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Diabetes mellitus is a metabolic disorder with persistent hyperglycemia caused by a variety of underlying factors. Chronic
hyperglycemia can lead to diverse serious consequences and diversified complications, which pose a serious threat to patients.
Among the major complications are cardiovascular disease, kidney disease, diabetic foot ulcers, diabetic retinopathy, and
neurological disorders. Heme oxygenase 1 (HO-1) is a protective enzyme with antioxidant, anti-inflammatory and anti-apoptotic
effects, which has been intensively studied and plays an important role in diabetic complications. By inducing the expression and
activity of HO-1, it can enhance the antioxidant, anti-inflammatory, and anti-apoptotic capacity of tissues, and thus reduce the
degree of damage in diabetic complications. The present study aims to review the relationship between HO-1 and the
pathogenesis of diabetes and its complications. HO-1 is involved in the regulation of macrophage polarization and promotes the
M1 state (pro-inflammatory) towards to the M2 state (anti-inflammatory). Induction of HO-1 expression in dendritic cells inhibits
them maturation and secretion of pro-inflammatory cytokines and promotes regulatory T cell (Treg cell) responses. The induction of
HO-1 can reduce the production of reactive oxygen species, thereby reducing oxidative stress and inflammation. Besides, HO-1 also
has an important effect in novel programmed cell death such as pyroptosis and ferroptosis, thereby playing a protective role
against diabetes. In conclusion, HO-1 plays a significant role in the occurrence and development of diabetic complications and is
closely associated with a variety of complications. HO-1 is anticipated to serve as a novel target for addressing diabetic
complications, and it holds promise as a potential therapeutic agent for diabetes and its associated complications. We hope to
provide inspiration and ideas for future studies in the mechanism and targets of HO-1 through this review.
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FACTS

● Diabetic complications are various and the pathological
mechanism is complex.

● HO-1 is involved in a variety of pathological mechanisms of
diabetic complications, especially inflammation and cell death
caused by oxidative stress.

● HO-1 induction also brings negative effects, inducing ferrop-
tosis, CO toxicity.

● Targeting HO-1 may provide new strategies for the prevention
and treatment of diabetes.

OPEN QUESTIONS

● What are the therapeutic targets or strategies suitable for the
various diabetic complications?

● How does HO-1 interact or cross-regulation in different modes
of cell death?

● How to regulate the dual character of HO-1 in ferroptosis?
● How to develop precise strategies for the toxicity of HO-1

targeted therapy?

INTRODUCTION
Diabetes mellitus (DM, abbreviations are defined in Table 1) is a
major public health problem worldwide, which imposes heavy
economic and medical burdens on patients and healthcare
systems [1, 2]. The International Diabetes Federation predicted
that the number of individuals inflicted with DM is slated to
surpass 578 million globally by 2030, including both developed
and developing countries. By 2045, the number of DM patients
could soar to a staggering 783.2 million [3, 4]. The development of
DM related complications has raised mortality rates and resulted
in significant medical expenses. Diabetes patients frequently have
a wide range of complications encompassing diabetic cardiovas-
cular diseases, diabetic neuropathy, diabetic foot ulcers, diabetic
retinopathy and diabetic nephropathy, which have a substantial
negative influence on the physical and psychological health of
these individuals (Fig. 1) [5]. Consequently, it is crucial to
investigate the underlying causes and effective treatments for
diabetes and its associated complications.
Heme oxygenase (HO) has three distinct isoenzymes, respec-

tively namely heme oxygenase 1 (HO-1), heme oxygenase 2 (HO-
2) and heme oxygenase 3 (HO-3) [6]. HO-1 is found in various
tissue cells throughout the human body, which has the potential
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to regulate the onset and advancement of diabetic complications,
such as cardiovascular disease, neuropathy, and renal disease
[7–9]. HO-1 expression is mainly regulated by the activation of
nuclear factor-erythroid2-related factor 2 (Nrf2). In the normal
state of cells, Nrf2 binds to kelch-like ECH-associated protein-1
(Keap1) to form a complex, which exists in the cytoplasm. When
cells are subjected to oxidative stress, Nrf2 dissociates from Keap1
and moves to the nucleus to bind to the promoter of HO-1,
promoting the transcription and expression of HO-1 [10]. Its main
function is to catalyze the combination of heme molecules with
oxygen, resulting in the formation of oxyhemoglobin. Subse-
quently, it breaks down oxyhemoglobin into ferric ions, carbon
monoxides (CO) and bilirubin (BR) in a process known as heme
metabolism. Among them, heme, being essential for all oxygen-
demanding organisms, is synthesized from protoporphyrin IX and
ferrous ions [11]. Heme produces signaling molecules, such as CO,
biliverdin (BV), BR and Fe2+, through the catalysis of HO-1. Each of
these molecules exerts distinct effects on cellular function, both
locally and distally, through individual molecular targets [12, 13].
BV, a breakdown product of HO-1, can potentially enhance the
production of BR, a compound with the potential to prevent
diabetes. This effect is achieved by increasing HO-1 activity and
signaling to biliverdin reductase (BVR). Bilirubin is produced
through a reaction catalyzed by both HO-1 and HO-2, which also
simultaneously releases CO and Fe2+. NADH and NADPH serve as
electron donors in this process. The conversion of bilirubin to
BRHO-1, catalyzed by BVR-A, plays a role in defending the body
against oxidative stress, diseases and injuries [14]. HO-1 and HO-2
are the products of two distinct genes, which are located in
chromosome 22 for HO-1 and chromosome 16 for HO-2,
respectively. HO-1 and HO-2 degrade heme in the same pattern,
releasing biliverdin, CO, and Fe2+. In contrast to HO-1, the HO-2
isozyme is constitutively expressed, highly detectable in brain,
testis, endothelial and smooth muscle cells from cerebral vessels.
Most studies have shown that the presence of HO-2 indicates a
crucial role in male reproductive system and brain related
diseases, although some studies have found HO-2 in the
prevention of kidney injury and diabetes. However, the HO-3 is
thought to be a pseudogene processed from HO-2 transcripts, and
its function is not known [15, 16].
Research has established an abnormal HO-1 expression among

diabetic individuals, especially in those with complications like
cardiovascular disease, neuropathy, nephropathy and diabetic
foot ulcers [17, 18]. Type 1 diabetes mellitus (T1DM) is a chronic

autoimmune disease characterized by impaired insulin secretion,
while type 2 diabetes mellitus (T2DM) is mainly caused by
insufficient insulin secretion or insulin resistance. HO-1 in β cells
and immature dendritic cells can delay autoimmune damage in
pancreatic islet transplants and effectively maintain immune
tolerance, which helps to delay the onset of T1DM in NOD mice
model [19]. In type 2 diabetes, the reduced expression of HO-1 will
increase the production of ROS, leading to oxidative stress and
inflammatory reaction, further aggravating cell damage (Table 2).
The studies mentioned above propose the possibility of the
involvement of HO-1 in the control of both diabetes and its
related complications.

THE FUNCTION OF HO-1 IN INFLAMMATORY REACTION
In various experimental models of inflammation, HO-1 induction
produces favorable effects. Inflammatory pathways have been
implicated as potential pathogenic mediators of many diseases,
including obesity, immune diseases, metabolic diseases and
infections [20–22]. Indeed, inflammation has emerged as a crucial
determining factor of the evolution of DM, as well as major
complications and cardiovascular disease [23, 24]. The human
inflammatory response is an intricate biological process that
entails the interaction of various immune cells and molecules. The
persistence of hyperglycemia in diabetes triggers a sequence of
local metabolic, vascular, and neurochemical modifications, which
ultimately culminate in vascular disease and microangiopathy [25].
In this process, a vital role in causing considerable harm to the
Schwann cells and neurons in the peripheral nervous system is
played by pro-inflammatory cytokines produced by cells that are
resident or have infiltrated [26]. Macrophages regulate the
inflammatory process depending on their differentiation status.
Classical macrophages (M1) are responsible for triggering the
inflammatory response via the secretion of pro-inflammatory
cytokines and reactive oxygen species (ROS). Conversely, alter-
natively activated macrophages (M2) work towards inflammation
resolution and promote tissue remodeling via the discharge of
interleukin-10 (IL-10) and transforming growth factor β (TGF-β)
[27, 28]. For instance, in a basic inflammatory response like
infected tissues, macrophages typically undergo a sequential
transition between the M1 and M2 phases. M1 macrophages play
a key role in the initial stages of the inflammatory response by
releasing considerable amounts of inflammatory agents such as
tumor necrosis factor α (TNF-α), IL-6 and IL-12, which contribute to

Table 1. Abbreviations.

Abbreviations

APCs antigen-presenting cells IL interleukin

BR bilirubin MAPK mitogen-activated protein kinase

BV biliverdin MCP-1 monocyte chemotactic protein 1

BVR biliverdin reductase MDA malondialdehyde

CO carbon monoxides NETosis necrotic extracellular traps

DAMPs danger associated molecular patterns Nrf2 nuclear factor erythroid 2-related factor2

DFU diabetic foot ulcer PAMPs pathogen associated molecular patterns

DM diabetes mellitus ROS reactive oxygen species

DN diabetic nephropathy SDF-1 stromal-derived factor-1

DR diabetic retinopathy SOD superoxide dismutase

EGR-1 early growth response protein 1 TGF-β transforming growth factor β
GPx4 Glutathione peroxidase 4 TNF-α tumor necrosis factor α
GSH glutathione VDR vitamin D receptor

HMGB1 high-mobility group box-1 VEGF vascular endothelial growth factor

HO heme oxygenase Treg cells regulatory T cells
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aggravating inflammation. Subsequently, M2 phenotype is polar-
ized from macrophages and primarily responsible for tissue repair
and anti-inflammatory pathways via producing mediators such as
IL-10 and TGF-β [29]. However, the response is distinct in chronic
inflammatory diseases such as atherosclerosis in diabetic mice and
diabetic nephropathy [30, 31]. In these disorders, the coexistence
of M1 and M2 macrophages results in the formation of complex
cellular networks, which exacerbate persistent inflammation and
fibrosis, further accelerating disease progression. Studies have
demonstrated that induction of HO-1 expression in macrophages
yields amplified antioxidant efficacy and mitigates the inflamma-
tory aspect of atherosclerotic lesions. The lowered or nonexistent
HO-1 expression within macrophages is linked to an increase in
pro-inflammatory cytokine expression, namely monocyte chemo-
tactic protein 1 (MCP-1) and IL-6. Furthermore, this association is
also observed in scavenger receptor A expression, leading to the
formation of foam cells [32–34]. Interestingly, polarization of M2
macrophages is also associated with HO-1 expression in diabetes
[35, 36]. M2 macrophage polarization reduces the apoptosis of
interstitial cells of Cajal in diabetic rats, which is mediated by the
activation of Nrf2/HO-1 pathway [37]. At the same time, the
activation of HO-1-related pathways promotes the polarization of
M2 macrophages to improve diabetic-inflammatory response,
oxidative stress, and cell proliferation have been verified by
various of studies [38–40]. Although studies on the relationship
between HO-1 and macrophages in diabetes or its complications
are limited, the mechanisms by which macrophages maintain the
microenvironment stability of the body and HO-1’s excellent
antioxidant and anti-inflammatory properties suggest that target-
ing HO-1 with macrophages may be a treatment choice for
diabetes (Fig. 2A).
Other studies have confirmed that HO-1 obstructs the initiation

of inflammation and ROS by directly regulating the activation of
immune cells, including the antigen-presenting cells (APCs) and
lymphocytes [41–43]. HO-1 was first demonstrated to block the
maturation process of dendritic cells to exert a suppressive effect
on inflammatory response in 2005 [44]. HO-1 expression was
significantly reduced during dendritic cell maturation in vitro,
which corresponds to the absence of HO-1 expression by mature

dendritic cells in human tissues. Induction of HO-1 expression in
dendritic cells can maintain their immature state, further
preventing polarization of T cells towards to inflammatory phase
(TH1 cells and TH17 cells) and promoting Treg cell responses
[45–47]. Related findings have also been found in the treatment of
diabetes. Compared with uninduced mice, HO-1 expression
induced in dendritic cells showed a lower incidence of T1DM
and reduced the risk of insulitis (Fig. 2B). Induction of HO-1
expression in dendritic cells also prevented further hyperglycemia
in recently diabetic NOD mice [19]. HO-1 regulated immune
balance by reducing the expression of pro-inflammatory TH1
cytokines towards a beneficial TH2 pattern, restoring Treg cell
responses in diabetic mice and T2DM patients [48, 49]. These
observations suggested that induction of HO-1 ameliorates
detrimental inflammation in a variety of diseases, which also
exhibited the preventive therapeutic approaches and manage-
ment strategies of HO-1 expression for diabetes.
Another curative function of the HO-1 is to facilitate the

conversion of heme into BV, Fe2+ and CO in equimolar quantities,
thus promoting efficient antioxidant and anti-inflammatory effects
[50]. The BV produced during these metabolic processes is rapidly
transformed into BR through the action of BV reductase, which has
a beneficial impact on numerous biological processes [51, 52]. HO-
1 has been demonstrated to inhibit the inflammatory response via
the simultaneous production of two anti-inflammatory molecules,
CO and BR, as well as the removal of the pro-inflammatory factor
heme [53]. The administration of hemin results in the boost of HO-
1 expression and mitigates inflammatory responses in retinal
ganglion cell injury in diabetic retinopathy, as well as diabetic
wound healing, diabetic kidney function and [54–56]. CO can
selectively impede the functioning of TNF-α, IL-1β and macro-
phage inflammatory proteins, which are pro-inflammatory cyto-
kines, triggered by LPS [57, 58]. Meanwhile, CO actively promoted
the production of the anti-inflammatory cytokine class IL-10 [59].
CO also suppressed the function of early growth response protein
1 (EGR-1), a crucial transcription factor in the inflammatory
response initiated by macrophages [60]. Inflammation plays a
pivotal role in exploring the pathophysiology of diabetic
complications. The damage induced by hyperglycemia was

Fig. 1 Major complications of diabetes. Defects in insulin secretion caused by a series of problems such as diet will lead to hyperglycemia
and further trigger various chronic complications, including cardiovascular disease, retinopathy, nephropathy, neuropathy, foot ulcer.
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generally regarded as results from a series of chain reactions
triggered by inflammatory responses, leading to increased activity
of the transcription factor NF-κB. This in turn enhances the activity
of pro-inflammatory cytokines like TNF-α and leukocytes. Numer-
ous studies have demonstrated that HO-1 has a significant effect
on diabetic complications, with induction of HO-1 protein
expression enhancing antioxidant defense and reducing inflam-
matory factors (Table 2). Notably, induction of HO-1 expression
alleviated diabetic neuropathic pain and facilitated modulation of
the diabetic nerve functions [61, 62]. The crucial role of HO-1 in
safeguarding neurons against inflammation is also supported by
related experiments with the Nrf2 inhibitor ML385 and si-HO-1
[63]. Therefore, HO-1, as a key factor in the inflammatory response,
is expected to provide effective strategies for the prevention and
treatment of diabetic complications and can provide novel ideas
and drug targets for the prevention and treatment of clinical
diseases.

THE ROLE OF HO-1 IN PROGRAMMED CELL DEATH IN
DIABETES MELLITUS
Cell death is a fundamental physiological process in living
organisms, which can be programmed or triggered by accident.
Programmed cell death is an active and orderly way of death
determined by genes. When host cells are attacked by exogenous
and endogenous stimulating factors, different signaling pathways
lead to lysis or non-lytic morphology [64]. Apoptosis is a widely
studied mild non-lytic mode of cell death characterized by a
decrease in cell volume and fragmentation of the nucleus and
involved in many diseases including diabetes [65]. Conversely,
lytic cell death is highly inflammatory, such as pyroptosis,
necroptosis, and necrotic extracellular traps (NETosis) [66].
Pyroptosis, a pro-inflammatory programmed cell death trig-

gered by activated Caspase-1/Caspase-11, which can lead to
inflammatory cytokines IL-18/IL-1β release to activate pro-
inflammatory immune cell mediators. NLRP3 is an inflammasome
sensor protein that can perceive various DAMPs (danger-
associated molecular patterns) and PAMPs (pathogen-associated
molecular patterns). DAMPs including mitochondrial dysfunction,

ionic flux confusion, and the active oxygen generation, which
trigger pyroptosis and have been implicated in the kidney
pathogenesis of many diseases including diabetes. The ASC as a
small intermediary protein between Caspase-1 and most inflam-
masomes; the PYD domain of ASC interacts with the PYD of
inflammasomes, and its caspase activation domain and CARD
domain interact with the CARD of Caspase-1 to form the NLRP3
complex. After the inflammatory complex activation of NLRP3,
Caspase-1 is markedly activated by the NLRP3 complex to form
active Caspase-1. The precursors of IL-18 and IL-1β are cleaved
into biologically active mature IL-18 and IL-1β by activated
Caspase-1 and secreted through the cell membrane pyrototic
pores. On the other hand, gasdermin D is cleaved into N-terminus
and C-terminus by activated Caspase-1. N-terminal fragments
promote the formation of cell membrane pyroptotic pores, which
further leads to pyroptosis [67, 68]. Pyroptosis plays an important
role in the progression of many diseases, including diabetes and
its complications. Studies have shown that the protein level of HO-
1 was downregulated and NLRP3/Caspase-1 was significantly
activated, while HO-1 induction could reverse the activation of
these pyroptosis-related proteins. This mechanism was validated
by dapagliflozin (hypoglycemic agents) and atorvastatin (hypolipi-
demic agents) treatment in diabetic mice kidney and PA/high
glucose-induced podocytes [69, 70]. Syringaresinol is a natural
plant-derived polyphenolic compound, triptolide as a complex
triepoxide diterpene natural product, similar protective effects
have been observed in diabetic kidney-related studies [71, 72].
HO-1 was also found to be involved in a protective effect by
inhibiting pyroptosis in diabetic cardiomyopathy [73].
Ferroptosis is an innovative mechanism of cell death that is

mostly caused by the deposition of lipid peroxides and uneven-
ness in the regulation of iron levels due to disruption of
intracellular metabolic pathways. Ferroptosis is significantly
different from the previously known apoptosis or autophagy in
cell morphology, in which cell membrane rupture does not occur
during ferroptosis. The mitochondrial membrane became denser
and the outer membrane appeared ruptured, the structure of the
cristae disappeared and the volume decreased. However, the
volume of the nucleus does not change significantly, there is a

Fig. 2 HO-1 reduced inflammatory response via affecting immune regulation. A Induction of HO-1 facilitated the differentiation of
macrophages into anti-inflammatory M1 and the release of IL-10. And inhibitedthe production of reactive oxygen species to reduce
inflammation. B HO-1 expression in dendritic cells promotedtheir anti-inflammatory activity and inhibited differentiation of cytotoxic T cells.
Induced expression of HO-1 proteindecreases the expression of pro-inflammatory TH1 cytokines shifted to a beneficial TH2 pattern and
promotesantigen-specific Treg cell differentiation.
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lack of chromatin condensation but the chromosome structure
does not disappear, and the rupture of the cell membrane does
not occur in the process of ferroptosis. Ferroptosis is biochemically
characterized by the generation of ROS and iron overloading. ROS
and intracellular iron accumulation are important processes that
trigger the mitogen-activated protein kinase (MAPK) pathway,
decrease intracellular glutathione (GSH) depletion, and limit
cystine absorption. Meanwhile, the activity of the cysteine-
glutamate transporter protein system XC- activity is inhibited,
further exacerbating the process. Glutathione peroxidase 4 (GPx4),
is the only enzyme in cells that can reduce lipid peroxides to
normal phospholipid molecules, its activity is crucial for maintain-
ing normal cell function and ferroptosis [74]. Inhibition of cysteine-
glutamate transporter protein system (e.g., Erastin) will deplete
intracellular GSH, eventually resulting in the inactivation of GPx4
and the accumulation of lipid peroxidation, which can induce cell
ferroptosis to a certain extent [75]. Furthermore, cellular antiox-
idant capability is also decreased by suppressed GPx4 expression
(e.g., RSL3), which results in lipid peroxidation and ferroptosis [76].
The molecular regulation and pharmacological mechanisms of
ferroptosis in disease and therapy are of great significance, and
increasing evidence suggests that ferroptosis is associated with
the pathogenesis of diabetes-related complications (Table 2).
Quercetin is an important flavonoid with a variety of protective
properties, it has been shown that quercetin inhibits ferroptosis in
renal tubular epithelial cells by activating the HO-1 signaling
pathway to regulate the expression level of antioxidant enzymes
and by reducing intracellular ROS production and iron overloading
[77]. However, another study showed the process of ferroptosis
may exacerbate proteinuria, damaging renal tubules and promot-
ing renal fibrosis via the HIF-1α/HO-1 pathway in diabetes models.
The levels of HIF-1α and HO-1 were raised in diabetic kidney tissue
exacerbated tubular iron accumulation, enhanced the lipid
peroxidation response, and augmented the generation of ROS.
Ferrostatin-1 significantly alleviates renal tubular injury and renal
scar formation in db/db mice by preventing ferroptosis and
reducing HIF-1α and HO-1 [78]. Numerous studies have shown

that vitamin D receptor plays a positive role by inhibiting
ferroptosis [79–81]. Paricasitol as a VDR agonist can inhibit
ferroptosis by activating VDR/Nrf2/HO‐1 signaling pathway in
DN, which effectively attenuates iron deposition in renal tubular
epithelial cells and renal damage after diabetic injury [82]. At the
same time, the elevated HO-1 expression helps to scavenge free
radicals such as peroxynitrite, which is achieved through the
overexpression of BV, thus ultimately inhibiting the process of
lipid peroxidation [83]. In conclusion, the relationship between
HO-1 and programmed cell death in diabetes deserves further
investigation (Fig. 3).

ROLE OF HO-1 IN REGULATING DIABETIC CARDIOMYOPATHY
Diabetic cardiovascular disease is the microvascular and macro-
vascular disease of the cardiovascular system caused by diabetes,
which includes coronary heart disease, diabetic cardiovascular
autonomic neuropathy, and diabetic cardiomyopathy [84]. Com-
pared with non-diabetic patients, the incidence and mortality of
cardiovascular disease in diabetic patients are higher [85]. The key
risks of cardiovascular disease in diabetes are vascular endothelial
dysfunction and impaired angiogenesis [86, 87]. Vascular dysfunc-
tion serves as the primary underlying cause of cardiovascular
illness occurrence in patients experiencing anomalous glucose
metabolism. The majority of diabetic fatalities arise from vascular
impairments, including myocardial infarction and cerebrovascular
afflictions. Insulin resistance, as well as the conditions of
hyperinsulinemia, hyperglycemia, and elevated free fatty acids,
play a substantial role in causing injury to cardiomyocytes,
deteriorating their functionality, and leading to myocardial
lipotoxicity in individuals with diabetes [88]. Diabetic cardiomyo-
pathy increases mortality in diabetic patients by causing heart
failure and is characterized by a multitude of interrelated systems
that are influenced, including calcium homeostasis, renin-
angiotensin system, protein kinase C signaling pathway, metabo-
lism, mitochondria, fibrosis, and oxidative stress [89]. Interstitial
fibrosis occurs after cardiomyocyte sclerosis, and collagen cross-

Fig. 3 Enzymatic heme catabolism and regulation of HO-1 and its catalytic products in programmed cell death. Heme is catalyzed by HO-
1 to form CO, Fe2+, and BV, and BV forms BR under the catalysis of biliverdin reductase. Both BV and BR have cellular antioxidant activities. Iron
can act as a pro-oxidant or can trigger the synthesis of ferritin and play a role as a synergistic cytoprotective agent. CO can regulate a variety of
cellular processes such as inflammation, apoptosis. In addition, HO-1 is also involved in the process of pyroptosis and ferroptosis.
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links through late glycosylation products, ultimately leading to
contractile dysfunction [90].
Induction of HO-1 expression is critical for preventing vascular

dysfunction, endothelial cell death, and elevated ROS levels [91].
Moreover, research conducted in vitro has indicated the remark-
able antioxidant properties of the bilirubin, which is derived from
HO-1. Bilirubin has demonstrated the ability to enhance the
protection of vascular endothelial cells, even when the concentra-
tion of this compound is in the nanomolar range. Bilirubin
prohibits oxidative stress injury by directly scavenging reactive
oxygen radicals and indirectly by restraining the activity of
nitrogen compounds [92, 93]. HO-1 plays a significant function in
vascular tissues by safeguarding endothelial cells from various
apoptotic stimuli, thereby regulating endothelial cell cycle control,
proliferation, vascular endothelial growth factor (VEGF) secretion,
and angiogenesis [94, 95]. Furthermore, the increased expression
of HO-1 in individuals suffering from heart failure serves to
mitigate the adverse effects of pathological left ventricular
remodeling, diminish myocardial hypertrophy, minimize oxidative
stress, and abate inflammatory activation [96]. HO-1–/– mice were
used to prove that the deletion of HO-1 would aggravate
myocardial injury in ischemia/reperfusion, especially related to
diabetes. Compared with the HO-1+/+ mice (21.4 ± 1.8%), the
myocardial infarct area significantly reached at 36.4 ± 20% in HO-1
deficient mice. Furthermore, the specific induction of HO-1 had a
protective effect in diabetic mice suffering from myocardial
ischemic injury [97]. Research in mice lacking HO-1 has revealed
the overall function of HO-1 in restoring functional macrophages,
maintaining iron balance within tissues, and increasing tolerance
to oxidative stress conditions [98–100]. The protective effects of
HO-1 induction in cardiac tissues can be further demonstrated by
prolonging the survival time of allogeneic cardiac grafts, decreas-
ing the mortality rate, and preserving the left ventricle [101, 102].
Generally, HO-1 levels remain low across diverse tissues except for
the spleen, but diverse stimuli (like hydrogen peroxide, UV
radiation, endotoxins, and hypoxia) can cause a strong inducible
response for shielding cells from damaging oxidative and
inflammatory agents [34]. Though limited, research data proposes

activation of HO-1 as a prospective approach to amplify
endothelial cell longevity with HO-1 byproducts CO and bilirubin,
which could postpone the emergence of diverse cardiovascular
complications related to diabetes. However, these studies are still
in the preliminary stage, and the specific mechanism of action and
effects need further research and validation [91, 103]. Therefore,
we can expect more studies to reveal the specific role of HO-1 in
diabetic cardiomyopathy in the future.
In addition to its direct effects on the cardiovascular system,

HO-1 may also indirectly affect the occurrence and development
of cardiovascular diseases in diabetes by regulating other
biological processes. For example, HO-1 can affect insulin
sensitivity and glucose metabolism, thereby improving glycemic
control in diabetic patients [104]. Furthermore, HO-1 can affect
biological mechanisms such as inflammatory response and
oxidative stress, both of which significantly contribute to the
onset of cardiovascular diseases precipitated by diabetes. Besides,
HO-1 improved cardiovascular function by regulating cellular
signaling pathways and promoting angiogenesis, etc (Table 2).
AMPK is an energy receptor that is activated when cells are low

on energy and regulate multiple metabolic pathways through
phosphorylation to maintain energy homeostasis. In diabetic
cardiomyopathy, energy metabolism in cardiomyocytes may be
impaired due to factors such as hyperglycemia and insulin
resistance. Therefore, induction of HO-1 may activate AMPK
pathway by enhancing the phosphorylation, thereby improving
energy metabolism in cardiomyocytes [105, 106]. Autophagy is an
intracellular degradation process that provides energy and
nutrition by degrading damaged organelles and macromolecules
[107]. In diabetic cardiomyopathy, the autophagy pathway may be
inhibited, which leads to the accumulation of harmful substances
in cardiomyocytes. LC3-II and Beclin-1 are key molecules in the
autophagy pathway, induction of HO-1 activates the autophagy
pathway by increasing the expression of LC3-II and Beclin-1,
thereby removing harmful substances from cardiomyocytes [108].
Cardiomyocyte apoptosis and cardiac fibrosis were increased in
the mouse model of diabetic cardiomyopathy, the protein
expression of Nrf2 and HO-1 was reduced in left ventricular

Fig. 4 HO-1 may be involved in diabetic cardiomyopathy by regulating various signaling pathways. The increased expression of HO-1 can
be reduced oxidative stress, inflammation, ferroptosis, pyroptosis, and apoptosis, improve myocardial hypertrophy and fibrosis. Notably, HO-1
plays a protective role by enhancing autophagy.
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cardiomyocytes. After treatment with salidroside, Nrf2, and HO-1
were significantly restored, cardiac apoptosis, hypertrophy, and
fibrosis were also improved [109]. Myricetin is a naturally occurring
flavonol with a strong antioxidant effect. Studies have shown that
myricetin significantly increased the activity of the Nrf2/HO-1
pathway to enhance the resistance to oxidative stress, demon-
strated the reversal of glutathione peroxidase (GPx) and super-
oxide dismutase (SOD) activities, and reduced malondialdehyde
(MDA) production [110]. High glucose-induced accumulation of
persistent peroxidation in cardiomyocytes triggers ferroptosis and
results in cell damage in H9C2 cells and New Zealand rabbits.
Curcumin is a natural phenolic antioxidant, can increases Nrf2
transfer into the nucleus and promote HO-1 expression, reducing
the excessive downregulation of GPx4 [111]. Besides, HO-1 was
also involved in the protective effects of curcumin against
pyroptosis, apoptosis, and oxidative stress in diabetic cardiomyo-
pathy [73, 112].
In summary, the utilization of HO-1 as a multifunctional

molecule shows remarkable promise in improving cardiovascular
dysfunction, especially in diabetes-related cardiovascular diseases
(Fig. 4). Its superior properties in terms of shielding cardiovascular
well-being stem from its potential as both an antioxidant and anti-
inflammatory agent. Despite the immense potential of HO-1 in
mitigating the manifestation of diabetes-related cardiovascular
disorders, there exists a dearth of studies that explore its precise
action mechanism and applicability. By reviewing deeper into the
mechanism of HO-1 functions, we hope to devise innovative
therapeutic measures that are aimed at preventing and curing
diabetes-associated cardiovascular complications, ultimately
enhancing the well-being and prospects of the patients
concerned.

HO-1 IS INVOLVED IN DIABETIC WOUND HEALING
Diabetes mellitus has a range of complications, among which
diabetic foot ulcer (DFU) stands as a significant one. The diabetic
environment often results in impaired wound healing processes
for DFU, mainly attributed to excess oxidative stimulation,
prolonged inflammation, dysfunction of immune cells, delayed
reinnervation, and reduced angiogenesis at the wound site [113,
114]. The significance of neovascularization, inflammation, and
apoptosis might imply that HO-1 plays a role in governing the
process of wound healing [115].
Several studies have shown that hyperglycemia affects skin

wound healing in diabetic rats [116, 117]. Induction of HO-1
reduced inflammatory cytokines, such as TNF-α and IL-6, increased
antioxidants, and improved angiogenesis in wound tissues of
diabetic rats, thereby wound healing was accelerated in the
diabetic state [118]. Along with its angiogenic and cytoprotective
enzyme functions, HO-1 performed crucial biological activities,
making it highly significant in the wound healing process. Its
enzymatic activity generates bioactive end products like CO, BV,
and BR, which have a mediating effect on wound healing
[119–121]. It was shown that increased HO-1-derived CO
production has a vascular protective effect on T1DM, reduces
endothelial cell fragmentation, and decreases ICAM-1, VCAM-1
expression, and Caspase-3 activity [122].
Diabetes patients exist in excessive oxidative stress and

inflammation, these factors impair the response to skin damage
[123]. HO-1 serves as a strong antioxidant that possesses anti-
inflammatory as well as cell proliferation-promoting abilities.
When the skin is damaged, the process of hemolysis releases
hemoglobin (a pro-oxidant), which can further contribute to the
induction of HO-1 [124]. Furthermore, HO-1 expression can be
triggered by oxidative stress, inflammation, and hypoxia, and HO-
1 and its products of enzymatic activity have the effect of reducing
oxidative stress and pro-inflammatory factors. More importantly,
they also promote cell viability, production of anti-inflammatory

factors, as well as cell migration, proliferation, and angiogenesis,
thus contributing to the healing process of diabetic wounds. A
major factor contributing to chronic wound healing failure in
diabetic patients is ROS overproduction and decreased antiox-
idant defenses [125]. The activation of HO-1 serves as a vital
cellular defense mechanism against oxidative stress and possesses
robust antioxidant properties. Hemin acts as a potent inductor of
HO-1, which promotes the healing process through the reduction
of oxidative stress as is evident by the diminished level of lipid
peroxidation, and elevated levels of various antioxidant defense
mechanisms, including GSH, SOD, GPx, and catalase [55, 120]. The
presence of HO-1 significantly reduces the levels of inflammatory
markers associated with diabetic wounds such as TNF-α, IL-1β, IL-
6, iNOS, COX2, MCP-11, and MIP-1, while simultaneously boosting
the levels of IL-10 [126].
HO-1 also plays an immunomodulatory effect in a variety of

immune cells. In macrophages, increased HO-1 expression shows
the ability to convert mobilized M1 macrophages into alternately
activated M2 macrophages with anti-inflammatory effects, which
is essential for the wound healing phase [127]. The process of
wound healing requires the presence of angiogenesis. It is a
commonly accepted fact that wounds in diabetic patients exhibit
decreased levels of angiogenic factors, resulting in impairment of
angiogenesis [128, 129]. HO-1 has the potential to stimulate the
angiogenesis by elevating the expression of several pro-
angiogenic factors including VEGF, translational growth factor-1
(TGF-1), and stromal-derived factor-1 (SDF-1) [130, 131]. As a
methoxyindole secreted by the pineal gland, melatonin can
increase the number of EPCs and enhance EPCS-mediated
angiogenesis by induction HO-1 [132]. The anti-apoptotic proper-
ties of HO-1 have also been fully confirmed in several studies.
Gynura divaricata (L.) DC. (GD), a traditional Chinese herbal
medicine with hypoglycemic effects promotes angiogenesis and
granulation tissue growth, which contribute to faster wound
healing in diabetic SD rats. At the same time, GD improves
HUVECs cells survival efficiency, reduces ROS generation and cell
apoptosis, restores MMP, improves migration ability, and increases
VEGF expression. These beneficial effects were abolished when
inhibition was performed by using Nrf2-siRNA. It suggested that
GD activates Nrf2 signaling pathway to increase HO-1 expression
to regulate the expression of related proteins [133]. As a glucagon-
like peptide-1 (GLP-1) receptor agonist used clinically to treat type
2 diabetes mellitus, liraglutide improves endothelial dysfunction
caused by hyperglycemia, thereby preventing angiogenesis
disorders in C57BLKs/J mice of wound model. Liraglutide also
induction HO-1 expression by activating AMPK and promoting
HIF-1α protein export from cytoplasm to nucleus, which sig-
nificantly increases the expression of anti-apoptotic protein Bcl-2
and decreases the expression of pro-apoptotic Bax and Caspase-3
in HUVECs cells [134]. Turmeric-derived nanoparticles functiona-
lized aerogel (TDNPs) can regulate the polarization balance
between pro-inflammatory M1 and anti-inflammatory M2 in
RAW 264.7 and restore macrophage-fibroblast communication
network in L929 cells to ameliorate diabetes wound healing.
Moreover, TDNPs have been verified to activate the Nrf2/HO-
1 signaling pathway to promote the proliferation and migration of
fibroblasts by improving their endogenous antioxidant capacity
and reducing cell apoptosis [40]. Pyroptosis has also been
confirmed to be involved in diabetic wounds, and cold atmo-
spheric plasma can reduce major mediators NLRP3, Caspase-1,
and IL-1β [58, 135]. However, there is no conclusive evidence to
associate pyroptosis with HO-1 in diabetic wounds. Chronic
hyperglycemia can induce circulating accumulation of lipid
peroxidation products and impaired iron metabolic pathways,
which results in the presence of a variety of free iron in plasma.
Intracellular iron overload and accumulation of lipid peroxides are
the characteristics of ferroptosis, so ferroptosis is considered as
one of the potential mechanisms of delayed wound healing in
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diabetics [136, 137]. The mechanism of HO-1 in ferroptosis
pathway of diabetic wounds has been rarely explored, and we
believe that this is a work worthy of further investigation. We can
excavate the value and significance of diabetic wound healing
through a comprehensive and systematic study.
Significant progress has been made in improving tissue healing

and regeneration, but treatment options for untreated patients
with chronic diabetes remain limited. Regulation of the complex
wound healing process has proved to be a challenging task in
diabetic patients due to impaired cellular function due to an
excessive oxidative and inflammatory environment. HO-1 is
considered as a promising therapeutic approach because of its
crucial role as a marker in wound healing phases. Regulating HO-1
activity could be an effective strategy in treating diabetic foot
ulcers, given its significance in every stage of wound healing. This
highlights the potential to exploit HO-1 as a valuable target for
therapeutic intervention in DFU cases (Fig. 5).

DEVELOPMENT AND ROLE OF HO-1 IN REGULATING DIABETIC
NEPHROPATHY
Diabetic nephropathy (DN) is a widespread factor contributing to the
morbidity and mortality in patients with T1DM and T2DM. End-stage
diabetes is increasingly becoming one of the main causes of chronic
renal failure, timely intervention of DN to prevent its development
into end-stage renal disease has become a priority. DN is
pathologically characterized by mesangial matrix thickening, progres-
sive destruction of glomerular and tubulointerstitial, and loss of
functioning glomeruli, ultimately leading to chronic renal failure [138,
139]. Various factors are involved in the progression of DN, such as
disorder of oxygen metabolism and lipid metabolism, hyperglycemia,
advanced glycosylation products, and inflammatory response
[140, 141]. What makes sense is that persistent HO-1 stimulation
diminishes hyperglycemia and enhances glucose metabolism while
shielding renal tissues, partially or entirely, against hyperglycemic
injuries. It is expected that HO-1’s antioxidant capabilities are
accountable for this protection [142]. With multiple studies consider-
ing HO as a feasible target, the treatment of DN seems to have new

prospects. There exist three distinct isoforms of HO referred to as HO-
1, HO-2, and HO-3. HO-1 is renowned for its positive impacts including
anti-apoptotic, antioxidant, anti-nitrosative, as well as anti-
inflammatory effects against iNOS among three isoforms.
In various diseases, reduction of reactive oxygen species (ROS)

accumulation by HO-1 induction. DM and its complications are
significantly influenced by ROS. The role of ROS in the pathogenesis
of DM, specifically in the development of DN, has been significantly
highlighted [143]. When ROS accumulates excessively, it will cause
oxidative stress damage to cells. ROS can cause oxidative damage to
unsaturated fatty acids, proteins, DNA, and other important molecules
in cells. In turn, these damaged cells are the targets of elimination by
the immune system, which results in the production of endogenous
injury-related molecular patterns and the release of cytokines.
Inflammation is usually triggered by these dangerous molecular
patterns and factors [144]. A variety of drugs have been reported to
alleviate renal tissue damage by reducing ROS and inflammation,
most of which is achieved through the Nrf2/HO-1 signaling pathway
(Table 2). Shenkang injection is an active ingredient extracted from
four medicinal plants: Radix et Rhizoma Salviae Miltiorrhizae, Radix
Astragali, Flos Carthami, Radix et Rhizoma Rhei. Shenkang injection
can improve the kidney function of diabetic SD rats by increasing the
expression of antioxidant enzyme GPx4 and promoting the activation
of antioxidant system. The molecular mechanism may be via the
Keap1/Nrf2/HO-1 axis modulation [10]. Baicalin, a flavonoid, effectively
increases the levels of GSH-PX, SOD, and catalase, inhibits the
infiltration of inflammatory cells such as T-lymphocytes, T-helper cells,
neutrophils, and macrophages, as well as the mRNA levels of pro-
inflammatory cytokines (IL-1β, IL-6, MCP-1, and TNF-α) [145]. The relief
of oxidative stress and inflammation in kidney of C57BLKs/J mice is
due to the activation of Nrf2/HO-1 and MAPK signaling pathways.
Notoginsenoside R1 promoted HO-1 expressions to reduce oxidative
stress-induced apoptosis and kidney fibrosis in HK-2 cells and C57BL/
6J mice [146]. As described above, AMPK are sensors and protectors
of cellular energy needs. Echinochrome A, a natural bioproduct
extracted from sea urchin, protects mitochondrial function against
oxidative stress damage by activating AMPK phosphorylation and
regulating the AMPKα/Nrf2/HO-1 pathway [147].

Fig. 5 Beneficial role of HO-1 in promoting diabetic wound healing. Diabetic wounds have excessive oxidative stress and inflammation. Up-
regulation of HO-1 will reduce oxidative stress and pro-inflammatory factors, and also promote cell viability, migration, proliferation, and
angiogenesis, thus promoting diabetic wound healing.
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Diabetic renal fibrosis is stimulated by multiple factors such as
inflammation, which forms a large amount of improper prolifera-
tion and excessive deposition of collagen fibers. In the process of
development, there will be renal tubular atrophy, glomerular
sclerosis, and microvascular sparse, forming a vicious circle and
finally, the kidney completely loses its organ function [148]. HO-1
plays an important role in diabetic kidney fibrosis (Table 2). By
regulating the activity or expression of HO-1, it may provide a new
strategy for the treatment of diabetic renal fibrosis. Astaxanthin
reduces the expression of FN, ICAM-1, and TGF-β1 induced by HG
to reduce ECM deposition, and significantly promotes the nuclear
translocation and transcriptional activity of Nrf2, and induction the
expression of HO-1 [149, 150]. In another in vitro and in vivo study,
Nrf2/HO-1 was also demonstrated to play an important inhibitory
role in the pro-fibrotic pathway activated by TGF-β1, which was
verified by oligo-fucoidan in NRK-52E cells and kidney tissues of
C57BL/6 mice [151].
Current studies have unraveled that programmed cell death has

a notable effect on DN progression. Apoptosis is a widely explored
mechanism of programmed cell death, and apoptosis of renal
tissue is a key feature of diabetic kidney injury [152]. HO-1 as an
important regulator of oxidative stress and inflammation, also
plays an important role in diabetic kidney apoptosis. HO-1 was
involved in the protective effect of telmisartan against DN, and the
mRNA levels regulation of Nrf2 and HO-1 indicated that
telmisartan had a regulatory effect on apoptosis besides anti-
inflammation and anti-oxidation [153]. In addition to the excellent
therapeutic effect on diabetic cardiomyopathy, sinapic acid also
ameliorated the expression of apoptosis-related proteins in STZ-
induced Wistar rats’ diabetic kidneys via Nrf2/HO-1 mediated
pathways [154]. Pyroptosis is an important programmed cell death
pattern that can be activated by DAMPs and PAMPs. Dapagliflozin
can decrease podocyte pyroptosis mediated through the miR-155-
5p/HO-1/NLRP3 signaling pathway, and induction of HO-1 can
promote the inhibitory effect of dapagliflozin on pyroptosis [69].
Similar protective effects on podocyte pyroptosis mediated by
HO-1 were proved by multiple drugs, including atorvastatin,
triptolide. A study based on Nrf2-KO (knockout of Nrf2) diabetic
mice showed that syringaresinol inhibits pyroptosis caused by

NLRP3/Caspase-1 in DN by activating the Nrf2/HO-1 signaling
pathway [72]. Ferroptosis is a programmed cell death with iron-
dependent accumulation of lipid peroxides, which has recently
been identified in animal models of DN [155]. After ferroptosis was
inhibited by ferrostatin-1 treatment in C57BLKs/J mice, urinary
albumin to creatinine ratio was decreased, kidney tubular injury
and kidney fibrosis were improved, HIF-1α and HO-1 expression
were suppressed [78]. In HK-2 cells and C57BL/KsJ mice, the
kidney jury restoration after ferroptosis inhibition via the Nrf2/HO-
1 signaling pathway has been sufficiently confirmed in the
research on the therapeutic mechanism of quercetin, vitamin D
receptor, umbelliferone, etc [77, 82, 156]. In SV40-MES 13 cells,
HMGB1 (high-mobility group box-1) has been recognized as a
valuable factor of ferroptosis based on the Nrf2/HO-1 signaling
pathway, proposing that HMGB1 is a new target for the treatment
of DN [157]. This indicated that HO-1 exhibits excellent benefits in
ferroptosis of DN since it is an important downstream target
affected by HGBM1.
Thus, HO-1 plays significant part in regulating the progression

and application of DN (Fig. 6). Through a deeper knowledge of the
biological function and regulatory mechanism of HO-1, it can
provide groundbreaking ideas and strategies for the therapy of
diabetic nephropathy. Nonetheless, the utilization of HO-1 target
in the treatment of diabetic nephropathy is still in the examination
stage and requires further clinical trials for its efficacy and safety.
We hope that in the future, more researchers will focus on more
basic research on HO-1 in DN, including its expression regulation,
mechanism of action, and interaction with other molecules. Based
on these researches, clinical trials targeting HO-1 should be carried
out to evaluate its application in the treatment of DN, so as to
provide evidence for clinical application.

PROTECTIVE ROLE OF HO-1 IN OTHER COMPLICATIONS OF
DIABETES
Diabetic retinopathy (DR) is a series of retinal microvascular
diseases caused by DM, which has a great impact on vision and
even blindness in the late stage. An increasing number of clinical
and laboratory studies have revealed the pathophysiological

Fig. 6 Schematic diagram of the signaling pathway of HO-1 in the protection of diabetic nephropathy. The increased expression of HO-1
can reduce ECM deposition to improves kidney fibrosis, diminish inflammation, oxidative stress, ferroptosis, pyroptosis and apoptosis to
alleviate diabetic kidney injury.
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changes of DR [158]. The protective effect of HO-1 in diabetic
retinopathy is not only reflected in the inhibition of inflammation
and oxidative stress but also promoted microglia polarization from
the M1 state (pro-inflammatory) towards the M2 state (anti-
inflammatory) [159]. And HO-1 related to programmed cell death
such as apoptosis and ferroptosis in DR was also revealed by
hydroxysafflor yellow A(a single chalcone glycoside), maresin-1
(pro-resolving lipid mediator), amygdalin (natural cyanogenic
glycoside) [160, 161]. Multiple studies have shown that diabetes
is associated with cognitive impairment, in which HO-1 as an
important antioxidant enzyme, plays an important role in
protecting against apoptosis, inflammation, and oxidative stress
in diabetic cognitive dysfunction [162–164]. HO-1 is also involved
in the protection of mitochondrial dysfunction and oxidative
stress in diabetic Alzheimer's [165, 166]. What’s more, HO-1 can
halt ferroptosis related to diabetes, such as diabetes with sepsis,
diabetes-induced liver injury, diabetic encephalopathy, and
diabetic islet transplantation [167–170]. Through in-depth study
of the mechanism of HO-1, it is expected to provide new strategies
and methods for the treatment of diabetes complications.

CONCLUSION
DM and its associated complications are significant maladies that
affect human health, which pose a serious threat to the wellness of
the global population. The persistent intricacies of diabetes stem from
various metabolic pathway disorders, ultimately resulting in sub-
stantial health risks and danger of death associated with the
condition. The HO-1 plays a crucial role in process of triggering and
advancing diabetes and its associated complications. In this
investigation, the function and correlation that HO-1 with diabetes
and its complications have been comprehensively examined. Studies
have shown that HO-1 may be involved in the development of
diabetic complications like diabetic kidney, diabetic cardiovascular
disease, and diabetic wound healing. Most studies have focused on
HO-1 affecting diabetic complications through its antioxidant, anti-
apoptotic, and anti-inflammatory effects, but HO-1 has also shown a
role in programmed cell death that cannot be ignored. Further
research is essential to thoroughly investigate HO-1’s regulatory
mechanisms, its interaction with other transcription factors, and its
functions across varying kinds and phases of diabetes. Further, there
is a need to concentrate on examining the function and correlation of
HO-1 in diabetes and its complications, which will pave the way for
innovative approaches to avoid and treat diabetes. However, HO-1
induction also brings negative effects. Induction of HO-1 causes
abnormal accumulation of ROS due to Fe2+ accumulation, inducing
ferroptosis. It also causes cellular CO toxicity and bilirubin encephalo-
pathy. These findings suggest that HO-1 is not merely protective in
disease and requires a comprehensive understanding.
In conclusion, exploring the new molecular mechanism of HO-1

in the treatment of diabetes can provide new methods and ideas
for the diagnosis and treatment of diabetes and related diseases,
and offer the molecular theoretical foundation for the develop-
ment of new hypoglycemic drugs.
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