, 

and Oklahoma City), gestational age (within one week), and birthweight (within 100g). 

Using repeat measures PERMANOVA, and the entire NEC cohort specimens, neither the 

taxonomic composition of the pre-onset NEC microbiome or metatranscriptome, nor its 

functional profiles, varied significantly by NEC status (Figure 5A). We also found no 

significant difference in the bacterial replication rate of any taxonomic group prior to NEC 

onset (Figure 5B, Data S14), as has been previously reported32. Similarly, we found no 
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difference in the community level virulence factor repertoire of cases and controls (Figure 

S7A–B, Data S15–17). Further, microbiota shifts were neither more frequent (Chi-square 

test P=0.876) nor occurred at different times relative to disease onset in the NEC case group 

(Figure 5C, Wilcoxon rank sum test P=0.664).

As signatures of microbiome alterations preceding NEC might be more subtle, i.e., with 

effects limited to individual taxa or pathways, we next implemented GLMMs. Adjusting for 

all confounders that were associated with preterm gut microbiota development independent 

of disease status (i.e., in the control-only analysis), we found no association of any species, 

metabolic pathway, or transcriptional signature with case or control status (MaAsLin2 

all q≥0.25). Further, investigating high-quality MAGs of the species K. pneumoniae, a 

genomically diverse species that has previously been implicated in NEC development32, we 

found no virulence repertoire differences between cases and controls (Figure S7C).

To account for the possibility that multi-level associations may explain individualized risk 

for NEC, we combined all multi-omic data (metagenomic profiles, metatranscriptomes, 

bacterial replication rate, community- and MAG-associated virulence profiles) using three 

distinct statistical modeling approaches (logistic regression, elastic net, random forest). 

Critically, we accounted for repeat-measures by blocking model cross-validation by 

individual and nesting three iterations of feature selection (25, 50, 100 features) within the 

cross-validation procedure, performing feature selection for each training-fold separately. 

Moreover, we trained models using either all pre-NEC data, a subset of data collected during 

the 7 or 3 days prior to onset, or on the day of clinical diagnosis. Model performance did not 

differ between algorithms or by number of features included in the final model (Figure 5D, 

Figure S8). We observed an increase in model performance peaking on the day of diagnosis, 

indicating that microbiome signatures are more distinguishable between cases and controls 

when the clinical diagnosis is made. Generally, models did not perform better than random 

chance, highlighting that the population-level and genome-resolved microbiome features 

collected in this study do not support a common microbiome imbalance that is uniformly 

detectable prior to the development of NEC.

While not reliably predicting NEC in all infants, we did observe a significant difference 

of microbiota diversity when examined by postnatal age of NEC occurrence (Figure 5E, 

GLMM P<0.05). Specifically, the microbiota diversity of cases and controls separated 

beyond postnatal day 40, when NEC case gut microbiota failed to increase in diversity 

in contrast to the gut microbiota in the matched case group. Twelve infants (25% of all 

cases) developed NEC beyond postnatal day 40, hereafter referred to as ‘late onset’ NEC. 

When compared to infants with onset ≤postnatal day 40 (‘early onset’), late onset cases were 

born at significantly younger gestational ages (24.0 (IQR 23.0–25) vs. 27.0 (IQR 25.0–28.8) 

weeks, Mann-Whitney p=0.0002) and lower birthweights (695g (IQR 561–798) vs 907g 

(IQR 773–1175) g, Mann-Whitney p=0.0006). This is consistent with reports that infants of 

shorter gestational age at birth develop NEC later compared to infants born following longer 

gestation33, and also inferred in the predecessor study34.

While no microbiome feature was significantly associated with NEC status when analyzing 

early onset cases and matched controls separately (MaAsLin2 all q≥0.25), several taxa, 
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pathways, and transcriptional signatures separated the microbiomes of late onset cases 

from matched controls. For late onset NEC, Negativicutes, and in particular Veillonella 
parvula, and Clostridia, were significantly associated with control status, while Klebsiella 
abundance was significantly increased before the event (Figure 5F, G). When applying 

Dirichlet multinomial modeling to the taxonomic gut microbiota composition of cases and 

controls we similarly found that early onset cases and controls were indistinguishable, 

while the developmental enterotype trajectories of late cases and controls diverged (Figure 

S9). Specifically, we found that enterotypes 2–5 were over-represented among late-onset 

NEC cases relative to controls. Conversely, the stools of none of the late onset cases 

had gut microbiome compositions consistent with enterotypes 6–8 (Figure S9). Further, late-

onset NEC was preceded by significant alterations in the functional maturation of the gut 

microbiome compared to control infants (Figure 5H). While these signatures were apparent 

at the level of the metagenome, they were even more pronounced, and often only detectable, 

in analysis of bacterial transcripts. Thus, several metabolic groups, including cofactor/

prosthetic group/electron carrier/vitamin biosynthesis, TCA cycle, secondary metabolite 

degradation, and amino acid degradation exhibited altered transcription (vs. controls) 

without underlying metagenomic differences between cases and controls for several 

pathways (Figure 5H). Collectively, these data show that while the microbiome may not hold 

the key for individualized risk prediction for all infants born preterm, it may forecast disease 

onset after postnatal day 40, and that transcriptional analysis offers greater discriminatory 

information than metagenomic profiling alone.

Discussion

Intestinal host-microbe interactions educate a newborn’s immune system and affect health 

trajectories into adulthood50,61. Preterm infants often require months-long hospitalization 

in the NICU, an environment depleted of reservoirs of normal microbiota and enriched 

in microbiota-altering medical therapies and dietary regimens14,19. It has been proposed 

that preterm birth and the NICU exposome interact to individualize neonatal microbiota 

trajectories that affect early-life health outcomes11–13,15,19. Here, we characterized 

functional and taxonomic trajectories of the neonatal microbiome of 188 hospitalized 

preterm infants without NEC in the context of their baseline characteristics and NICU 

exposures, and found that the hospital environment is a major factor in seeding preterm 

infant bacterial gut microbiomes. Most noticeably, isogenic S. epidermidis are present in 

sites of care in three different states within the USA. This suggests that NICU-adapted 

lineages of this species could be universal. Given that S. epidermidis can be pathogenic 

in the NICU, including as a cause of late onset sepsis62,63, further work is warranted to 

validate and extend this unexpected finding. Sharing of other species previously reported to 

be common between infant guts and NICU surfaces13–15,17, specifically Enterobacteriaceae, 

Enterococcaceae, and Pseudomonas, was less frequently observed across infants and 

between centers in this study.

Consistent with previous reports11,12,15, we also find that antibiotic exposure is associated 

with profound and consequential microbiome shifts throughout the first 88 days of life. 

These events are not benign: they allow pathobionts to colonize hospitalized preterm 

infants and enable bacteria with genes encoding antibiotic resistance to enter the gut 
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habitat. Alternatively, it is possible that gut entry of the organism leads to a clinical 

change prompting antibiotic administration. Teasing apart the temporal nature of these 

events will be important to minimize negative consequences of antibiotic prescribing64,65 

while ensuring rapid treatment of potential sepsis66. Hence, our data reinforce concern 

that antibiotics alter bacterial community shifts that spread clinically-relevant resistance 

elements into and within newborn gut microbiomes, and that these organisms persist as 

colonizers4,11,12,36,67. Drug-resistant microbes and resistance genes enriched in preterm 

infant gut microbiomes during early-life hospitalization can be detected in stool long after 

infants have been discharged and can be sources of bloodstream infection in the NICU12,67, 

highlighting the durability and clinical relevance of early-life microbiome disruptions.

We also demonstrate significant microbiota alterations associated with non-antibiotic 

medications in preterm infants. While some effects might be explained by co-administration 

with antibiotics, we found that most medications that affected the microbiome were 

prescribed in isolation (Figure S5). Importantly, we cannot exclude that observed effects 

on microbial communities are caused by the pathology that obligates the medications 

rather than the medications per se. Our results are further supported by in vitro work 

that showed broad effects of non-antibiotic medications on gut microbiota using drug-by-

microbe growth assays24. Intriguingly, microbial resistance mechanisms can be shared 

between some human-targeted drugs and antibiotics24. Therefore, our findings suggest that 

non-antibiotic medications may contribute to the high prevalence of drug resistance in the 

NICU microbiota. Further, we find that postnatal exposures explained more microbiome 

variation and were significantly associated with greater taxonomic changes than prenatal and 

baseline variables. These observations highlight the importance of high-frequency temporal 

sampling and integration of clinical variables and environmental exposures when profiling 

microbiome-associated health risks in preterm infants.

Our research adds to the literature on the role of the preterm infant gut microbiome in 

the multifactorial pathophysiology of NEC30,33. A current hypothesis of NEC development 

proposes that aberrant microbial colonization interacts with immature intestinal immunity 

to generate an uncontrolled inflammatory response, causing loss of barrier integrity and 

tissue necrosis33. At the aggregate cohort level, our results do not support this variant 

microbiome hypothesis, as pre-NEC multi-omic trajectories do not vary between cases and 

matched controls. Also, we did not identify correlates of disease onset and multi-omic 

integration via statistical modeling as predictors of NEC risk better than random chance 

before the day of onset. Nonetheless, we identified a subset of infants born after significantly 

shorter gestations and who developed NEC after postnatal day 40, whose microbiome 

trajectories differed compared to their matched controls. Despite some differences in the 

cases and controls studied, this finding resembles trends reported from these cohorts using 

16S rRNA gene sequencing34. These infants’ microbiomes are characterized by reduced 

microbial diversity, increased abundance of Klebsiella, and decreased abundance of specific 

commensals, predominantly Veillonella. Signatures of functional microbiome disruption 

were most apparent in the metatranscriptome, which showed extensive functional alterations 

compared to matched control infants. Importantly, however, the microbiome profiles of 

early- and late-onset NEC cases do not differ, suggesting that NEC in infants who are born 

most preterm could be caused by failure of microbiome maturation, with the consequence 
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that pathobionts persist in a more susceptible intestinal tract, i.e., a two-hit predilection. 

While this refined hypothesis de-emphasizes a microbiome-exclusive role in NEC causality, 

it extends prior work in this field that suggests fundamental biologic differences in NEC 

by postnatal age of onset33. Even though histologically and clinically early- and late-onset 

NEC are quite similar (though the latter has greater mortality37), the actual occurrence of 

late onset NEC (i.e., in this study after day of life 40) could relate to yet-to-be identified 

host responses to specific gut bacteria. It remains to be established if pre-NEC microbiome 

differences reflect a precipitating effect (e.g., from Enterobacteriaceae39), a lack of a 

protective effect (e.g., from Veillonella), or if the at-risk mucosa is more hospitable for 

an aberrant microbiome. Nevertheless, our data suggest that strategies to promote maturation 

of gut bacterial communities such as limiting unnecessary antimicrobials20,68 and possibly 

non-antibacterial agents might protect children born most prematurely from NEC69.

Our study has several important limitations. First, at the time of fecal sample collection, 

RNA transcriptomics was not planned, so preservatives were not included in storage. All 

samples were handled and stored for similar intervals, but we cannot exclude transcript 

degradation or other changes before RNA extraction. Our metagenomic associations and 

strain tracking are conducted on an average of 5 million reads per sample. We have 

previously shown this to be adequate for tracking strains between the bloodstream and 

gut for organisms with detectable metagenomic depth at this sequencing threshold15. 

Although the gut microbiome of the preterm infants studied here has low diversity, it 

is possible we cannot adequately track low abundance strains with inStrain or iRep42. 

Given these limitations, we suggest that future studies utilize appropriate preservatives 

and incorporate higher sequencing depth and measurements of absolute abundance to 

validate and extend the findings presented here. Further, our associations, like many in 

the microbiome field, are determined using relative abundance, which can obscure changes 

in absolute microbial abundance4. We would also note that breastmilk from each mother 

differs in composition and antibody content with similarly varied potential effects on the 

infant gut microbiome55,70. Additionally, the daily fraction of nutrition derived from formula 

versus breastmilk impacts microbiome maturation as has been previously demonstrated71,72. 

These personalized differences would not be addressed by our study design but are likely 

plausible additional drivers of individual microbiome trajectories. Our study design also 

prevented control over indication for use, timing, or route of antibiotic and non-antibiotic 

medication exposures. Thus, we cannot differentiate cause and effect with the administration 

of these medications versus the disease process necessitating them. Variations in timing of 

stool intervals could result in unequal timing of exposures, including human milk. Finally, 

human microbiome studies alone cannot separate cause and effect, which will require 

complementary systems-based mechanistic investigations, including animal models.

In summary, our integration of a vast clinical metadata database with multi-omic 

microbiome trajectories provides a framework for studying how gut bacterial communities 

ordain specific outcomes in a range of medical disorders, especially those in which there is a 

time series component to the variables studied. Specifically, our findings endorse identifying 

and systematically correcting for variables that affect the gut microbiome development in 

attempts to thoroughly assess microbial community-driven outcome risks.
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STAR Methods

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources should be directed 

to and reasonable requests will be fulfilled by the Lead Contact, Gautam Dantas 

(dantas@wustl.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability—Raw sequencing data (metagenomes, metatranscriptomes, 

and metagenomic-assembled genomes) generated for this study was uploaded to the 

SRA database under BioProject PRJNA799247. Accession numbers are listed in the 

key resources table. Relevant raw data and metadata can be found as extended data 

spreadsheets. We use well-established computational and statistical analysis software and 

packages. Custom code for analysis and figure generation is available at https://github.com/

dantaslab/NICUExposome(10.5281/zenodo.12737979) and is publicly available as of the 

date of publication. DOIs are listed in the key resources table. There are restrictions to the 

availability of infant stool raw materials due to extreme resource limitations.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Participants for this prospective, multi-center cohort study34,40 were recruited from among 

all infants born prematurely (≤37 weeks of gestation) at or below 1500 g of weight and 

expected to survive more than a week at St Louis Children’s Hospital (St Louis, MO, 

USA), Children’s Hospital at Oklahoma University Medical Center (Oklahoma City, OK, 

USA), and Kosair Children’s Hospital (now Norton Children’s Hospital) (Louisville, KY, 

USA). All infants hospitalized in the NICU were considered eligible for enrolment. Infants 

born with congenital noncardiac disorders were excluded. To study the impact of the gut 

microbiome on NEC development, we selected infants for a 1:2 case-control study from the 

total eligible study population. Cases were defined as infants whose clinical symptoms were 

consistent with NEC and whose radiographs fulfilled all criteria for Bell’s stage ≥2 NEC. 

Two non-NEC control infants (n=96) were matched to each NEC case (n=48), based on 

hospital site, gestational age at birth (±7 days) and birthweight (±100g). Demographics 

are provided in Data S1–S2. Metadata and samples were approved under Washington 

University HRPO #201105492, University of Louisville Institutional Review Board (IRB) 

HSPO #11.0136, and University of Oklahoma Health Sciences Center IRB 2472. The IRB 

at each site approved the original study, and perants were provided informed consent. 

Secondary analyses in the current manuscript were approved by Washington University 

School of Medicine HRPO #201205152.

All stools produced by infants were collected, refrigerated at 4°C, and then frozen 

(−80°C) daily without additives until chipped for these analyses. Samples were collected 

prospectively from 2009 to 2013 without prior knowledge of later NEC diagnosis. All stool 

samples collected prior to the day of life of clinical NEC diagnosis (day of onset, DOO) 

were included in the analysis for this study if quantities were sufficient for analysis. We 

analyzed stools from 48 infants who developed NEC, including 42 of the 46 cases of NEC 
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in our prior publication34, 4 infants who also had congenital heart disease, 1 infant who 

developed NEC late in life (day of life 121, but from whom we had stool up to day of 

life 81), and 1 infant for whom we lowered the threshold for residual stool to include 

in this analysis. We used control specimens from 26 of the 94 participants without NEC 

from Warner et al.34, and 70 additional infants without NEC. For non-NEC controls all 

stool samples collected prior to DOO of their matched case were included. To robustly 

define the impact of the NICU exposome on gut microbiome trajectories in the NICU 

previously published shotgun-metagenomic data from stool specimens of an additional set of 

92 non-NEC infants from the same cohort were included in the non-case-control analysis of 

this study11,12.

METHODS DETAILS

Metagenomic/metatranscriptomic sequencing—Metagenomic DNA was extracted 

from ~25mg of stool, chipped on dry ice into sterile tubes without thawing. Metagenomic 

DNA was extracted from stool using the DNeasy PowerSoil Pro Kit (Qiagen) following 

the manufacturer’s protocol, except that samples were mechanically lysed for two rounds 

of two minutes each using a Mini-Beadbeater-24 (Biospec Products) at 2,500 oscillations 

per minute. Metagenomic DNA was quantified using the PicoGreen quantitation assay 

(Thermo Fisher Scientific) and stored at −20°C. Genomic DNA (0.5 ng) was used as input 

in preparation of sequencing libraries with the Nextera XT kit (Illumina) as previously 

described73. Libraries were pooled and sequenced to a depth of ~2.5 million paired-end 

reads (2×150 bp) on a NextSeq500 High Output platform (Illumina).

Total RNA extraction for metatranscriptomic analysis was performed from ~100mg of stool, 

chipped on dry ice into sterile tubes without thawing using the NucliSENS easyMAG system 

(bioMerieux). All stool samples with ≥200 mg of remaining stool material from the NEC 

case-control part of this study were included in this analysis. Frozen stool was homogenized 

in 1 ml of easyMAG lysis buffer in a bead beating tube containing 8–10 disruption beads 

zirconium/silica 23mm (Research Products International Corp.). Samples were disrupted 

using the MP FastPrep-24 tissue homogenizer (MP Biomedicals) at 6.5 m/s for 60 sec. 

The lysate was centrifuged at 12,000xg for 10 minutes and the clarified supernatant was 

loaded into wells of the easyMAG cartridges, avoiding visual particulates. Total lysate 

volume of each sample was then adjusted to 2.2 ml with EasyMAG lysis buffer followed 

by addition of 50 μL of NucliSENS easyMAG magnetic silica beads. Samples were then 

loaded onto NucliSENS easyMAG system for automated nucleic acid extraction following 

the manufacturer’s instructions with onboard lysis “Specific A” protocol and 110 μL elution 

volume. Contaminating DNA was removed using the Turbo DNase (Thermo Fisher) kit 

and ribosomal RNA was depleted using the QIAseq FastSelect – 5S/16S/23S kit (Qiagen). 

Sequencing libraries with unique dual indexes were prepared using the NEBNext Ultra II 

Directional RNA Library Prep kit for Illumina (New England BioLabs). Libraries were 

sequenced to a depth of ~13 million 2×150 bp paired-end reads on the NovaSeq S4 platform 

(Illumina).

Sequencing data pre-processing—Sequencing adapters were removed from 

demultiplexed reads with Trimmomatic 0.366 (leading = 10, trailing = 10, sliding window 
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= 4:15; minimum length = 60)74. Human reads were removed using Deconseq 4.37 with 

default parameters75.

QUANTIFICATION AND STATISTICAL ANALYSIS

Metagenomic/metatranscriptomic profiling of the gut microbiome—Quality-

filtered short reads were profiled using MetaPhlAn3 v3.0 and HUMAnN3 v3.0 with default 

parameters to quantify relative abundances of bacterial species and encoded pathways, 

respectively76. Antibiotic resistance genes (ARGs) were quantified using ShortBRED and a 

marker database containing all resistance gene sequences available in the CARD database 

as well as additional genes confirmed to mediate resistance using functional metagenomic 

analysis in a previous study of this same cohort11,12,77. All marker sequences with >1 hit 

and >0 RPKM per sample were retained. Similarly, virulence factor abundance in both 

metagenomic and metatranscriptomic datasets were profiled using ShortBRED77 and a 

database of marker sequences built on all sequences downloaded from the Virulence Factor 

Database (VFDB) and Victors (September 2021)78,79. Virulence factors identified to be 

present in the preterm microbiome (>1 hit and >0 RPKM) were manually curated into 19 

virulence categories based on literature research (e.g., Adhesion/Invasion, Capsule, Motility 

– see Data S15–17), allowing factors to match into multiple categories. Metatranscriptomic 

datasets were profiled using the MetaCYC pathway database with HUMAnN3 v3.0 with 

default parameters.

Metagenome-assembled genomes (MAGs) were generated for each infant using a co-

assembly approach to generate data of sufficient sequencing depth for assembly. Genomes 

were assembled using MetaSPAdes80 using default parameters. All reads from all 

patient-specific samples were concatenated and aligned to indexed metagenome-assembled 

scaffolds using Bowtie2 (parameter: --no-mixed --very-sensitive --n-ceil 0,0.01)81, sorted 

using samtools (default parameter)82, and binned using MetaBat2 (parameter: --minContig 

2000)83 to generate MAGs. MAG assembly quality was assessed using checkM and 

Quast84,85. MAGs were categorized as high-quality (completeness ≥90%, contamination 

≤5%), medium-quality (completeness 50–90%, contamination 5–10%), or low-quality 

(completeness ≤50%, contamination ≥10%). Both high and medium quality MAGs were 

used in downstream analysis as supported by prior work86. These were used to generate a 

study-database of species-level representative genomes de-replicated across all individuals 

included in the case-control part of the study using dRep (gANI routine, 95% ANI)87. To 

taxonomically annotate all MAGs, each MAG was screened against the RefSeq genome 

database (downloaded July 2019) using mash-screen (default parameter)88. Subsequently, 

each MAG’s pairwise average nucleotide identity was profiled against the top three mash-

screen hits using pyani (method: ANIm)89. Species-level taxonomical annotation was 

assigned to MAGs with pairwise ANI ≥94% at ≥50% reference coverage on a best-hit basis.

Bacterial replication rates were estimated based on metagenomic sequencing data using iRep 

as previously described32. Briefly, quality-filtered DNA short reads from each sample were 

mapped to all available dereplicated genomes from the corresponding patient with Bowtie2 

(--very-sensitive mode). The resulting SAM files and dereplicated genomes were used as 

inputs for iRep with default parameters. Only iRep values passing all genome and mapping 
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quality thresholds (min cov. = 5, min wins. = 0.98, min r^2 = 0.9, max fragments/Mbp = 

175, GC correction min r^2 = 0.0) were retained for further analysis.

In silico strain-sharing prediction and validation—Metagenomic short-reads from 

stool samples of 96 non-NEC controls sequenced for this study were aligned to these 

de-replicated MAGs using inStrain42. Population ANI (popANI) values of ≥99.999% with 

breadth ≥0.5 at ≥25% of the reference genome being used in the comparison of two 

samples were considered evidence for strain-sharing. This amounts to a maximum of 

50 single nucleotide polymorphisms (SNPs) for a genome with the size of 5,000,000bp. 

To guard against false positives resulting from contamination occurring during sample 

extraction or library preparation, we included infant pairs only if ≥2 unique samples from 

the same pair of infants indicated a strain to be shared. Strain-sharing events between unique 

infant-pairs were visualized as network graphs using Cytoscape90. Significance of strain-

sharing by species was determined using a chi-square test followed by a pairwise nominal 

independence test with Benjamini-Hochberg correction using the r package rcompanion 

v2.4.35.

To confirm in silico predictions derived from stool metagenomes, S. epidermidis and C. 
difficile were selectively grown from samples of randomly selected infant pairs predicted 

to share the same strain. These outgrowth experiments were performed by personnel not 

involved in sample processing for stool-metagenomic sequencing. Approximately 10mg of 

fecal material was resuscitated in 0.15 ml of thioglycolate broth (Sigma). S. epidermidis 
was selectively cultured by inoculating and incubating TSB-CNA broth [TSB (BD) with 

colistin (20μg/ml), nalidixic acid (20μg/ml) and aztreonam (8μg/ml)] overnight at 37°C 

followed by inoculation of TSB-CNA broth with 6.5% NaCl and overnight incubation at 

37°C. C. difficile was grown from stool anaerobically in reduced thioglycolate broth (Sigma) 

(37°C, overnight), followed by inoculation of CCMB-Tal medium (Anaerobe Systems) and 

incubation at 37°C overnight anaerobically. For S. epidermidis, cultures were streaked on 

blood agar plates (BD) and catalase tests (3% H2O2 in water) were performed following 

overnight incubation at 37°C. For C. difficile, cultures were streaked on selective ChromID 

C. difficile agar (BioMerieux Inc.) and incubated anaerobically overnight at 37°C for the 

appearance of black colonies typical for C. difficile. Metagenomic DNA was extracted from 

cultures of a single colony using the Qiagen PowerSoil Pro kit (Qiagen), libraries were 

prepared using a modified version of the Nextera kit (Illumina)73, and sequencing was 

performed on the Illumina NextSeq platform.

Metagenomic reads were assembled using MetaSPAdes80, binned using MetaBat283, 

annotated using mash and pyani88,89, and de-replicated using dRep87 as described above. 

Strain-sharing across sample pairs was investigated and confirmed using inStrain42, using 

the same ≥99.999% popANI and ≥25% genome-compared threshold described above.

General microbiome analysis—Statistical analyses and visualizations were conducted 

in R v.4.0.4, v.4.2.1, and v4.4.0 using the ggplot2, labdsv, scales, vegan, ape, ggridges, 

reshape2, lme4, nlme, multcomp, MuMIn, MaAsLin2, DirichletMultinomial, optparse, 

ggpubr, rsample, purrr, tidyr, tidyverse, rowr, metR, purrr, rsample, dplyr, permute, 

Thänert et al. Page 19

Cell Host Microbe. Author manuscript; available in PMC 2024 October 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



BiodiversityR, SIAMCAT, curatedMetagenomicData, RColorBrewer, compositions, scico, 

viridis, grid, glmmADMB, and rcompanion packages in Rstudio v2022-v2024.

Principal component analysis (PCA) was conducted on centered log ratio transformed 

relative abundance data (taxa or pathway abundances). Smoothed Shannon diversity 

readouts were plotted as background into the PCA space using the ordisurf function of the 

vegan package. For further visualizations, α-diversity was calculated with the vegan package 

(index = Shannon) on untransformed taxa or pathway data. Between-sample β-diversity 

was calculated using the vegdist function (method = Bray-Curtis). Procrustes analysis of 

taxonomic, functional, and transcriptional relative abundance data was performed using the 

procrustes function in the R vegan package.

Microbiome shift analysis—Microbiome shifts were defined as two consecutive samples 

collected from the same individual displaying Bray-Curtis dissimilarities equal or greater 

than those observed between the average of samples collected from different individuals. 

Bray-Curtis dissimilarity distributions were determined for consecutively collected inter- 

and all intra-patient sample pairings (non-NEC controls only) based on untransformed 

MetaPhlAn3 relative abundance data. The point at which the density distribution of 

interpatient dissimilarity intersects with that of intra-patient dissimilarity (Fig S3B) was set 

as the threshold defining a shift event. As Bray-Curtis dissimilarity between two samples 

increases over time (Fig S3A), shift thresholds were calculated independently for the 

observed range of DOL deltas between consecutively collected samples (Fig S3B).

To identify species that were significantly depleted or introduced at shift events, pre- and 

post-shift taxa presence was determined for all sample pairs flanking shift events (relative 

taxa abundance > 0%). Taxa were defined to be introduced if they were absent pre-shift 

but present post-shift. Conversely, depletion events were defined as taxa presence pre-shift 

and absence post-shift. To determine significant associations of introduction/depletion and 

shift events taxa-specific permutation tests were implemented. Therefore, the taxa-specific 

number of introduction/depletion events at shifts (n=131) was compared to the distribution 

of introduction/depletions observed across 1000 random permutations of an equal number 

of non-shift sample pairs (n=131). As shifts occurred earlier in life compared to the median 

sample DOL of non-shift sample pairs (Fig S3C), random permutations were restricted 

to generate a non-shift sample pair distribution following a similar DOL distribution as 

observed in the shift sample pairs using a simple bin-based density estimator in R. P-values 

were corrected for multiple comparisons using the Benjamini-Hochberg method (false 

discovery rate) in R.

Similar to introductions/depletions, permutation tests were implemented to identify clinical 

exposures associated with microbiome shifts. Antibiotics were aggregated at the class level. 

Binary recent exposure values (yes/no in the fourteen days prior to a shift) were counted 

for all shift events and compared to the distribution observed in 1000 permutations of 

non-shift sample pairs generated as described above. P-values were corrected for multiple 

comparisons using the Benjamini-Hochberg method (false discovery rate) in R. Significant 

introduction of ARGs at shifts was determined via permutation test as described above. 

Introduced ARGs were defined as all ARGs found directly following the shift and never 
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seen in an individual’s gut microbiome before. ARGs were summarized by resistance 

mechanism for visualization purposes.

Enterotyping—Dirichlet multinomial mixture (DMM) models were implemented to 

generate clusters of samples of similar microbial composition (‘enterotypes’) based 

on relative abundances of microbial taxa transformed by 5000-fold multiplication to 

eliminate values below 1 for all samples in the case-control study using the R package 

DirichletMultinomial (k=40, iterations=1000)91. The optimal model was selected based on 

minimization of the model Laplace approximation. Samples were assigned cluster identity 

based on their highest cluster-identity probability value.

Defining the impact of the NICU exposome and baseline characteristics 
on gut microbiome trajectories during hospitalization—We comprehensively 

characterized the impact of patient baseline variables (Data S5: gestational age, birthweight, 

sex, delivery mode,), dietary exposures, antibiotics (aggregated on the class level), non-

antibiotic medications (by route), and maternal variables (Data S5: maternal age, race, body 

mass index, diabetes, pre-eclampsia, chorioamnionitis, steroids, outpatient and inpatient 

antimicrobials, and multiple gestations) on developmental microbiota trajectories of preterm 

infants during hospitalization. All non-NEC controls as well as metagenomic data from 

92 participants previously published11,12 were included in this analysis. Each sample was 

assigned patient-specific constant variables (e.g., sex, race, birthweight, gestational age at 

birth). We subdivided variables into three categories: maternal/baseline/dietary, antibiotic, 

and non-antibiotic medications. Variables changing over time were treated as follows; 

dietary exposures (formula, human milk) were assigned to each sample as the fraction 

of days of life prior to sample collection exposed. Antibiotics were assigned as binary 

recent exposure values if received in the 14 days and non-antibiotic medications in the 

7 days prior to sample collection (Data S1, S5), previously shown to capture the acute 

effects of antibiotic exposures in the preterm gut microbiome12 and non-antibiotic exposures 

in adults92. Administration route was not available on a per-infant basis; however, many 

medications had predetermined routes for their use in preterm infants or as outlined in the 

study protocol (Data S18). Maternal exposures and comorbidities were coded as binary 

values and assigned to each sample on a per-patient basis.

Repeat measures permutational analysis of variance (PERMANOVA) was conducted as 

previously described15,21,67 to characterize the impact of the clinical exposome and baseline 

characteristics on the developing preterm gut microbiome. Patient identity and study source 

(this study, Gibson et al.11, Gasparrini et al.12) were included as a mandatory blocking 

factor in all repeat measure PERMANOVA analyses. Variance explained was calculated 

independently for each variable to avoid issues of variable ordering. Variables were 

considered to explain a significant portion of the observed variance of taxa or pathways 

if P≤0.1. P-values were corrected for multiple comparisons using the Benjamini-Hochberg 

method (false discovery rate) in R.

To further identify associations of the NICU exposome on specific taxa and pathway 

abundances and expression, generalized linear mixed models (GLMMs) were implemented 

using MaAsLin2 with minimum taxonomic prevalence of 10% and q-values ≤0.25 
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considered significant as per the default51 (Data S19). For taxonomic changes related to 

NICU exposures (Figure 3), all variables (Data S5) were included as fixed effects with 

random effects of hospital site, participant, and study source and only features q<0.05 

and exposures present in >1% of samples are plotted. Subsequent analyses utilized only 

variables identified to explain a significant portion of the variance (P≤0.1) of a dataset (DNA 

pathways, RNA taxa, RNA functions) by repeat measures PERMANOVA. Day of life and 

gestational age at birth were included as mandatory fixed effects. Additionally, GLMMs 

were implemented using the R package nlme to determine significant differences in bacterial 

replication rates in NEC cases and controls. Significance was determined by comparing a 

model including NEC status against a null model using ANOVA.

Transcriptional overrepresentation analysis—To identify transcriptionally over-/

under-represented taxa compared to their relative abundance in the shotgun metagenomic 

data, species-specific zero-inflated gaussian models were implemented on arcsine 

transformed relative taxa abundance data using the glmmADMB package in R. Therefore, 

relative abundance data for each species generated from both metagenomic and 

metatranscriptomic reads via MetaPhlAn3 was analyzed. Day of life was included as a 

fixed effect in all models. Patient ID was included as a random effect. Models took 

the form: abundance ~ data_type+log(day of life)+(0+log(day of life)|Patient_ID/data_type), 

with data_type = DNA or RNA. Significant differences between RNA and DNA relative 

abundance data were determined for each species individually. P-values were corrected for 

multiple comparisons using the Benjamini-Hochberg method (false discovery rate) in R.

Machine learning—Three classes of machine learning algorithms (logistic regression, 

random forest, elastic net) were trained using all microbiome features characterized in this 

study (metagenomic profiles, metatranscriptomes, bacterial replication rate, community- 

and MAG-associated virulence profiles) using the R package SiamCat v2.0.0. Features 

were filtered using a prevalence cut-off of 0.01 and normalized with the method ‘log.std’ 

(parameter: log.n0=1e−05, sd.min.q=0). To account for repeat sampling cross-validation 

procedure was blocked by patient. Feature selection was performed with threshold of 

100, 50, or 25 features nested within-cross validation and the following parameters: 

methods.fs=AUC, direction=absolute. Cross-validation was performed with the following 

parameters: num.folds=10, num.resamples=10.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Antibiotics and non-antibiotic drugs govern infant gut microbiome 

development

• Antibiotic-associated microbial shifts introduce pathogens and resistance

• Hospitalized preterm infants share isogenic C. difficile and S. epidermidis

• Microbial development stagnates before late-onset necrotizing enterocolitis
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Figure 1 |. Earliest preterm gut microbiota colonization in the NICU.
A) Schematic overview of the study design. Created with BioRender.com. B) Principal 

component analysis of the gut microbiota composition in 1479 samples collected from 96 of 

preterm infants over the first 80 days of life. Points are colored by postnatal age at sample 

collection and centroids of each postnatal age bin is plotted. Smoothed Shannon diversity 

is extrapolated based on the observed data distribution and plotted into the background. C) 
Prevalence over postnatal days for nine selected taxa. D) Number of pairwise strain sharing 

events (ANI>99.999 and breadth >0.5) across unrelated preterm infant pairs for the taxa 

with most such events. The number of infants metagenomically positive for the selected 

taxa is plotted as squares. ***, p<0.001 for S. epidermidis versus all other listed species. *, 

p<0.05 for C. difficile versus all species listed below it. Pairwise Chi-Square with post-hoc 

pairwise test with Benjamini-Hochberg adjustment. E) Network representation of strain 

sharing events for the two taxa with most such events across unrelated infant pairs. Each dot 
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represents a unique preterm infant and is colored by its geographic location. F) Impact of 

antibiotic exposure on the prevalence of S. epidermidis (top) and C. difficile (bottom) across 

the entire control cohort over the first 80 days of life. Line patterns correspond to antibiotic 

category.
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Figure 2 |. Antibiotic-induced microbiome shifts lead to abundance changes and introduction of 
pathobionts into the preterm infant gut.
A) The left panel demonstrates density (frequency of events, Y axis) for abundance 

changes (X axis) of selected species associated with shift events (pink) compared to 1000 

permutations of baseline non-shift events (gray). Microbiome shifts are defined as Bray-

Curtis dissimilarities between consecutive samples collected from the same patient that are 

≥ Bray-Curtis dissimilarities between samples from unrelated individuals collected with the 

same time interval (Figure S3 A and B). Right panel depicts number of shift-associated 

discrete introduction events when metagenomically absent prior (right pink vertical line) 

compared to permutation of expected introductions in non-shift baseline samples (gray, 

n = 262, permutation test, FDR-adjusted, *P=0.05, **P<0.01). Full taxa and statistics 

appear in data file S19. B) Persistence (relative abundance greater than 0%) of selected 

taxa introduced at shift events over ten post-shift days. C) Number of antibiotic resistance 

genes (ARGs) introduced at shift events and undiscovered in pre-shift samples compared to 

permuted non-shift samples (n=262, Wilcoxon test P=3.49e−07). D) Classification of ARGs 

introduced at shift events. N=1479 samples from 96 infants.
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Figure 3 |. Impact of the NICU exposome on the developing preterm gut microbiome.
A) PCoA of Bray-Curtis dissimilarity of 1888 samples from 188 infants during the first 

90 days of NICU hospitalization. Boxplots display PCO1 and PCO2 colored by postnatal 

age with variance explained in parentheses. B) Significant (p<0.1) and not significant 

(p>0.1) associations by metadata variable class are displayed as determined by repeat 

measures PERMANOVA. C-E) Coefficient of change of each genus corresponding to 

species significantly (q<0.05) changed based on the listed variable using MaAsLin2 with 

random effects of participant, hospital site, and study (this study, Gibson et al11, or 

Gasparrini et al12). Exposures affecting less than 1% of samples and fixed effects q>0.05 are 

not displayed, but full associations (q<0.25 per MaAsLin2 default) are listed in Data S19.
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Figure 4 |. Transcriptional trajectories of the gut microbiome are shaped by Enterobacteriaceae 
and NICU exposures.
A) Characterization of transcriptional activity changes during NICU hospitalization. 

Pathways are colored by highest level functional categories and significant change over 

postnatal days is determined with MaAsLin2 (q<0.25). B) Species enrichment in pathways 

with stable or fold change in expression over postnatal days. C) Species association with 

functional categories with significant expression changes over postnatal days of life. D) 
Significant association of NICU exposures with changes in pathway expression. Exposures 

are indicated by color. Bubble size corresponds to the number of pathways within each 

functional category with significant expression changes associated with a given exposure. 

DataS19 has unaggregated and aggregated associations. E) Heatmap of pathway expression 

changes significantly associated with selected exposures indicating presence of concurrent 

changes in DNA abundance (MaAsLin2 q<0.25). Color scale represents percent change. N= 

1381 samples from 95 infants.
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Figure 5 |. Gut microbiome features do not predict NEC onset for all preterm infants but 
differentiate late-onset cases and controls.
A) Principal coordinate analysis of pre-NEC gut microbiome taxonomic and functional 

composition in NEC cases (yellow) and matched controls (black). B) Bacterial replication 

rates in samples collected in the weak prior to NEC onset in cases (yellow) and matched 

controls (black, GLMM P>0.25). C) Distribution of microbiota shift events prior to disease 

onset in stool samples collected from NEC cases (yellow) and matched controls (black). 

D) Receiver operating characteristic curves of logistic regression models accounting for 

repeat measures utilizing all microbiome data collected from all samples, or samples taken 

in the week before, 3 days before, or at NEC onset. E) Shannon diversity of NEC cases 

(yellow) and matched controls (black) over postnatal days (top). Age of cases at disease 

onset in postnatal days (bottom). F) Taxa significantly associated with case or control status 

in late onset NEC when accounting for confounding exposures (MaAsLin2, q<0.25). G) 
Abundance of V. parvula (top) and Klebsiella (bottom) over 60 days before onset in early 
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(solid) and late (dashed) NEC cases (yellow) and matched controls (solid). H) Functional 

pathway expression and abundance associated with late onset NEC. Boxes highlight the 

difference between the number of DNA-encoded or RNA-encoded pathways in cases vs 

controls. N=2103 samples from 144 infants.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Bacterial and virus strains

Staphylococcus epidermidis from infant stool This paper N/A

Clostridioides difficile from infant stool This paper N/A

Biological samples

Fecal samples from preterm infants This paper, Warner et al.34, La 
Rosa et al.40

Neonatal Microbiome and Necrotizing Enterocolitis 
cohort

Chemicals, peptides, and recombinant proteins

Critical commercial assays

DNeasy PowerSoil Pro Kit Qiagen Cat #47014

Nextera XT kit Illumina Cat #20034197

NucliSENS easyMAG system bioMerieux Cat #89130–520

Turbo DNase Thermo Fisher Cat #AM2238

QIAseq FastSelect – 5S/16S/23S kit Qiagen Cat #335925

NEBNext Ultra II Directional RNA Library 
Prep kit for Illumina

NEB Cat #E7760

Deposited data

metagenomes, metatranscriptomes, and 
metagenomic-assembled genomes

This paper BioProject PRJNA799247

Fecal metagenomic DNA Gibson et al.11 BioProject PRJNA301903

Fecal metagenomic DNA Gasparrini et al.12 BioProject PRJNA489090

Experimental models: Cell lines

Experimental models: Organisms/strains

Oligonucleotides
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REAGENT or RESOURCE SOURCE IDENTIFIER

Recombinant DNA

Software and algorithms

Trimmomatic v0.366 Bolger et al.74 https://github.com/timflutre/trimmomatic

Deconseq v4.37 Schmieder et al.75 https://deconseq.sourceforge.net/

MetaPhlAn3 v3.0 Beghini et al.76 https://github.com/biobakery/MetaPhlAn/tree/3.1.0

HUMAnN3 v3.0 Beghini et al.76 https://github.com/biobakery/humann

ShortBRED Kaminski et al.77 https://github.com/biobakery/shortbred
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