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DynaMight: estimating molecular motions 
with improved reconstruction from  
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How to deal with continuously flexing molecules is one of the biggest 
outstanding challenges in single-particle analysis of proteins from 
cryogenic-electron microscopy (cryo-EM) images. Here, we present 
DynaMight, a software tool that estimates a continuous space of 
conformations in a cryo-EM dataset by learning three-dimensional 
deformations of a Gaussian pseudo-atomic model of a consensus structure 
for every particle image. Inversion of the learned deformations is then 
used to obtain an improved reconstruction of the consensus structure. We 
illustrate the performance of DynaMight for several experimental cryo-EM 
datasets. We also show how error estimates on the deformations may be 
obtained by independently training two variational autoencoders on half 
sets of the cryo-EM data, and how regularization of the three-dimensional 
deformations through the use of atomic models may lead to important 
artifacts due to model bias. DynaMight is distributed as free, open-source 
software, as part of RELION-5.

Structure determination of biological macromolecules by 
single-particle analysis of cryoegnic electron microscopy (cryo-EM) 
images is, at heart, a single-molecule imaging technique. Together, 
many images of individual complexes in a cryo-EM dataset contain 
information about the full extent of molecular dynamics that existed 
in the sample when it was plunge frozen. However, stringent low-dose 
imaging conditions, necessary to limit radiation damage, lead to high 
levels of experimental noise. Averaging over multiple individual images 
is thus necessary to extract detailed information about the underlying 
three-dimensional (3D) structures of the macromolecules. Because 
averaging projection images of distinct structures leads to blurring in 
the corresponding 3D reconstruction, image classification algorithms 
are often used to separate cryo-EM datasets into a user-defined number 
of structurally homogeneous subsets1. Despite their effectiveness in 
handling cryo-EM datasets with a discrete number of conformations, 
classification algorithms face challenges when continuous molecular 
motion is present in the sample. Therefore, continuous molecular 

motions in cryo-EM datasets is often considered a nuisance, rather 
than a rich source of information about protein dynamics.

Manifold embedding2 represented an early attempt to describe con-
tinuous molecular motions in cryo-EM datasets, although application of 
this approach has been limited to a few macromolecular complexes3,4. A 
more widely used approach to deal with continuously flexing complexes 
has been multi-body refinement5. Multi-body refinement divides com-
plexes into independently moving rigid bodies through partial signal 
subtraction6–8. Independent image alignment and reconstruction for 
each of the individual bodies leads to better maps than a reconstruction 
of the entire complex that does not take the structural variability into 
account. A minimum size of the individual bodies, required for their 
alignment, limits the applicability of multi-body refinement to relatively 
large complexes. More recently, deep convolutional neural networks in 
the form of variational autoencoders (VAEs) have been proposed to map 
projection images into a continuous multi-dimensional latent space9–11. 
This mapping no longer assumes the presence of a discrete, user-defined 
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images along curves derived from these deformations, then yields an 
improved density map of the consensus structure.

Results
Description of conformational variability
We describe the ith of Nd particle images, yi, with the following forward 
model:

yi = 𝒞𝒞i ∗ Pϕi f(Γzi (x)), (1)
where 𝒞𝒞i∗ denotes convolution with the contrast transfer function 
(CTF), Pϕi the projection of a particle that is rotated and shifted by its 
pose ϕi ∈ SE(3). We choose to represent the function f by a sum of Ng 
3D Gaussian basis functions, or pseudo-atoms:

f(x) ≈ ̂f(x) ∶=
Ng

∑
j=1
aj𝒢𝒢sj (x − cj) (2)

where 𝒢𝒢sj ∶ ℝ3 → ℝ  is 𝒢𝒢sj (x) = exp (∥ x∥2/sj) . Here, aj > 0 denote the 
amplitudes, sj > 0 the widths and cj the central positions of the Gaussian 
functions.

We assume that all particle images are conformational variations 
of a single, consensus structure that is described by the Ng 3D Gaussian 
basis functions and zi in equation (1) is the conformational encoding 
for the ith image. We describe the deformation of individual particles 
as a deviation from the consensus coordinates x: Γ(x) = x − δ(x), so that:

̂f(Γ (x)) =
Ng

∑
j=1
aj𝒢𝒢sj (Γ (x) − cj)

=
Ng

∑
j=1
aj𝒢𝒢sj (x − δ(x) − cj)

≈
Ng

∑
j=1
aj𝒢𝒢sj (x − (cj + δ(cj) ) ,

(3)

number of structures in the data. Moreover, a corresponding decoder 
network can be used to reconstruct 3D structures for each point in latent 
space, allowing the creation of movies that describe 3D protein motions 
by traversing latent space. These approaches have proved useful in 
exploring continuous molecular motions. However, in contrast to multi-
body refinement, most of them do not lead to improved reconstructed 
densities for the moving parts.

Two methods have been proposed that aim to analyze continuous 
molecular motions, while also improving the reconstructed density of 
the underlying consensus structure. 3D flexible refinement in cryo-
SPARC uses an autodecoder to learn deformations that are applied 
straight to the cryo-EM map12. A quasi-Newtonian optimization algo-
rithm then uses the learned deformations to improve a reconstruction 
of the consensus structure. Alternatively, the Zernike3D approach 
expresses the deformation field of a cryo-EM map in a basis of 3D 
Zernike polynomials and uses Powell optimization to find the defor-
mations for each individual particle image13. These deformations are 
then used in a modified algebraic reconstruction technique algorithm 
to obtain an improved reconstruction for the consensus structure.

In this study, we present an approach, coined DynaMight 
(for ‘exploring protein dynamics that might improve your map’). Inspired 
by the approach in e2gmm10, DynaMight uses Gaussian pseudo-atoms to 
model the cryo-EM density. The estimation of the conformational vari-
ability in the cryo-EM dataset is performed by a VAE, where an encoder 
maps individual cryo-EM images to latent space and a decoder outputs 
3D deformations of the Gaussian pseudo-atoms to infer the different 
conformational states. We introduce a decoder architecture that takes 
the latent vector alongside spatial coordinates as an input and outputs 
actual displacements (Fig. 1). Compared to e2gmm10, given a latent 
representation, the decoder directly represents the function of interest, 
namely a deformation field. This enables the opportunity to impose prior 
knowledge directly on the deformation field in the form of regularization 
potentials, for which we explore both benefits and pitfalls. A modified 
filtered backprojection algorithm, that back-projects individual particle 
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Fig. 1 | Schematic illustration of DynaMight. Two separate encoders take 
experimental images from each half set as input, and output a latent vector 
describing their conformational state. The decoders take the latent vectors 
together with the coordinates of Gaussian models for the consensus structures for 

each half set and generate a 3D deformation field for those Gaussians. The deformed 
models are then projected and compared to the experimental image in the loss 
function. At the end of the procedure, an approximation to the inverse deformation 
is used for reconstruction of an improved consensus map for each half set.
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where the last approximation assumes that the deformation field is 
locally constant and that the density surrounding cj moves in a similar 
manner. This enables us to describe the deformations as displacements 
of the Gaussian centers, which is a computationally tractable repre-
sentation. Furthermore, the widths sj and amplitudes aj of all Gaussian 
pseudo-atoms are kept the same for the entire dataset. This means that 
DynaMight is by design constrained to only model mass-conserving 
heterogeneity and cannot handle nonstoichiometric mixtures. There-
fore, compositional heterogeneity should be removed from the dataset 
by alternative approaches before running DynaMight.

Estimation of conformational variability
For learning the deformations, we use a VAE that consist of two neural 
networks, namely an encoder ℰ that predicts an l-dimensional latent 
representation zi per particle image, and a decoder 𝒟𝒟 that predicts the 
displacement of all Gaussian pseudo-atoms in the model. The encoder 
is a fully connected neural network with three linear layers and rectified 
linear unit activation functions. The input is a (real-space) experimen-
tal image yi and the output are two vectors (μi,σi) ∈ ℝNl × ℝNl , which 
describe the mean and standard deviation used to generate a sample 
zi that serves as input for the decoder.

The decoder 𝒟𝒟(zi, cj) then approximates the term cj + δj for each zi. 
We define the decoder for the entire set of Ng positions as:

𝒟𝒟(zi, c0) = c0 + δθ(zi, c0) (4)

In the above, c0 is all the consensus positions and δθ is a differentiable 
function, δθ(zi, c0) = [δθ(zi, c1),… ,δθ(zi, cNg )], with parameters θ, that 
approximates δ for each position (Extended Data Fig. 1). In practice, 
we evaluate the decoder for each position cj and query δθ with a posi-
tional encoding of cj, concatenated with the latent representation zi 
that describes the conformation of each particle.

The output positions are used to generate a projection image pi 
of the deformed model in the pose of the particle, and the difference 
with the experimental image ∥ pi − yi∥

2
Σ is minimized during training 

of the neural networks. Once trained, for a latent embedding of the 
whole dataset, one obtains a family of deformation fields 
𝒟𝒟(zi,x) ≈ Γzi (x) that is defined over the entire 3D space.

Regularization and model bias
Because of high levels of experimental noise, cryo-EM reconstruction 
is an ill-posed problem. Even for standard, structurally homogeneous 
refinement, there are many possible rotational and translational assign-
ments for each image. When estimating conformational variability, the 
poses are known, but many deformed density maps may explain each 
experimental image equally well. Therefore, in both cases regulariza-
tion is essential for robust reconstruction.

The most common form of regularization in VAEs is to con-
strain the distribution of latent variables to follow a Gaussian distribu-
tion, which lead to the model learning more meaningful and structured 
representations. The design of the decoder in Fig. 1 allows an addi-
tional form of regularization that imposes prior knowledge on its 
output of real-space deformation fields. A wide range of physically 
and biologically inspired penalties can be incorporated as priors on 
the deformations, also see refs. 12,14,15. Possibly a powerful source of 
prior information would come from an atomic model of the consensus 
structure, which could provide constraints on chemical bonds, main-
tain secondary structure elements and so on.

To explore direct regularization of the deformation fields, we 
tested two approaches. The first approach aims to use prior informa-
tion from an atomic model that is built in the consensus map, before 
running DynaMight. It generates a coarse-grained Gaussian repre-
sentation of the atom positions, and then minimizes changes in the 
distances between these Gaussians according to the bonds that exist 
in the atomic model:

ℛ(E ) = ∑
{(i, j)∶Eij=1}

||d(ci, cj) − d(𝒟𝒟(ci, z),𝒟𝒟(cj, z))||
2, (5)

where Ei, j = 1 if there is a bond between the two pseudo-atoms ci and cj 
and d denotes Euclidian distance. The deformations with this regulari-
zation scheme result in Gaussians that remain close to a coarse-grained 
representation of the original atomic model.

The second regularization approach uses less prior information 
and does not require an atomic model. Instead, Gaussians are placed 
randomly to fill densities in the consensus map, and connections E 
in equation (5) are for all pairs of Gaussians that are within a distance 
of 1.5 times the average distance between all Gaussians and their two 
nearest neighbors. This regularization enforces overall smoothness in 
the deformations. Additional penalties that prevent Gaussians coming 
too close to each other, or moving too far away from other Gaussians, 
also exist to ensure a physically plausible distribution of Gaussians.

Improved 3D reconstruction
We propose an algorithm that uses the estimated deformation fields Γ 
to obtain an improved reconstruction of the consensus structure that 
incorporates information from all experimental images. To map back 
individual particle images to a hypothetical consensus state, one needs 
to estimate the inverse deformations, which represents a challenge. 
Whereas the inverse deformation on the displaced Gaussians is given 
by the negative displacement vector, that is Γ−1(Γ(ci)) = ci, the inverse 
deformation field needs to be inferred at all Cartesian grid positions of 
the improved reconstruction. We train a neural network as a regression 
function to estimate a deformation field that coincides on the given 
sampling points Γ(ci), but can be evaluated on arbitrary positions. This 
network consists of an multilayer perceptron with six layers and a single 
additive residual connection to the original coordinates of the consen-
sus model c0. Similar to the forward deformation model, the network 
takes the latent code zi and the deformed positions Γ(ci) as inputs and 
aims to output the original positions ci. In addition to the inversion of 
the forward fields on the sampling points, we force the inverse field to 
be smooth by adding a regularization term to the loss function.

The algorithm aims to improve the reconstruction of the density f,  
using the known deformations Γ, that is we aim to find the minimizer 
̂f  of the data fidelity

̂f = argmin
f

∑
i
‖𝒞𝒞i(PΓi f ) − yi‖2. (6)

This minimizer can be computed using the reconstruction formula

̂f = [∑
i
P∗Γi ∘ 𝒞𝒞

2
i ∘ PΓi]

−1

[∑
i
P∗Γi (𝒞𝒞

∗
i yi)]

= D−1 [∑
i
P∗Γi (𝒞𝒞

∗
i yi)] ,

(7)

to get an estimate of the unknown density f. Here D is a matrix that 
depends on the estimated deformations, and P∗Γi is the composition of 
the backprojection operator and the inverse deformation correspond-
ing to the ith particle (Fig. 1). For the structurally homogeneous case, 
Γ is the identity operator and D is diagonal in Fourier space and there-
fore the inverse can be computed simply by division, given that the 
distribution of projection directions covers the whole frequency 
domain and D has no zeros in the diagonal. In the presence of deforma-
tions, this matrix is not diagonal anymore and would be too expensive 
to compute or store. We approximate equation (7) by using the filter 
that would correspond to the homogeneous case, without deforma-
tions. Although even in the optimal scenario of having complete data 
of clean projection images, this method does not yield a minimum of 
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functional in equation (6), it still allows to correct for the deformation 
to some degree. When the deformation fields are not smooth, for exam-
ple when two nearby domains move in opposite directions, reconstruc-
tion with the proposed algorithm may introduce artifacts at the 
interface between the domains.

Implementation details
The initial positions of the Gaussians for the VAE are obtained by 
approximating a map from a consensus refinement with a Gaussian 
model. This initial consensus map does not correspond to an actual 
state of the complex, but rather to a mixture of different conformations. 
Therefore, parts of the map will have regions of poorly defined density, 
and correspondingly fewer Gaussians. To overcome this limitation, we 
update the positions of the consensus Gaussian model throughout the 
estimation of the deformations, such that the positions cj may corre-
spond to a single conformation at the end of the iterative process. We 
recommend using two Gaussians per residue, but a smaller number can 
be chosen if computational resources are limited or a low resolution 
estimation of the motion is required.

After initialization of the Gaussians, in the first epochs of the 
training of the VAE, we only optimize the global Gaussian parameters, 
that is their widths, amplitudes and positions. These parameters are 
optimized with the ADAM optimizer and a learning rate of 0.0001. 
After this initial warm-up phase, we start optimization of the network 
parameters of the VAEs, again using the ADAM optimizer with a learning 
rate of 0.0001. During the second phase, the parameters of the Gauss-
ians continue to be updated. Training of the VAEs is stopped when the 
updates of the consensus model do not yield improvements anymore 
or a fixed, user-defined number of epochs are completed.

Training of the VAE is performed on two half sets, where two 
encoder–decoder pairs are trained independently, as illustrated in 
Fig. 1. This procedure yields two independent families of deforma-
tion fields, one for each half set. The approximate inverse of these 
deformations are then used by the deformed weighted backprojec-
tion algorithm to generate two independent maps with improved 
estimates for the consensus structure. These half-maps can then be 
used in conventional postprocessing and resolution estimation rou-
tines. As described in the ‘Discussion’ section, by setting aside a small 
validation set of images, the two independent decoders also allow an 
error estimation of the displacement fields.

DynaMight has been implemented in pyTorch16, and is accessible 
as a separate job type from the RELION-5 graphical user interface. 
Because, as we will show below, the direct regularization of the defor-
mation fields using atomic models may lead to overfitting, only the 
approach that enforces smoothness on the deformations, without 
the use of an atomic model, is exposed to the user on the graphical 
user interface. DynaMight uses the Napari viewer17 to visualize the 
distribution of particles in latent space, as well as the corresponding 
deformation fields. The same viewer also allows real-time generation 
of densities from points in latent space, movie generation, and the 
selection of particle subsets in latent space.

Further implementation details are given in the Methods.

Regularization can lead to model bias
We first analyzed the different options for regularization of the defor-
mations on a well characterized dataset on the yeast Saccharomyces cer-
evisiae precatalytic B complex spliceosome18 EMPIAR-(10180, ref. 19).  
The same data, or subsets of it, have also been analyzed using 
multi-body refinement5 cryoDRGN9, Zernike3D13 and e2gmm10. To 
minimize computational costs and to ensure structural homogene-
ity9, we used 3D classification in RELION20 to select ~45,000 particles 
with reasonable density for the head region. Training of the VAEs on 
this subset with a box size of 320 took about 2.5 minutes per epoch on 
a single NVIDIA A100 GPU. This resulted in training times between 8 
and 12 hours for estimating the deformations. Further estimation of 

the inverse deformations took ~4 hours and reconstruction with the 
deformed backprojection ~3 hours on the same GPU.

Without any regularization of the deformations, estimated defor-
mation fields displayed rapidly changing directions for neighboring 
Gaussians, and deformed backprojection yielded reconstructions for 
which the local resolution did not improve with respect to the original 
consensus reconstruction (Fig. 2a,b). A consensus reconstruction with 
better local resolutions was obtained using the regularization scheme 
that enforces smoothness in the deformations, but without using an 
atomic model (Fig. 2c). The map with the highest local resolutions 
was obtained using the regularization scheme that enforces distances 
between bonded atoms of an atomic model (Protein Data Bank (PDB)  
ID 5nrl) (Fig. 2d). It thus appeared that incorporation of prior knowl-
edge from the atomic model into the VAE had been beneficial.

However, because the neural networks in our approach comprise 
many parameters, we were worried that there would be scope for 
‘Einstein-from-noise’ artifacts, similar to those described for orien-
tational assignments in single-particle analysis21–23. To test this, we 
performed two control experiments.

In the first control experiment, we replaced the atomic model of the 
U2 3′ domain/SF3a domain with a different protein domain of similar 
size (PDB 7YUY)24). The U2 3′ domain/SF3a showed only weak density in 
the consensus map, indicating large amounts of structural heterogene-
ity in this region. Although using the incorrect atomic model to estimate 
the deformation fields led to a similar improvement in local resolution 
compared to using the correct model (Fig. 3a,b), the reconstructed den-
sity from the deformed backprojection resembled the incorrect model, 
rather than the correct model (Fig. 3c and Supplementary Video 1).

In the second control experiment, we replaced the atomic model 
of the SF3b domain with PDB 1G88 (ref. 25). The density for the SF3b 
domain in the consensus map was stronger than the density for the 
SF3a region, indicating that this region in the spliceosome is less flex-
ible. In this case, using the incorrect atomic model yielded a map with 
lower local resolutions in the SF3b region than using the correct model 
(Fig. 3d,e). But still, the reconstructed density from the deformed 
backprojection resembled the incorrect model more than the correct 
model (Fig. 3f and Supplementary Video 2).

These results indicate that estimation of deformation fields may 
lead to model bias, to the extent that reconstructed density may repro-
duce features of an incorrect atomic model. The scope for model bias to 
affect the deformed backprojection reconstruction is larger in regions 
of the map with higher levels of structural heterogeneity. Because it 
would be difficult to distinguish correct atomic models from incor-
rect ones, we caution against the use of this type of regularization in 
DynaMight. Therefore, in what follows, we only used the less informa-
tive, smoothness prior on the deformations. Using this prior, the defor-
mations estimated by DynaMight are qualitatively similar to those 
observed for the same dataset using e2gmm10 (Extended Data Fig. 2 
and Supplementary Video 3). For a different set EMPIAR-(10073, on the 
U4/U6.U5 tri-snRNP complex26), using the less informative smoothness 
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Fig. 2 | DynaMight reconstructions of the spliceosome subset. a, Standard 
RELION consensus refinement. b, DynaMight without regularization.  
c, DynaMight with smoothness regularization on the Gaussians. d, DynaMight 
with regularization from an atomic model. All maps are colored according to 
local resolution, as indicated by the color bar.
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prior in DynaMight led to an improved reconstruction with better 
map features and higher local-resolution estimates than reported 
for 3DFlex12 (Extended Data Fig. 3 and Supplementary Video 4),  
despite that 3D classification in RELION-5 selected a structurally homo-
geneous subset of only 86,624 particles, compared to 102,500 particles 
used for 3DFlex.

DynaMight improves inner kinetochore maps
Next, we demonstrate the usefulness of DynaMight on two cryo-EM 
datasets of the yeast inner kinetochore27. Training of the VAEs took 17 
and 27 hours on an NVIDIA A100 GPU for the two respective datasets 
described below, with particle box sizes of 320 and 360. Estimating the 
inverse deformations took ~6 hours for both datasets. The deformed 
reconstructions took 9 and 13 hours, respectively.

The first dataset EMPIAR-(11910) comprises 100,311 particles of 
the monomeric constitutive centromere associated network complex 
bound to a CENP-A nucleosome (CCAN–CENP-A). For this dataset, we 
trained the half-set VAEs for 220 epochs and we used a ten-dimensional 
latent space. The estimated 3D deformations are distributed uniformly 
in latent space (Fig. 4a), without specifically clustered conformational 
states, suggesting that the motions in the dataset are mainly of a con-
tinuous nature. Analysis of the motions revealed that the nucleosome 
is rotating in different directions relative to the rest of the complex, 
and that these rotations coexist with the up and down bending of the 
Nkp1, Nkp2, CENP-Q and CENP-U subunits (arrows in Fig. 4b and Sup-
plementary Video 5). The reconstruction from deformed backprojec-
tion improved local resolutions compared to the consensus map from 
standard RELION refinement, with clear improvements in the features 
for both protein and DNA (Fig. 4c,d and Extended Data Fig. 4).

The second data EMPIAR-(11890) comprises 108,672 particles of 
the complete yeast inner kinetochore complex assembled onto the 
CENP-A nucleosome. Training of the VAE was done for 290 epochs, 
and the dimensionality of the latent space was again set to ten. Again, 

a continuous distribution of deformations in latent space suggests 
continuous structural flexibility (Fig. 5a). Analysis of the deforma-
tions revealed large relative motions between different regions of 
the complex (root-mean-squared deviation and additional details are 
given in Supplementary Table 1). Different states of the complex are 
depicted in Fig. 5a and Supplementary Video 6. Deformed backpro-
jection resulted in a map with improved local resolution and protein 
and DNA features compared to the map from consensus refinement 
(Fig. 5b,c and Extended Data Fig. 4).

Because this complex, with a molecular weight of 1.5 MDa, is large 
enough to divide into multiple independently moving rigid bodies, we 
also applied multi-body refinement5 to this dataset. We used the four 
bodies illustrated in Fig. 5d; body 1 (orange): CCANTopo, body 2 (light 

green): CCANNon−topoΔCENP−I(Body), body 3 (yellow): CBF3Core+CENP-IBody 
and body 4 (dark green): CENP-ANuc). The local resolutions resulting 
from multi-body refinement (Fig. 5d) are better than those from the 
deformed backprojection reconstruction of DynaMight, illustrating 
that there is still room for further development of the latter. Neverthe-
less, the DynaMight map had better protein and nucleic acid features 
than a map obtained for the same dataset with 3DFlex, using default 
parameters12 (Extended Data Fig. 5). The DynaMight map also corre-
lated better than the map from 3DFlex with atomic models that were 
built in the maps from multi-body refinement. Despite these observa-
tions, resolution estimates calculated from half-maps calculated by 
3DFlex were higher than those calculated from half-maps by 
DynaMight. This suggests that using a single 3D deformation model in 
3DFlex, rather than two separate models as done in DynaMight, could 
potentially result in over-estimations of local resolution.

Discussion
How to deal with continuous conformational heterogeneity remains a 
rapidly developing topic in cryo-EM single-particle analysis. As outlined 
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backprojection using the correct atomic model for the SF3b region (d), using an 
incorrect atomic model for the SF3b region (e) and FSC curves between maps in d or 
e, masked around the SF3b region, and the correct or incorrect atomic models (f).
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in the main text, and recently reviewed in ref. 28, multiple approaches 
from different laboratories have been proposed. In this paper we pre-
sent an approach, called DynaMight, which consists of two VAEs that 
are trained independently on half sets to estimate displacements of a 
Gaussian model and a modified weighted backprojection algorithm 
to correct for the estimated deformations. To avoid deformations 

being described by the disappearance of Gaussians in one place and the 
appearance of Gaussians in another, and to limit the number of model 
parameters, DynaMight does not refine an occupancy factor for each 
Gaussian. Consequently, DynaMight cannot model compositional 
heterogeneity and it is unclear how it will perform on datasets with such 
heterogeneity. Compositional heterogeneity should thus be removed 

PCA 1

a

b

c d

PCA 2
3.5 Å 5.0 Å 6.5 Å 8.0 Å

Fig. 4 | DynaMight results for the CCAN–CENP-A complex. a, Principal 
components analysis (PCA) of the conformational latent space, with colored dots 
indicating the positions of the five maps in b. (Only the latent space for one of the 
two half sets is shown.) b, Five conformational states of the complex. One state, 
in red, is shown in all four panels. The colors of the five maps are the same as the 

colors of their corresponding dots in a. c, Reconstructions from standard RELION 
consensus refinement. d, The improved reconstruction using DynaMight. The 
maps in c and d are colored according to local resolution, as indicated by the 
color bar.

8 Å6 Å4 Å

PCA 1

a

b c d

PCA 2

Fig. 5 | DynaMight results for the complete kinetochore complex. a, PCA 
of the conformational space (on the left) with highlighted positions of five 
conformation states, the maps of which are shown in the same colors on the 
right. (Only the latent space for one of the two half sets is shown.) b, Maps from 

standard RELION consensus refinement. c, DynaMight reconstruction.  
d, Reconstruction using RELION multi-body refinement. The outline regions in 
the latter show the four bodies that were used for multi-body refinement. The 
maps in b–d are colored by local resolution, as indicated by the color bar.
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using existing discrete classification methods1 before the application 
of DynaMight. We show for two datasets on the yeast inner kinetochore 
that DynaMight is useful in improving cryo-EM maps of macromo-
lecular complexes that exhibit large amounts of flexibility, although 
scope remains for further improvements, of DynaMight in particular 
and how to deal with continuous structural heterogeneity in general.

Because of the high levels of experimental noise and the large num-
ber of parameters needed to describe continuous structural flexibility 
in the particles, an obvious way to improve these methods is the incor-
poration of prior knowledge. However, our results on the spliceosomal 
B complex show that such approaches are not without risk. We observe 
that there are enough parameters in DynaMight’s neural networks to 
result in deformation fields that, when used in deformed backprojec-
tion, will reproduce incorrect features from the consensus model that is 
used to regularize these deformations. That model bias may play a role 
is perhaps not surprising, given that similar observations have been 
made for standard (structurally homogeneous) refinement, where 
only five parameters (three rotations and two translations) are used 
for every particle. The total number of parameters in DynaMight’s VAE 
is approximately 10 million, which results in considerably higher num-
bers of parameter per particle for typical datasets. We do not believe 
that the risk of overfitting exists only in DynaMight. Other approaches 
that describe structural heterogeneity in the dataset with large neural 
networks, or other approaches with high numbers of parameters per 
particle, such as cryoDRGN9, Zernike3D13 and 3DFlex12, will probably 
also be susceptible to these problems. The development of validation 
procedures will thus be important. In DynaMight, we chose not to expose 
the usage of atomic models for regularization of the deformations to the 
user, as potential model bias toward those models takes away the possi-
bility to validate the map by the appearance of protein-like features. The 
exploration of more sophisticated methods, where part of the informa-
tion of atomic models is used and other parts are set aside for validation, 
may yield better methods, while still allowing proper validation.

Because model bias may affect the estimation of deformation 
fields, over-estimation of the resolution of reconstructions that correct 
for these deformations may represent another pitfall. Resolutions are 
typically measured by Fourier shell correlation between two half sets. 
However, if deformations have been estimated jointly for both half sets, 
with the same reference map as origin, then incorrect features from 

the reference model may be reproduced in both half-reconstructions, 
resulting in inflated Fourier shell correlation curves and over-estimation 
of resolution. Our results with the yeast kinetochore complex (Extended 
Data Fig. 5) indicate that 3DFlex12 may suffer from such over-estimation 
of resolution. By training two independent VAEs with separate consen-
sus models for both half sets, similar to ‘gold-standard’ approaches in 
standard refinement29,30, this risk is avoided in DynaMight.

Training two VAEs independently on two half sets of the data also 
offers an opportunity to estimate the uncertainty in the estimated 
deformations. Although in recent years multiple methods have been 
proposed to analyze molecular motions in cryo-EM datasets, less con-
sideration has been given to what extent these motions can be trusted. 
Error estimates on the deformations can be obtained for a subset of 
the particles (we used 10% in Fig. 6), by excluding this subset from the 
training of the decoders and only using it for training its embedding to 
latent space. For each particle in this subset, one obtains an embedding 
with both separate encoders to obtain a latent representation for the 
corresponding decoder. Applying both decoders to get the displace-
ments of either of the consensus models then leads to two independent 
estimates of the deformations for the particles in the subset. The differ-
ence between these two estimates provide an estimate of the errors in 
them. We illustrate this procedure in Fig. 6b, where we observe that the 
errors in the deformations vary among particles and among different 
regions of the CCAN–CENP-A complex. Future developments in regu-
larization methods as described above may benefit from considering 
estimated errors in the deformations.

Besides estimation of deformations, DynaMight also implements 
a reconstruction algorithm that aims to correct for the deformations 
through the reconstruction of an improved consensus map. Reconstruc-
tion via equation (7) only gives an approximation of the minimizer of the 
convex problem in equation (6). Although it is therefore not guaranteed 
to yield a useful solution, in practice we observe that DynaMight results 
in maps with improved local resolutions compared to the standard 
RELION reconstruction algorithm that assumes structural homogene-
ity. The improvements in the reconstructed maps provide some level 
of validation of the estimated deformation fields. Nevertheless, our 
observations that multi-body refinement yields better local resolutions 
for the complete inner kinetochore complex suggest that there is room 
for further improvement. It is possible that iterative real-space methods, 

Encoder 1

Encoder 2

Decoder 1

Decoder 2

Fixed decoder

Fixed decoder
a b

Fig. 6 | Error estimation for the deformations. a, Particles of a validation subset 
(here 10% of the particles) are fed into both encoders. The encoders are updated, 
whereas these images are not used for training the decoder. At evaluation 
time, both decoders can be evaluated for the consensus models (purple for the 
consensus model of half set 1 and blue for the consensus model of half set 2). 

The resulting displacements can be compared. b, Example deformation fields 
for four particles. The radius of the sphere (colored by size from blue to pink) 
at the end of the deformations (black arrows) is determined by the norm of the 
difference of the deformations from the two decoders.
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such as those implemented in 3DFlex12 or Zernike3D13, may yield better 
results. But the iterative approaches would be even more computation-
ally expensive than our weighted backprojection approach, as they 
may require multiple sweeps through the data and optimization of 
hyperparameters, such as the step size. Alternatively, the results with 
multi-body refinement suggest that it may be possible to divide each 
particle into many smaller ‘bodies’, and to insert Fourier slices of each of 
these bodies using orientations that are a combination of the consensus 
orientation and the average deformation field at that region.

Although opportunities for further improvements exist, we 
believe that the current implementation of DynaMight will already be 
useful. Unlike multi-body refinement, there is no need for the design 
of masks that delineate the bodies. In fact, analysis of deformations 
estimated by DynaMight may assist users to define those masks for sub-
sequent multi-body refinements. The implementation inside RELION-5 
will make DynaMight easily accessible to many users, and its wider 
application will provide feedback for future developments of even bet-
ter tools to analyze molecular motions in biological macromolecules. 
The unresolved challenges, as explored in this paper, of how to exploit 
more previous knowledge, while preventing the pitfalls of model bias, 
and how to validate the estimated deformations, imply that this topic 
will remain an active area of research.
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Methods
Initialization of the reference model
We model the 3D cryo-EM density map f ∶ ℝ3 → ℝ by a sum of Ng Gauss-
ian functions. The density f is defined by

f(x) =
Nc

∑
j=1

(
Ng

∑
i=1
dj,iaj exp (

∥ x − ci ∥
sj

)) . (8)

Here Nc is a fixed number defining how many distinct widths are used 
in the Gaussian model. For the ith Gaussian the vector d–,i satisfies 
∑Nc
j=1 dj,i = 1 and dj,i ≥ 0 for all j ∈ {1, …, Nc}. This weight vector continu-

ously classifies the type of Gaussian that is selected for a certain posi-
tion of the Gaussian model. Although we used Nc = 1 in all our results, 
using more classes could be helpful for cases where the consensus map 
contains large variations in local resolution and the same width of all 
Gaussians does not give a reasonable representation of the map. The 
learnable parameters in this model are the widths (s1,… , sNc ), composi-
tion vectors d and amplitudes (a1,… ,aNc ). These parameters are opti-
mized globally, meaning that they are independent of the projection 
image, and stay the same over the whole dataset. Whereas a 
per-Gaussian amplitude parameter would be possible and would enable 
the representation of compositional heterogeneity, we decided to use 
the same amplitudes for all Gaussians. The reason for this is that oth-
erwise movement could also be represented by Gaussian densities 
vanishing and reappearing at different places. We call the parameters 
(a, s, d, c) of the Gaussian model the reference parameters and we use 
a separate optimizer (ADAM) to update them. The total number of 
reference parameters is Ng × 3 + Nc × (Ng + 2). For our experiments, we 
used only one class of Gaussians, resulting in Ng × 3 + 2 parameters. The 
consensus model serves as the starting point for the decoder that 
predicts how every Gaussian in the model moves to explain the cor-
responding experimental image.

In the recommended way of running DynaMight, the initial refer-
ence map, that is, the reconstruction from the consensus refinement, 
is thresholded and randomly filled with Ng Gaussians that are within the 
region of the map exceeding this threshold. The threshold should be 
chosen such that density in the flexible regions remains, but no noise 
is visible in the solvent region. The parameters a and s are initialized 
to reasonable numbers such that the norm of the Gaussian model 
equals the norm of the consensus reconstruction and the classification 
weights are initialized randomly. Once the reference parameters are 
initialized, we optimize the reference model using gradient descent 
(that is, without any networks), minimizing the mean squared error 
to the experimental images.

Alternatively, Gaussians may be initialized from the positions of an 
atomic model that is rigid-body fitted into the consensus map. For our 
experiments with atomic models for the spliceosome dataset, we used 
the deposited atomic model (PDB 5nrl). Instead of using one Gaussian 
per atom, we coarse-grained the atomic models. For every amino acid 
we used one main chain Gaussian that was located at the Bary center 
of the N, C and O atoms. Subsequent main chain Gaussians were con-
nected by an edge in the graph used for regularization. The number of 
Gaussians used to represent the side chains varied for different amino 
acids. We placed one additional Gaussian at the Bary center of the α, β 
and γ position side-chain atoms of all amino acids, except for ‘PRO’, 
where we took the Bary center of atoms at the α, β, γ and δ positions, and 
for ‘SER’, ‘CYS’, ‘ALA’, ‘GLY’, ‘VAL’ and ‘THR’, where we placed a Gaussian at 
the β position. For larger amino acids, we placed additional side-chain 
Gaussians at the Bary center of the remaining side-chain atoms, except 
for ‘TYR’ and ‘TRP’, where we used two additional Gaussians. Subse-
quent Gaussians from the side chains were connected to each other and 
then to the corresponding main chain Gaussian with edges for the regu-
larization functional. The amplitudes of the Gaussians were chosen to 
be proportional to the combined atomic number of all (nonhydrogen) 
atoms grouped together for the corresponding Gaussian. For nucleic 

acids we used four Gaussians: one at the phosphate position and one 
at the Bary center of the sugar form the main chain of the nucleic acid 
chain and two Gaussians at the bases. Again, the amplitudes were set 
to be proportional to the combined atomic number within each group.

The VAE
A VAE estimates displacements of the Gaussians from the reference 
model. An encoder learns an embedding to a low dimensional latent 
space that describes the conformational landscape of the dataset. The 
decoder estimates a deformation, given a point in that latent space and 
a position in the 3D reference.

The input to the encoder is a flattened (real-space) experimental 
image yi and the output are two vectors (μi,σi) ∈ ℝNl × ℝNl, which des-
cribe the mean and standard deviation used to generate a sample, which 
serves as an input for the decoder. The encoder is a fully connected 
neural network with three linear layers and rectified linear unit activa-
tion functions. To optimize the weights of the encoder we used the 
ADAM optimizer with a learning rate of 0.001. We tried to use alterna-
tive encoder architectures using residual connections, more linear 
layers and convolutional neural networks, but without observing rel-
evant improvements in performance. Even when substituting the input 
images with a different unique signal (we used a random vector per 
image), the deformations are not worse. We conclude that the encoder 
does not effectively use the information that is present in the images, 
suggesting that one could optimize the latent representation itself via 
an autodecoder12.

The decoder is at the heart of our approach. Given a conforma-
tional representation it estimates a deformation for the corresponding 
particle image. It takes the latent representation zi and a spatial posi-
tion, and outputs the displacement of that which is predicted at this 
spatial position. During training, the positions where the decoder is 
evaluated are the Gaussian positions in the reference model. Compared 
to ref. 10 we use a coordinate-based network that takes the input posi-
tion as an input. To augment the 3D coordinates, we use positional 
encoding with ten encoding dimensions, which has shown to resolve 
higher resolution information in coordinate-based networks31. We use 
the sine and cosine function for lifting the 3D position to a higher 
dimensional space as described in ref. 32. We observed that without 
the positional encoding of the input coordinate the deformations are 
too smooth and that localized motion is not captured well. The use of 
a coordinate-based network results in a network that approximates a 
deformation field that can be evaluated at any position in ℝ3.

The decoder itself is a fully connected network δ with exponential 
linear unit (ELU) activation functions and an additive residual connec-
tion (Extended Data Fig. 1). We use eight linear layers to obtain for a 
given spatial position x ∈ ℝ3 the deformed position:

𝒟𝒟(zi,x) = x + δ(zi,x). (9)

In the training phase, we evaluate the decoder for all the positions 
c0 in the reference model. We then model the forward operator of 
cryo-EM by projecting the center points of the deformed Gaussian 
reference model using the orientation of the particle, resulting in 2D 
coordinates ξi. These coordinates are then placed into an (oversampled) 
2D grid using bilinear interpolation. Then we compute the 2D Fourier 
transform, approximating the Fourier transform of the sum of deltas. 
Subsequently, we multiply the resulting Fourier-space image with the 
Gaussian basis function Gs and the CTF 𝒞𝒞i resulting in the projection 
image gi of the deformed Gaussian model

gi ≈ ℱ (
Ng

∑
j=1
aδξ j

i
) ⋅ 𝒞𝒞i ⋅ Gs. (10)

If more than one type of Gaussian exists, the same operation is 
repeated for all types and weighted by the class assignment vector d. 
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The resulting reference projection image gi is then compared to the 
experimental image, using a mean squared error as the loss function 
(also below).

Training
After initialization of the Gaussians in the consensus reconstruction, 
during the first epochs (that is, sweeps over the two half sets for both 
models) of training we only optimize the Gaussian parameters, that is 
their widths, amplitudes and positions. After this initial phase, we also 
start optimizing the network parameters of the two independent VAEs, 
which are initially assigned random values. Both phases of training use 
the ADAM optimizer at a learning rate 0.0001.

To get physically meaningful deformations, the reference model 
itself should lie within the distribution of all the conformations esti-
mated by the decoder, rather than being a nonexisting average of con-
formations (as the reconstruction from the consensus refinement is). 
To achieve this, we apply two heuristic strategies that gradually improve 
the reference model. First, after every 30 epochs, we fix the encoder 
and decoder for five epochs and only adjust the Gaussian parameters. 
Second, at every tenth epoch where the decoder is not fixed, we replace 
the positions of the Gaussians of the reference model by the predicted 
Gaussian positions with the smallest displacement from the current 
reference model. The latter ensures that the reference model is in the 
distribution of deformed models. Without this replacement strategy, 
we observed that the reference model can move out of distribution, 
sometimes even to a point where the structure is completely distorted. 
As long as the deformations satisfy the regularization constraints, this 
should not change the value of the loss function, but we observed that 
this can lead to unphysical displacements of the Gaussians and subop-
timal reconstructions. To also ensure that the reference models of the 
two independent half sets are in the same conformation, we generate a 
binary mask around the Gaussians positions of one half set and substi-
tute the Gaussian positions of the other half set with the average over 
100 predictions where the number of Gaussians inside this mask is the 
highest. The binary mask covers all voxels that have a Gaussian within a 
distance of 6 Å from the voxel center. Fourier shell correlations of the 
Gaussian model to the consensus and the final Gaussian model to the 
final reconstruction are displayed in Supplementary Fig. 1.

Training is stopped when the updates of the consensus model 
do not yield improvements in the data loss mean squared error (MSE; 
below) anymore. More specifically, we stop training if the MSE loss 
increased for the kth time. In our experiments we used the default 
value of k = 40.

Loss functions and regularization. Denoting by gi the reference pro-
jection image generated by the current VAE, the main loss function is 
the data loss, which for a batch ℬ ∶= (gi, yi)i∈B is computed in Fourier 
space as

ℱ(ℬ) ∶= 1
|ℬ|

∑
i∈ℬ

∥ gi − yi∥
2
Σ
, (11)

where the resolution-dependent noise weights Σ are estimated by the 
radially averaged power of the error on a subset of particle images.

Auxiliary losses are used to regularize the deformations of the 
Gaussian model. In the recommended way of running DynaMight, a 
graph is constructed by connecting Gaussians that are within a certain 
distance with edges. The set of edges is defined by

Eij = {
1 ∥ ci − cj ∥< 1.5 cmean,

0 else.
(12)

Here cmean is the mean distance in the graph Fij, which is created by 
connecting every point to its two nearest neighbors. These graphs 
are recalculated from the reference model after every epoch. For the 

deformation of the kth image Γk the following regularization functional 
then preserves distances after displacement, enforcing local isometry:

ℛd(Γk) = ∑
{(i, j)∶Eij=1}

||∥ ci − cj ∥ − ∥ Γk(ci) − Γk(cj) ∥||
2, (13)

Additionally, we use a repulsion loss penalizing Gaussians that are 
too close to each other

ℛr(Γk) = ∑
{(i, j)∶Eij=1}

χ∥Γk(ci)−Γk(cj)∥<τ(∥ Γk(ci) − Γk(cj) ∥ −τ)
2, (14)

where χ∥Γ (ci)−Γ (cj)∥<τ = 1 if the distance between neighboring Gaussians 
is less than τ. We set τ to cmean for all our results.

The total loss function is then given by

ℒ(ℬ) = ℱ(ℬ) + λ 1
|ℬ| ∑i∈ℬ

[ℛd(Γi) + ℛr(Γk)] =∶ ℱ(ℬ) + λℛ(ℬ).

The parameter λ is a dynamic regularization parameter that is 
recalculated after every epoch. We do that by calculating the norm of 
the gradients of both loss terms ℒ and ℛ and define λ such that the ratio 
of these norms equal a user-defined number. When set to 1 the norm 
of the gradient of both terms is equal. For all our results we set this value 
to 0.9, which results in slightly more influence of the data term ℒ.

For the results, where we used the coarse-grained atomic model 
as a reference, we used the same data loss function ℱ  (equation (12)), 
but in contrast to the above described heuristic method to construct 
the edges between the Gaussian, the graph E is obtained from the coarse 
graining of the atomic model. The regularization that preserves dis-
tances is applied in the same way (equation (13)) with the fixed graph 
from the coarse graining. The second regularization functional (equa-
tion (14)) is not used in this case, since the distances in the reference 
model are fixed.

Improved reconstruction
To calculate an improved reconstruction from the estimated deforma-
tions, we use a network 𝒟𝒟−1 with the same architecture as the decoder 
to estimate a deformation field that maps back a deformed position to 
its original location. Again this network is coordinate-based and can 
be evaluated on an arbitrary position x ∈ ℝ3. Given the latent represen-
tation of each particle we train the neural network 𝒟𝒟−1 to map back the 
positions predicted by the trained VAE to the positions of the reference 
model. Since the model should estimate the inverse deformation of 
the decoder 𝒟𝒟, it should satisfy

𝒟𝒟−1 (μi, 𝒟𝒟 (zi, c0j )) = c
0
j .

For each image gi the neural network takes as input the latent 
representation μi from the previously trained encoder ℰ and a posi-
tional encoding of the deformed Gaussian positions 𝒟𝒟(zi, c0). The 
concatenated positional encoding and latent representation are then 
mapped by an multilayer perceptron with six layers and a single addi-
tive residual connection to the original coordinates of the consensus 
model c0. The loss function is the L2 distance between the positions

1
NdNg

Nd
∑
i=1

Ng

∑
j=1

‖
‖𝒟𝒟

−1 (μi, 𝒟𝒟 (zi, c0j )) − c
0
j
‖
‖
2

We optimized the weights of the inverse deformation network 
for 200 epochs with the ADAM optimizer for all our results. Once the 
network has been trained, the backprojection algorithm evaluates it 
for the latent representation of every particle on a 3D grid and applies 
the deformation to the CTF-multiplied, backprojected image. For 
computational speed, we evaluated the inverse deformation on a two 
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times coarser grid, and then up-sampled the deformation fields to the 
original box size again using bilinear interpolation. The resulting vol-
umes are then summed up and divided by the backprojected squared 
CTFs as illustrated in Fig. 1.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The authors declare that there are no restrictions on data availability. 
The datasets of the CCAN–CENP-A complex and of the yeast inner 
kinetochore complex bound to a CENP-A have been deposited at 
EMPIAR19 and are available under accession codes EMPIAR-11890 and 
EMPIAR-10073, respectively. The local-resolution filtered reconstruc-
tions and the DynaMight half-maps for all datasets are available on 
Electron Microscopy Data Bank under the accession codes EMD-19791 
for the precatalytic spliceosome, EMD-19789 for the tri-snRNP com-
plex, EMD-19799 for the CCAN–CENP-A complex and EMD-19794 for 
the yeast inner kinetochore complex bound to CENP-A.

Code availability
DynaMight is distributed for free under a Berkeley Software 
Distribution(BSD) license and can be downloaded from https://github.
com/3dem/DynaMight. It is installed automatically with RELION-5.
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Extended Data Fig. 1 | Diagram of the decoder architecture. The queried 
position is lifted to a higher dimensional space via a fixed positional encoding 
function, where the lifting dimension is defined by Np. The Nl dimensional 

latent code is concatenated with the encoded position, and input to a multilayer 
perceptron (MLP), which outputs a 3-dimensional displacement vector. To obtain 
the final position the displacement vector is added to the original position x.
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Extended Data Fig. 2 | nalysis of motions for the pre-catalytic spliceosome. 
a,d) Latent spaces of both half sets (half 1 and half 2) for the pre-catalytic 
spliceosome dataset EMPIAR-(10180) are coloured by the mean movement 
direction. Four different deformations are visualized as coloured  
(red, pink, yellow and blue) arrows from one point in latent space to another.  
b,e) The corresponding maps are shown in the same colours, with black arrows 

indicating the main deformations. c,f) For the blue and the pink deformations, 
3D deformation fields are also shown as black arrows for the displacements of 
individual Gaussians. The latent spaces of the two half sets are organized in a 
similar way, with similar deformations along the shown directions. The observed 
motions are comparable to the ones obtained by e2gmm.
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Extended Data Fig. 3 | DynaMight reconstruction for the spliceosomal tri- 
snRNP complex. The DynaMight reconstruction from 86,624 selected particles 
of data set EMPIAR-10073 is coloured by local resolution, as estimated using 

cryoSPARC. The map is displayed in two orthogonal orientations and with a local 
resolution colour scheme that matches the figure used to illustrate the 3DFlex 
method (ref. 12).
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Extended Data Fig. 4 | DynaMight reconstruction for the CCAN:CENP-A 
complex. a) Local resolution filtered map of the DynaMight reconstruction. b) 
Fourier shell correlation (FSC) between atomic models fitted into 3 regions of the 

maps (R1-R3) and the DynaMight and consensus reconstruction.  
c-e) Comparison of DynaMight (top) and consensus map (bottom) in the regions 
indicated with black arrows in panel a.
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Extended Data Fig. 5 | Comparison between DynaMight and 3DFlex for the 
kinetochore complex. a,b) Reconstructions from DynaMight (a) and 3DFlex (b), 
coloured according to local resolution (as estimated in RELION) with the same 
colour scheme, ranging from cyan (4∘A) to red (8 ∘A). A 10-dimensional latent 
space was used for both methods; all other parameters were kept at default.  

c) Fourier shell corre- lation (FSC) between rigid-body fitted atomic models and 
the reconstructed maps for DynaMight (solid lines) and 3DFlex (dashed lines) 
for four domains of the kinetochore complex (body 1-4, in orange, red, green and 
blue, respectively).
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