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Abstract 
Objectives: Natural language processing (NLP) and large language models (LLMs) have emerged as powerful tools in healthcare, offering ad
vanced methods for analysing unstructured clinical texts. This systematic review aims to evaluate the current applications of NLP and LLMs in 
rheumatology, focusing on their potential to improve disease detection, diagnosis and patient management.
Methods: We screened seven databases. We included original research articles that evaluated the performance of NLP models in rheumatol
ogy. Data extraction and risk of bias assessment were performed independently by two reviewers, following Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses guidelines. The Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies was 
used to evaluate the risk of bias.
Results: Of 1491 articles initially identified, 35 studies met the inclusion criteria. These studies utilized various data types, including electronic 
medical records and clinical notes, and employed models like Bidirectional Encoder Representations from Transformers and Generative Pre- 
trained Transformers. High accuracy was observed in detecting conditions such as RA, SpAs and gout. The use of NLP also showed promise in 
managing diseases and predicting flares.
Conclusion: NLP showed significant potential in enhancing rheumatology by improving diagnostic accuracy and personalizing patient care. 
While applications in detecting diseases like RA and gout are well developed, further research is needed to extend these technologies to rarer 
and more complex clinical conditions. Overcoming current limitations through targeted research is essential for fully realizing NLP’s potential in 
clinical practice.

Lay Summary 
What does this research mean for patients?
Computers are increasingly proficient at interpreting human language, which could enhance the diagnosis and treatment of rheumatic diseases. 
Our study explores the application of natural language processing (NLP) in rheumatology. We discovered that NLP accurately identifies diseases 
like rheumatoid arthritis, gout and spondyloarthritis from medical records, potentially allowing for quicker and more precise diagnoses in the fu
ture. Advanced NLP models, such as large language models (e.g. Generative Pre-trained Transformers, Bidirectional Encoder Representations 
from Transformers), can also effectively respond to patients’ queries about their conditions and treatments, thereby improving patient educa
tion. For instance, they can provide reliable information on medications such as methotrexate. However, the development of NLP for rarer rheu
matic diseases remains limited. While promising, this technology requires further study before it can be routinely implemented in medical prac
tice. As research progresses, patients may benefit from more personalized and accurate care.
Keywords: large language models (LLMs), natural language processing (NLP), rheumatology, artificial intelligence (AI), disease detection. 

Key messages 
� NLP models exhibit high accuracy in detecting conditions such as rheumatoid arthritis, spondyloarthropathies and gout from 

clinical texts. 
� LLMs show potential in addressing patient inquiries and enhancing education in rheumatology with high precision. 
� Further research is needed on NLP applications in rare rheumatic diseases and personalized treatment planning. 
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Introduction
Healthcare is rapidly evolving, driven by significant artificial 
intelligence (AI) advancements [1]. Among these, natural lan
guage processing (NLP) and especially large language models 
(LLMs) have emerged as transformative technologies [2, 3].

NLP and LLMs introduce methods for analysing unstruc
tured clinical texts [2, 3]. These technologies can extract in
formation from electronic health records (EHRs), improving 
patient care, research and administrative work [4–6]. The 
ability of LLMs to understand context and interpret complex 
medical terminology makes them valuable tools for clinicians 
and researchers [7, 8].

Rheumatology, a field characterized by diverse disorders, 
can benefit from these advancements [9]. Rheumatological 
conditions often involve multiple organ systems and present 
with overlapping symptoms, making accurate diagnosis 
challenging [10]. NLP offers the potential to extract relevant 
clinical data, enhance disease classification and support 
decision-making [4, 5, 11, 12].

Despite its promise, NLP adoption for rheumatology has 
been relatively slow [13, 14]. This lag is due in part to the 
complexity of the field and the need for highly accurate tools 
[13]. However, recent studies have demonstrated the feasibil
ity of NLP in various aspects of rheumatology, including dis
ease detection, patient management and education [5, 12, 
15]. These studies highlight the potential for NLP to address 
some of the most pressing challenges in the field.

Our review aims to provide insights into the current state 
of NLP research in rheumatology and identify areas for fu
ture clinical application.

Materials and methods
Registration and protocol
This systematic literature review was registered with the 
International Prospective Register of Systematic Reviews 
(PROSPERO) under the registration code CRD42024509490 
[16]. Our methodology adhered to the Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses (PRISMA) 
guidelines [17].

Search strategy
We searched seven databases: PubMed, Embase, Web of 
Science, Scopus, Cochrane Library, IEEE Xplore and OVID- 
MEDLINE. The search covered studies published between 1 
January 2002 and April 2024. The start date was chosen be
cause it marks the announcement of the neural probabilistic 
language model, foundational for the application of NLP in 
medicine [18, 19]. Our focus was on the outcomes of integrat
ing NLP and LLMs in rheumatology. We used keywords like 
‘natural language processing,’ ‘NLP,’ ‘large language models’ 
and ‘LLMs’, along with specific model names and rheumato
logical terms like ‘GPT,’ ‘BERT,’ ‘rheumatoid arthritis’ and 
‘gout’. We designed Boolean search strings tailored to each 
database. To maximize coverage, we supplemented our search 
with a manual reference screening of included studies and tar
geted searches on Google Scholar and medrxiv. Details of the 
specific Boolean strings used are provided in the supplemen
tary materials (available at Rheumatology Advances in 
Practice online).

Study screening and selection
We included articles that directly evaluated the performance 
of NLP models in rheumatology applications and provided 
data about the performance, either qualitative or quantitative.

Our review encompasses original research articles and full 
conference articles [20]. The exclusion criteria were confined 
to review articles, case reports, commentaries, protocol stud
ies, editorials and non-English publications, in addition to 
articles that did not directly evaluate the model performance.

For the initial screening, we used the Rayyan web applica
tion [21]. The initial screening and study selection, which 
were conducted according to predefined criteria, were inde
pendently performed by two reviewers (M.O. and E.K.). 
Discrepancies were resolved through discussion.

Data extraction
Data extraction was conducted by two researchers (M.O. 
and E.K.) using a standardized form to ensure consistent and 
accurate data capture. This included details such as author, 
publication year, sample size, data type, task type, disease in
terest, model used, results, performance metrics, conclusions 
and limitations. Any discrepancies in data extraction were re
solved through discussion and a third reviewer was consulted 
when necessary.

Risk of bias assessment
To evaluate the quality and robustness of the methodologies 
in the included studies, the Quality Assessment Tool for 
Observational Cohort and Cross-Sectional Studies tool was 
used [22].

Results
A total of 1491 articles were identified through the initial 
screening. After removing 809 duplicates, 682 articles 
remained for further evaluation. Title and abstract screening 
excluded 629 articles, leaving 53 articles for full-text review. 
From these, 34 studies met all inclusion criteria. By using ref
erence checking and snowballing techniques, one additional 
study was identified, resulting in a final tally of 35 studies 
[5, 6, 12, 23–54]. A PRISMA flow chart visually represents 
the screening process in Fig. 1.

Overview of the included studies
We included 35 studies [5, 6, 12, 23–54], spanning from 
2010 to 2024. Analysed sample sizes ranged from a few hun
dred to >2 million patients. The studies utilized various data 
types, including electronic medical records (EMRs), struc
tured and unstructured electronic health records (EHRs) 
data, clinical notes and radiology reports.

Employed models included advanced NLP techniques, en
semble models and specific LLM architectures like 
Bidirectional Encoder Representations from Transformers 
(BERT) and Generative Pre-trained Transformer (GPT).

We categorized the applications into two main groups: pa
tient care and detection and diagnosis (Table 1). Eleven stud
ies focused on patient care, evaluating models in answering 
patient questions, predicting flares, classifying disease sever
ity and managing diseases. Twenty-four studies focused on 
detection and diagnosis, identifying diseases or flares from 
data and making diagnoses, such as identifying gout flares, 
detecting pain levels in OA and diagnosing RA.
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The studies covered multiple conditions, including RA (12 
studies), SpA (5 studies), gout (5 studies) and other 
conditions such as lupus, SSc and ANCA-associated vasculitis 
(AAV; 13 studies) (Fig. 2). Most of the included articles were 
published in quartile 1 journals (Supplementary Fig. S1, 
available at Rheumatology Advances in Practice online).

Risk of bias
The analysis of the risk of bias yielded mostly good and fair 
results using the Quality Assessment Tool for Observational 

Cohort and Cross-Sectional Studies. Specifically, 20 studies 
were evaluated as having good quality and low risk of bias, 9 
studies as having fair quality and fair risk of bias and 6 studies 
as having poor quality and high risk of bias. The poor evalua
tions were mainly due to the use of vignettes or question- 
based studies that did not fit well under the tool’s evaluation 
categories. Nonetheless, the overall results indicate a general 
trend of high quality and low overall risk of bias. A detailed 
evaluation for each study is provided in Supplementary Table 
S1 (available at Rheumatology Advances in Practice online).

Figure 1. PRISMA flow chart 
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Table 1. Summary of the included studies

Author, year [ref] Data type and sample size Model Summary of most impor
tant results

Chen et al., 2023 [48] EMR, data from  
>2 million patients

NLP (NER, POS) Synonym-based pain-level detec
tion tool accurately identified 
patients with moderate–severe 
pain due to OA

Saini et al., 2023 [29] X-ray image reports, structured 
EHR data, 4508 patients

CNN, YOLO v4, 
Transformer, BERT

High performance in predicting 
knee OA severity and generat
ing reports with AUROCs from 
0.897 to 0.9582.

Benavent et al., 2024 [5] Unstructured EHR data, 
4337 patients

NLP-based system High precision, recall and F1 
scores (>0.80) for detecting 
clinical entities related to SpA

Li et al., 2022 [46] EMRs, 1600 clinical notes BERT Improved NER in clinical notes 
with an F1 score of 0.936

Krusche et al., 2024 [31] Patient vignettes, 20 different  
real-world patient vignettes

GPT-4 Comparable diagnostic accuracy 
to rheumatologists for IRDs, 
with top diagnosis accuracy 
of 35%

Madrid-Garc�ıa et al., 2023 [39] Exam questions from Spanish  
access exam, 145 questions

GPT-4 GPT-4 showed 93.71% accuracy 
in answering rheumatol
ogy questions

Irfan and Yaqoob 2023 [23] Database of peer-reviewed articles 
and clinical guidelines

GPT-4 Provided insights into SS, 
highlighting key characteristics 
and management details

Nelson et al., 2015 [49] Medical text infusion notes, 115 
patients, 2029 inflixi
mab infusions

Custom rule-based NLP software Improved sensitivity (0.858) and 
PPV (0.976) for identifying 
infliximab infusion dates 
and doses

Liu et al., 2023 [25] Chinese EMRs, 1986 CEMRs MC-BERT-BiLSTM-CRF,  
MC-BERT þ FFNN

Achieved F1 scores of 92.96% for 
NER and 95.29% for rela
tion extraction

Humbert-Droz et al., 2023 [30] Clinical notes from the RISE  
registry, 854 628 patients

NLP pipeline (Spacy) Sensitivity, PPV and F1 scores of 
95%, 87% and 91%, respec
tively, for RA outcome meas
ures extraction

Benavent et al., 2023 [6] Free-text and structured clinical 
information, 758 patients

EHRead technology High performance in identifying 
clinical variables for axSpA and 
PsA, precision of 0.798 and re
call of 0.735 for PsA

VanSchaik et al., 2023 [53] PubMed abstracts, 2350 abstracts ELECTRA-based model Extracted causal relationships 
with an F1 score of 0.91

Walsh et al., 2020 [40] Clinical notes, structured EHR 
data, 600 patients

NLP algorithms with 
random forest

AUROC of 0.96 for full algorithm 
in identifying axSpA

Yoshida et al., 2024 [42] EHR notes and Medicare claims 
data, 500 patients

LASSO Combined model showed an 
AUROC of 0.731 for identify
ing gout flares

Li et al., 2023 [52] FAQ-based question-answering 
pairs, 176 questions

BERT, RoBERTa, 
ALBERT, MacBERT

Achieved top-1 precision of 0.551 
and MRR of 0.660 in an RA 
question-answering system

Ye et al., 2024 [33] Patient-generated rheumatology 
questions, 17 patients

GPT-4 Patients rated AI responses simi
larly to physician responses; 
rheumatologists rated AI lower 
in comprehensiveness

Coskun et al., 2024 [23] Questions on methotrexate use, 
23 questions

GPT-4, GPT-3.5, BARD GPT-4 achieved 100% accuracy 
in providing information on 
methotrexate use

Liao et al., 2010 [36] Narrative and codified EMR data, 
29 432 subjects

HITEx system Improved RA classification accu
racy with a PPV of 94% using 
narrative and codified data

Lin et al., 2015 [24] Structured and unstructured EHR 
data, 5903 patients

Apache cTAKES, ML PPV of 0.756, sensitivity of 0.919 
and F1 score of 0.829 for identi
fying methotrexate-induced 
liver toxicity

Wang et al., 2017 [32] Spontaneous reports, EMRs, 
138 000 patients

MedEx, UMLS, MedDRA 
PT codes

Detected 152 signals for biologics 
and 147 for DMARDs from 
clinical notes

(continued)
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A background on NLP for clinicians
NLP allows machines to interpret and manipulate human 
language [55]. Key processes include tokenization (breaking 
text into words and phrases), parsing (analysing sentence 
structure), semantic analysis (interpreting meaning) and prag
matics (understanding context) [55]. NLP uses statistical 
analysis, machine learning and deep learning to perform tasks 
like translation, sentiment analysis and summarization [55, 
56] (Fig. 3).

Transformers have revolutionized NLP by enabling parallel 
processing of input data, improving efficiency and speed [57]. 
They use self-attention mechanisms to weigh each part of the 
input independently, enhancing their ability to understand 
and generate contextually relevant responses [58]. This archi
tecture underlies major models like OpenAI’s GPT series and 
Google’s BERT [58].

LLMs are trained on extensive text corpora to analyse and 
generate human-like text [2, 15]. They excel in applications 
such as automated dialogue systems, content creation and 
complex analytical tasks [2, 15]. OpenAI’s GPT series is 
known for generating coherent and context-aware text 
sequences, thanks to extensive pre-training and fine-tuning 
[31]. Another example is Meta’s LLaMA, which is an effi
cient, open-source model available in multiple configurations, 
while Google’s Gemini, formerly Bard, is designed for high- 
quality interactions using up-to-date content [59].

In AI, a ‘prompt’ is the input given to a language model to 
guide its output [2, 8]. Autoregression involves predicting the 
next word or sequence based on previous inputs, ensuring co
herent and contextually appropriate text. This technique is 
crucial for tasks like text completion and machine translation 
[2, 8].

Table 1. (continued)

Author, year [ref] Data type and sample size Model Summary of most impor
tant results

Uz and Umay, 2023 [34] Structured EHR data and internet 
search data

ChatGPT Reliability scores ranged from 4 to 
7, with the highest for OA 
(5.62); usefulness scores highest 
for AS (5.87)

Luedders et al., 2023 [37] Chest CT reports, 650 patients Automated regular expressions Improved PPV to 94.6% for RA- 
ILD identification

Osborne et al., 2024 [41] Chief complaint text from 
emergency department, 
8037 CCs

Rule-based, BERT-based  
algorithm

BERT-GF achieved an F1 score of 
0.57 for detecting gout flares

Yang et al., 2024 [26] Responses from ChatGPT and 
Bard, 20 treatments

GPT, BARD ChatGPT had an 80% concor
dance rate with AAOS CPGs, 
while Bard had 60%

England et al., 2024 [38] Clinical notes from EHRs, 
7485 patients

NLP 95.8% of NLP-derived FVC val
ues were within 5% predicted 
of PFT equipment values

Love et al., 2011 [54] EMR notes, billing codes, 
2318 patients

NLP with random forest PPV of 90% at sensitivity of 87% 
for PsA classification using NLP 
and coded data

Deng et al., 2024 [12] Structured EHR data, clinical 
notes, 472 patients

MetaMap, logistic regression Identified lupus nephritis pheno
type with an F1 score of 0.79 at 
NU and 0.93 at VUMC

van Leeuwen et al., 2024 [50] EHRs, 287 patients AI tool, NLP Sensitivity of 97.0% in training 
and 98.0% in validation centres 
for AAV identification

Rom�an Ivorra et al., 2024 [47] EHRs, 13 958 patients EHRead, NLP, ML Achieved precision of 79.4% for 
ILD detection and 76.4% for 
RA detection

Zhao et al., 2020 [43] EHRs, 7853 patients NLP, ICD codes,  
logistic regression

Sensitivity of 0.78, specificity of 
0.94 and AUROC of 0.93 for 
identifying axSpA

Kerr et al., 2015 [45] Clinical narrative data from 
EMRs, 2280 patients

NLP system Compliance rates for gout QIs: QI 1, 
92.1%; QI 2, 44.8%; QI 3, 7.7%

Redd et al., 2014 [44] Structured and unstructured EHR 
data, 4272 patients

NLP, SVM Precision of 0.814 and recall of 
0.973 for identifying SSc 
patients at risk for SRC

Oliveira et al., 2024 [35] Chief complaint notes from 
emergency department, 
8037 CCs

RoBERTa-large, BioGPT Achieved F1 scores of 0.8 (2019 
dataset) and 0.85 (2020 dataset) 
for detecting gout flares

Gr€af et al., 2022 [28] Survey data, clinical vignettes, 
132 vignettes

ADA ADA’s diagnostic accuracy for 
IRD was higher compared with 
physicians (70% vs 54%)

CCs: Clinical Cases; NER: named entity recognition; POS: parts of speech; CNN: convolutional neural network; YOLO: You Only Look Once; IRD: 
inflammatory rheumatic disease; FVC: forced vital capacity; QI: quality indicator; PFT: pulmonary function test; ADE: adverse drug event; RISE: 
Rheumatology Informatics System for Effectiveness; SRC: scleroderma renal crisis; GPA: granulomatosis with polyangiitis; MPA: microscopic polyangiitis; 
EGPA: eosinophilic granulomatosis with polyangiitis; ML: machine learning; HCPCS: Healthcare Common Procedure Coding System; LASSO: least absolute 
shrinkage and selection operator; MAP: maximum a posteriori; RoBERTa: A Robustly Optimized BERT Pretraining Approach; BioGPT: Biomedical 
Generative Pre-trained Transformer; NU: Northwestern University; VUMC: Vanderbilt University Medical Center; HITEx: Health Information Text 
Extraction; EHRead: Electronic Health Read; ADA: AI-based symptom checker; FFNN: Feedforward neural network.
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Figure 2. A framework of the NLP model inputs and output categories 

Figure 3. A simple NLP framework in rheumatology 
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NLP in detecting and diagnosing 
rheumatic diseases
Overall, 24 studies fell under this application. Specifically, 
nine studies focused on RA, four on SpA and the others on 
diseases such as gout, SSc, OA and AAV (Table 1, Fig. 4).

RA
Various NLP models were used to improve detection and di
agnosis of RA. These models were applied to tasks such as 
named entity recognition, adverse drug event detection and 
disease activity extraction, achieving high performance 
metrics with F1 scores up to 0.936, positive predictive values 
(PPVs) of up to 94% and sensitivities of up to 95%. For in
stance, Li et al. [46] used a BERT-based model to improve 
named entity recognition in clinical notes, achieving an F1 
score of 0.936. Nelson et al. [49] demonstrated that NLP 
significantly improved sensitivity (86%) and PPV (98%) for 
identifying infliximab infusion dates and doses compared 
with using international Classification of Diseases 
(ICD) codes.

Liu et al. [25] used BERT for named entity and extraction 
from Chinese EMRs, achieving F1 scores of 93% for entity 
recognition and 95% for relation extraction.

Humbert-Droz et al. [30] developed an NLP pipeline that 
showed good internal and external validity for extracting RA 
disease activity and functional status scores, with sensitivity, 
PPV and F1 scores of 95%, 87% and 91%, respectively, in 
internal validation and 92%, 69% and 79%, respectively, in 
external validation.

Liao et al. [36] used the Health Information Text 
Extraction (HITEx) system, which improved the classifica
tion accuracy of RA subjects, compared with using ICD 
codes, achieving a PPV of 94% using both narrative and cod
ified data. Lin et al. [24] combined Apache cTAKES for fea
ture extraction with supervised machine learning, achieving a 
PPV of 76%, sensitivity of 92% and F1 score of 83% for 
identifying methotrexate-induced liver toxicity.

Wang et al. [32] used NLP tools to discover and validate 
adverse drug events, detecting 152 signals for biologics and 
147 for DMARDs from clinical notes, that were not detected 
using other traditional tools. Luedders et al. [37] used auto
mated regular expressions to enhance RA interstitial lung dis
ease (RA-ILD) identification, achieving a PPV of 95% in the 
derivation cohort and 89% in the validation cohort.

Similarly, Rom�an Ivorra et al. [47] used the EHRead tech
nology to extract and standardize unstructured clinical infor
mation to estimate the prevalence of RA-ILD, achieving 
precisions of 79% for ILD detection and 76% for RA detec
tion. England et al. [38] extracted forced vital capacity values 
from EHR notes, showing that 96% of NLP-derived values 
were within 5% of predicted pulmonary function test equip
ment values.

SpAs
Most of the studies focused on detecting SpAs from unstruc
tured clinical data. For instance, Benavent et al. [5] used an 
NLP-based system to extract and identify clinical entities re
lated to SpA, achieving high precision, recall and F1 scores 
(>0.80). Walsh et al. [40] developed three algorithms for 
identifying axial SpA (axSpA) from EHRs, with the full algo
rithm achieving an area under the receiver operating charac
teristics (AUROC) curve of 0.96, sensitivities of 85–95% and 
specificities of 78–94%. Zhao et al. [43] combined NLP with 
ICD codes and logistic regression models, achieving an 
AUROC of 0.93, sensitivity of 78% and specificity of 94% 
for identifying axSpA. In addition, Love et al. [54] focused on 
using NLP to classify PsA cases from EMRs. Their study 
showed that using NLP with EMR text notes significantly im
proved the performance of the prediction algorithm for PsA 
classification compared with using only coded data. 
Specifically, the AUROC) improved from 0.925 (coded data 
alone) to 0.950 (combined coded and NLP data), indicating a 
significant enhancement in classification accuracy.

Figure 4. A summary of the applications and performance of NLP models in the detection across different conditions 
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Gout
All the studies focused on detecting gout flares using different 
data inputs and models. Zheng et al. [51] used NLP and ma
chine learning to identify gout flares from unstructured EHR 
data, achieving a sensitivity of 82% and specificity of 92%. 
Yoshida et al. [42] combined NLP concepts with Medicare 
claims data, resulting in an AUROC of 0.731 for identifying 
gout flares. Osborne et al. [41] used a BERT-based algorithm 
to identify gout flares in emergency department patients, 
achieving an F1 score of 0.57. Oliveira et al. [35] compared 
different models for early detection of gout flares from chief 
complaint notes, with RoBERTa-large-PM-M3-Voc achiev
ing an F1 score of 0.8 and BioGPT achieving an F1 score 
of 0.85.

Other conditions
Other studies addressed various rheumatologic conditions. 
Deng et al. [12] used MetaMap-based models to identify lu
pus nephritis phenotypes, achieving an F-measure of 0.79 at 
Northwestern Medicine and 0.93 at Vanderbilt University. 
Van Leeuwen et al. [50] used an AI tool incorporating NLP 
to identify AAV, achieving sensitivities of 97% and 98% in 
training and validation centres, respectively. Redd et al. [44] 
used NLP combined with a support vector machine (SVM) to 
detect SSc patients at risk for scleroderma renal crisis, achiev
ing a precision of 0.814 and recall of 0.973.

Patient care
Patient care includes studies focusing on management, educa
tional purposes for patients or practitioners and research. 
Under this category, there were 11 studies, divided into two 
main categories: management (plans, treatment, risk stratifi
cation, prediction) and education (answering questions, aid
ing research) (Table 1, Fig. 5).

Management
Saini et al. [29] developed an ensemble model for knee OA se
verity prediction and report generation, achieving AUROCs 
from 0.897 to 0.958. Irfan et al. [27] used GPT-4 to provide 
insights into SS, highlighting key immunopathological and 
histopathological characteristics and providing follow-up 
management and differential diagnosis. Benavent et al. [6] 
used EHRead technology to explore the characteristics and 
management of patients with axSpA and PsA, achieving a 
precision of 0.798 and recall of 0.735 for PsA.

Ye et al. [33] compared AI-generated responses to rheuma
tology patient questions with physician responses. Patients 
rated AI responses similarly to physician responses, while 
rheumatologists rated AI responses lower in comprehensive
ness and accuracy. Kerr et al. [45] used NLP to evaluate phy
sician adherence to gout quality indicators (QIs), finding 
compliance rates of 92% for QI 1, 45% for QI 2 and 8% for 
QI 3. Rheumatology clinic visits were associated with 
greater compliance.

Educational
Madrid-Garc�ıa et al. [39] assessed the accuracy of GPT-4 in 
answering rheumatology questions, finding an accuracy of 
94% and a median clinical reasoning score of 4.7. VanSchaik 
et al. [53] used an ELECTRA-based model to extract causal 
relationships from biomedical literature, achieving an F1 
score of 0.91. Li et al. [52] used advanced models like BERT, 
RoBERTa, ALBERT and MacBERT for question matching in 
an RA question-answering system, achieving a top-1 preci
sion of 55% and a mean reciprocal rank (MRR) of 0.660.

Coskun et al. [23] evaluated the accuracy of AI models in 
providing information on methotrexate use. GPT-4 achieved 
100% accuracy, while GPT-3.5 scored 87%.

Uz and Umay [34] assessed the reliability and usefulness of 
ChatGPT for common rheumatic disease–related queries. 
Reliability scores ranged from 4 to 7, with the highest score 
for OA (5.6), and usefulness scores ranged from 4 to 7, with 

Figure 5. NLP model capabilities in performing high-level research questions under patient care applications 
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the highest for AS (5.9). Yang et al. [26] evaluated the con
cordance of ChatGPT and Bard with AAOS CPGs, finding 
that ChatGPT had an 80% concordance rate and Bard’s 
was 60%.

Discussion
NLP technology is starting to influence the management and 
diagnosis of rheumatic diseases. BERT and GPT, for instance, 
are showing promise in enhancing diagnostic accuracy for 
conditions such as RA and SpA [30, 54]. These models de
liver results that suggest potential improvements over tradi
tional diagnostic methods, offering better precision.

In clinical environments, NLP has begun to improve inter
actions between patients and healthcare providers and to 
augment educational resources for medical professionals [60, 
61]. This technology challenges the idea that digital tools nec
essarily depersonalize care, indicating instead that they can 
foster more informed and engaging healthcare interactions. 
This is reflected in our review by studies such as that of 
Coskun et al. [23], which demonstrated the utility of GPT-4 
in answering patient questions related to methotrexate use. 
Additionally, Venerito et al. [62] compared multiple LLMs, 
finding GPT-4 and Claude 2 performed well in answering 
clinical trivia, indicating their potential in clinical education 
and decision support, similar to the findings in our review 
regarding the performance of NLP models in educational 
applications. Maarseveen et al. [63] demonstrated the 
effectiveness of machine learning algorithms in accurately 
identifying patients with RA from unstructured text in EHRs. 
This approach showcases the potential of augmenting NLP 
models and classical machine learning in rheumatology 
to potentially enhance patient identification and facilitate 
large-scale observational studies across different healthcare 
systems. Ayer et al. [60] evaluated AI chatbot responses to 
patient questions, finding them to be of higher quality and 
more empathetic than physician responses. Another interest
ing area for educational use of LLMs was highlighted in re
cent findings by Haase et al. [64]. Their study showed that 
GPT-4 outperformed SLE experts in providing high-quality, 
empathetic responses to patient questions. This demonstrates 
GPT-4’s potential as a valuable tool for enhancing patient ed
ucation and communication.

NLP also supports the development of personalized treat
ment plans and advanced disease management, providing 
alternatives to the traditional one-size-fits-all treatment 
approaches [65]. This emerging application invites a re- 
evaluation of established treatment paradigms. Our results 
suggest that NLP tools can effectively screen patients for 
comorbidities and associated diseases, such as detecting RA- 
ILD and extracting vital capacities of RA patients from large 
amounts of unstructured data [37, 38]. Additionally, these 
tools can predict or detect flares, enhancing their ability to 
provide timely and individualized interventions and treat
ments [29, 35].

Despite the promising results, there is a lack of research on 
certain rheumatic conditions, especially rare diseases such as 
Behçet’s disease. Conditions like SSc and lupus nephritis, al
though somewhat researched, are studied to a lesser extent 
than diseases like RA and SpA. However, current results sug
gest that integrating NLP can treat flairs by accurately pre
dicting them, indicating an area for future exploration 
(Supplementary Table S2, available at Rheumatology 

Advances in Practice online). Expanding the scope of NLP re
search to cover less common rheumatic conditions and di
verse patient demographics could increase the relevance and 
applicability of NLP tools, potentially challenging the pre
vailing focus on more prevalent conditions.

Several unmet clinical needs in rheumatology remain unad
dressed by current NLP and LLM applications. For instance, 
preventing complications like falls in RA and cardiovascular 
disease in SLE is challenging [66, 67]. This technology could 
potentially contribute to risk stratification and personalized 
preventive interventions by analysing complex patient data 
and identifying high-risk individuals. Moreover, these models 
could aid in distinguishing between overlapping conditions 
like fibromyalgia and inflammatory arthritis, where patients 
often present with similar symptoms [68]. By integrating text 
analysis with clinical and laboratory data, LLMs might dis
cern subtle patterns that could guide diagnosis and treatment 
decisions [68]. Furthermore, rare diseases like Behçet’s dis
ease pose diagnostic challenges due to their heterogeneous 
presentations [69]. Advanced models integrating diverse data 
sources, including family history, demographics, clinical fea
tures and genetic markers like HLA-B51, could potentially 
improve diagnostic accuracy and facilitate early interven
tion [69].

For NLP to become integral to routine clinical practice, ex
tensive clinical validation is necessary [61]. The current en
thusiasm for the capabilities of NLP must be tempered with 
rigorous, evidence-based trials to bridge the gap between the
oretical potential and practical utility. Moreover, the compu
tational intensity required to run advanced NLP models is a 
significant barrier [70]. This challenge necessitates a balanced 
approach to technology adoption that considers existing in
frastructural limits [71]. Nonetheless, the internet interface is 
widely available and easily usable, in addition to the use of 
application programming interfaces for streamlining different 
applications more efficiently [70, 71]. This could imply a fu
ture where these models can be relatively easily implemented 
and used.

Deploying NLP technologies also raises important ethical 
and privacy issues [72]. It is crucial to manage data responsi
bly and enforce stringent privacy measures to maintain trust 
and integrity within healthcare practices.

In conclusion, NLP shows significant potential to enhance 
rheumatology by improving diagnostic accuracy and 
personalizing patient care, particularly in detecting diseases 
and conditions from unstructured reports, especially for RA, 
SpA and gout. However, the realization of this potential is 
still in its early stages. Achieving the full benefits of NLP will 
require overcoming existing limitations through focused re
search, ethical commitment and ongoing technological 
enhancements.
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