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New connections of medication 
use and polypharmacy with the gut 
microbiota composition 
and functional potential in a large 
population
Anna Larsson 1, Ulrika Ericson 1, Daniel Jönsson 1,2,3, Mariam Miari 1, Paschalis Athanasiadis 1, 
Gabriel Baldanzi 4, Louise Brunkwall 1, Sophie Hellstrand 1, Björn Klinge 3,5, Olle Melander 1, 
Peter M. Nilsson 1, Tove Fall 4,6, Marlena Maziarz 1 & Marju Orho‑Melander 1,7*

Medication can affect the gut microbiota composition and function. The aim of this study was 
to investigate connections between use of common non‑antibiotic medicines and the gut 
microbiota composition and function in a large Swedish cohort (N = 2223). Use of 67 medications 
and polypharmacy (≥ 5 medications), based on self‑reported and prescription registry data, were 
associated with the relative abundance of 881 gut metagenomic species (> 5% prevalence) and 
103 gut metabolic modules (GMMs). Altogether, 97 associations of 26 medications with 40 species 
and of four medications with five GMMs were observed (false discovery rate < 5%). Several earlier 
findings were replicated like the positive associations of proton pump inhibitors (PPIs) with numerous 
oral species, and those of metformin with Escherichia species and with lactate consumption I and 
arginine degradation II. Several new associations were observed between, among others, use of 
antidepressants, beta‑blockers, nonsteroidal anti‑inflammatory drugs and calcium channel blockers, 
and specific species. Polypharmacy was positively associated with Enterococcus faecalis, Bacteroides 
uniformis, Rothia mucilaginosa, Escherichia coli and Limosilactobacillus vaginalis, and with 13 GMMs. 
We confirmed several previous findings and identified numerous new associations between use of 
medications/polypharmacy and the gut microbiota composition and functional potential. Further 
studies are needed to confirm the new findings.

Keywords Gut microbiota, Gut metabolic modules, Medications, Polypharmacy, Population cohort, Shotgun 
metagenomics

The growing understanding of the role of the gut microbiota in health and diseases like inflammatory bowel dis-
ease, neurological and autoimmune disorders, type 2 diabetes, and cardiovascular disease (CVD) has pinpointed 
novel paths and opportunities to improve human health through favorable modification of the gut microbiota 
composition and function. Although the gut microbiota composition is relatively stable in healthy  adults1 it 
encompasses vast interindividual  variation2 and can be affected by numerous environmental factors such as diet 
and medication 3–5. Some of the effects and side effects of medications may be mediated via gut bacteria and their 
metabolite products. Gut microbiota and microbial metabolites can also modulate the breakdown of medications 
and affect the response to medication or its bioavailability by influencing the human immune system or metabolic 
 processes6. Polypharmacy, commonly defined as concomitant usage of five medications or  more7,8, is increasing 
in parallel with an ageing population and stands for a growing cause of concern due to observed connections 
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to a range of negative health consequences, hospitalization, and  mortality9. Forslund et al.10 highlighted the 
importance of considering the potential confounding influence of polypharmacy to uncover true associations 
between disease outcomes and the gut microbiota.

Earlier, a few larger cross-sectional cohort studies, the Belgian Flemish Gut Flora (n = 1106), the Dutch 
Lifelines Deep (n = 1179) and the UK Biobank (n = 2737), have reported associations between self-reported 
medication and gut microbiota, based on 16S rRNA  sequencing3,4,11. These studies highlighted the importance 
of medications as potential confounding factors in studies of the relation of gut microbiota with disease and pro-
vided evidence for association between compositional differences in the gut bacterial genera in those reporting 
use of medications as proton pump inhibitors (PPIs), metformin, and laxatives. More recently, a meta-analysis of 
three Dutch cohorts based on shotgun metagenomic sequencing, reported cross-sectional associations between 
17 of the 41 included medications and gut metagenomic features, with PPIs, metformin, laxatives, and antibiotics 
showing the strongest associations after accounting for use of  polypharmacy12. In line with these results, a recent 
Japanese study, also using shotgun metagenomic sequencing, reported associations between polypharmacy, PPIs 
and laxatives and the gut  microbiota5, and further strong support has been provided by several other studies for 
medication-microbiome interactions for  metformin13–15 and  PPIs16,17.

Large general population-based cohort studies with deeply sequenced gut microbiome and high-quality 
medication data are scarce. Herein, we address the question of whether there are connections between use of 
common non-antibiotic medications and gut microbiota richness/diversity, composition and functional capac-
ity in the population-based Malmö Offspring Study (MOS) including 2223 participants. We utilize both self-
reported medication usage and nation-wide medication prescription registry data and investigate connections 
of medication-classes, specific medication substances and polypharmacy with the gut microbiota.

Methods
Description of the population cohort
MOS is a family-based population study conducted during 2013–2021 in Malmö18, Sweden, where adult chil-
dren and grandchildren to the participants of the earlier Malmö Diet and Cancer Study Cardiovascular Cohort 
(MDCS-CC) were invited. No exclusion criteria were applied except difficulties in understanding information 
in Swedish.

Participants visited the research clinic twice. The first visit included physical examination, blood sampling 
(after an overnight fast) and instructions on how to collect the fecal samples at home. A web-based questionnaire 
on medical history of earlier disease diagnoses, ongoing medication, and lifestyle questions including leisure time 
physical activity level and alcohol intake was completed at home as well as a web-based 4-day food record, Riks-
maten2010, designed by the Swedish National Food  Agency19. This study includes 2644 participants with baseline 
data collected during the first part of MOS, March 2013–May 2017, with participation rate of 47%. Of these, 89% 
provided fecal samples and 68% recorded dietary intake. In total, 2223 participants with successfully performed 
metagenomic analyzes were included (Supplementary Fig. 1). Details about MOS have been described  before18.

Medication use
Information on medication use was obtained from two sources. The first was the Swedish National Prescribed 
Drug Register. Due to the original design of MOS, with the general aim to map factors of importance for family 
traits of chronic disease (e.g. CVD, diabetes, cancer, chronic obstructive pulmonary disease, and dementia), 
only selected medication groups had previously been requested for and approved from the National Prescribed 
Drug Register. These medication groups included Anatomical Therapeutic Chemical codes (ATC-codes) starting 
with A, C, G, H, J01, L, M, N04, N06D and R. For these, information was acquired on medication dispensation 
at pharmacies, during the last 12 months preceding the completion of the questionnaire, with available data for 
all study participants. Second, data was extracted from a questionnaire, where participants had self-reported 
use of all medicines during the latest week, including both prescription-based and over-the-counter medicines. 
Participants were additionally asked about any use of antibiotics in the past 6 months. In total, 88% of the 2223 
participants answered the questionnaire.

Classification of the medications was done according to the ATC-system and the medication-variables for 
this study were selected in a stepwise procedure resulting in 67 non-antibiotic medication-variables as shown in 
Fig. 1. Participants were considered users of a medication/medication-class if this was reported in the question-
naire and/or in the prescription medication register and then coded “1” and otherwise coded “0”. The participants 
were categorized into three groups based on the self-reported number of non-antibiotic medications during 
the latest week: users of 0 medications, 1–4 medications or ≥ 5 medications, of which the latter was defined as 
polypharmacy.

Metagenomic analysis of the gut microbiota
Metagenomic analysis from fecal samples was performed using a protocol that has previously described in 
 detail20. In summary, fecal samples were collected by the participants at home, in sterile tubes (Sarstedt, Num-
brecht, Germany) and kept in home-freezer at − 20 °C until transport to the clinic after which they were kept at 
− 80 °C until randomized at box-level (16 samples per box) and shipped to Clinical Microbiomics A/S (Copen-
hagen, Denmark), where all sample and data processing from DNA-extraction to relative abundance calculation 
were performed with standardized methods. In brief, DNA was extracted using NucleoSpin 96 Soil (Mach-
erey–Nagel, Germany) including negative and positive controls (Zymogen mock) per batch during the whole 
laboratory process. DNA extraction quality and quantity were evaluated, and high-quality genomic DNA was 
randomly sheared into approximately 350 bp fragments for library construction with NEBNext Ultra Library 
Prep Kit for Illumina (New England Biolabs). Before sequencing, the prepared DNA libraries were purified, 
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the fragment size distributions were evaluated, and the concentration of the final libraries were determined by 
quantitative real-time PCR. Metagenomic sequencing was performed with an Illumina Novaseq 6000 instrument 
using 2 × 150 bp paired end reads, which generated on average 26.3 million read pairs (7.9 Gb) per sample in 
MOS. After removal of sequencing reads with adapters, those with > 50% bases with Phred quality score < 5, and 
reads mapped to the human reference genome GRCh38, the remaining reads were assembled using MEGAHIT 
v1.1.151 and mapped using BWA mem v0.7.16a52 to a gene catalog of > 14 million non-redundant microbial 
genes (version “HG3A”) as earlier  described20. Metagenomic species (MGS) were defined by the concept of bin-
ning of co-abundant genes as previously  described21. Using this approach altogether 1985 MGS were identified 
of which 881, present in at least 5% of the participants, were included in the analyses. The MGS were taxonomi-
cally classified, and the resolution was mostly on species-level. The MGS count table was normalized according 
to the effective gene length and then normalized to 100%, resulting in estimates of relative abundance for each 
MGS, henceforth referred to as “species”.

The functional potential of the gut microbiota was determined by allocating genes to gut metabolic modules 
(GMM), including 103 metabolic pathways that represent cellular enzymatic  processes22. Using the Omixer-
RPM version 0.3.3 R package, GMM abundances were estimated, with a minimum module coverage threshold 
set at 66.6%.

Oral microbiota
Of the MOS subjects, 430 additionally attended the dental arm of the Malmö Offspring Dental Study (MODS)18 
and provided saliva samples that were used for oral microbiota analysis using the same metagenomic pipeline 
as for MOS fecal samples at Clinical Microbiomics A/S (Copenhagen, Denmark).

Statistical analyses
Gut microbiota diversity was assessed using richness (number of species) the Shannon index and the inverse 
Simpson index. Both the Shannon and inverse Simpson indices evaluate species richness and evenness, with the 
Shannon index placing greater emphasis on species richness, while the inverse Simpson index focusing more on 
species relative abundance. These calculations were performed on the relative abundance table of all 1985 species 
using the diversity function in the vegan package in  R23.

The overall gut microbiota composition (beta-diversity) was calculated by computing the Bray–Curtis dis-
similarity index using the filtered (881 species) and rarefied data. The differences in beta-diversity between the 
groups were assessed using a permutational multivariate analysis of variance (using the adonis function in the 
vegan package with 999 permutations). We used classical multidimensional scaling (cmdscale in the stats pack-
age) to visualize the data, showing the two principal coordinates in two-dimensional space.

To investigate whether use of medications, medication-classes or polypharmacy, was associated with species 
or GMM relative abundances, pairwise partial Spearman’s rank correlations (ppcor R package) were calculated 
between medication-variables and species, and GMMs, adjusting for age and sex (Model 1); age, sex and body 
mass index (BMI) (Model 2); and age, sex, BMI, and Shannon index in the main model (Model 3). The choice 
of the partial Spearman correlation method was preceded by our consideration of other methods, which were 
deemed less suitable for following reasons: First, we assumed the medication use to affect the gut microbiota 
rather than the gut microbiota to have an effect on the use of medication, thus the microbiome data was the 
obvious outcome in the analysis. This assumption eliminated the potential use of logistic regression with medica-
tion use as the outcome. Second, we tested linear regression models with the species relative abundance as the 
outcome, but observed problems with spurious false positive associations, particularly with less prevalent species. 
Moreover, the assumption in linear regression that the outcome variable should follow a normal distribution 
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Fig. 1.  The process for selecting the medication variables for the study. From the Swedish National Board of 
Health and Welfare’s Statistics Database for medicines, statistics on user numbers in the Swedish population 
were obtained, per medication and medication-class (i.e., on different ATC-levels). Medications or medication-
classes used by at least 2% of the Swedish population were the base of the created medication-variables in 
MOS. Then, all medication-variables with ≥ 40 users in MOS (approximately 2% of the study population) were 
included in further analyses. Antidiabetics and metformin were added as metformin use has consistently been 
associated with the gut microbiota composition. Data on use of antibiotic-medications was applied to exclude 
individuals in sensitivity analyses.
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was challenging to meet, as most species/GMMs exhibited complex distributions that could not be adequately 
transformed using standard methods without compromising the interpretability of the data. Shannon index 
was included as a covariate in the main model to reduce the risk of potentially false positive findings, since an 
absolute increase in one species associated with medication could produce associations of opposite direction in 
the relative abundance of another species and then also affect the Shannon index. We additionally adjusted for 
leisure time physical activity level (hereafter denoted “physical activity”) and fiber intake expressed as energy 
percentage (E%) (Model 4), which due to missing data in these variables reduced the sample size to 1475.

To investigate whether the alpha diversity was correlated with the use of medications or medication-classes, 
partial Spearman’s rank correlations were calculated adjusting for the same covariates as above (Model 1, 2) and 
within the reduced sample size further adjusting for physical activity and fiber intake (Model 5). The partici-
pants were divided into three categories based on the number of medications taken (0; 1–4; ≥ 5 medications). 
Kruskal–Wallis test was used to test whether any differences in Shannon index between the categories were 
statistically significant.

Three sets of sensitivity analyses were performed: excluding those using antibiotics in the last 6 months, in 
the last 12 months, and those using 5 or more medications. First, we excluded 262 subjects who self-reported 
antibiotic usage during the last 6 months as well as 364 subjects with missing self-reported antibiotic data. Sec-
ondly, we excluded 417 individuals with antibiotic use during the last 12 months, based on the combination of 
medication register data and self-reported antibiotic-usage the latest week. Thirdly, we excluded 76 individuals 
who reported use of ≥ 5 medications the latest week (polypharmacy) and 258 with missing questionnaire data 
on medication use.

To adjust for multiple testing, we calculated the q-values and used the Benjamini–Hochberg procedure to 
control the false discovery rate (FDR) at 5%. FDR was applied to each model separately, including the sensitiv-
ity analyses.

Many of the gut species associated with PPI use were species normally found in the oral cavity. For 10 of 
the PPI-associated gut species, corresponding species were also present from oral samples among the 430 indi-
viduals that participated both in MOS and MODS. In a post hoc analysis pairwise Spearman correlations were 
calculated between the relative abundances of these gut and oral species, and statistical significance was defined 
using FDR at 5%.

The correlation between the use of different medications was assessed using pairwise Spearman correlations.
Statistical analyses were performed in R v4.3.2 (r-project.org) and SPSS (IBM SPSS Statistics 28.0) and visual-

ized in R (using ggplot2)

Results
Clinical characteristics of the Malmö Offspring Study cohort and medication use
The age range of the 2223 included participants was 18–70 years, 52% were females and 42% reported use of at 
least one medication the latest week (Table 1). The most frequent medications in MOS were nonsteroidal anti-
inflammatory drugs (NSAIDs) (M01A), used by 17% of the participants (Table 2). Co-occurrence of medication 
use is presented in Supplementary Fig. 2.

Compared to participants without any medications or with less than five medications, those with polyphar-
macy (≥ 5 medications) were significantly older, were more often women, had higher BMI and lower physical 
activity level, and a higher prevalence of diabetes, hypertension, previous myocardial infarction, IBS, Crohn’s 
disease, ulcerative colitis, and cancer (Table 1). Use of antibiotics was also higher among those with polyphar-
macy (Table 1). Altogether, 147 different medications (individual ATC-codes) were used by the 76 participants 
with polypharmacy, where paracetamol, acetylsalicylic acid, metoprolol, atorvastatin, and metformin were the 
most common medications.

Medication use and the gut microbial diversity and overall composition
Lower richness, Shannon index and/or inverse Simpson were observed among users of 26, 18 and 2 medications 
or medication-classes based on partial Spearman correlation (q < 0.05 for all) as compared to non-users adjust-
ing for age, sex, and BMI (Supplementary Table 10), with highly overlapping results for richness and Shannon, 
of which the latter results are presented in Fig. 2a. All diversity measures were decreased in participants with 
polypharmacy as compared to individuals without adjusting for age, sex, and BMI (p = 2.71e−6, p = 0.0003 and 
p = 0.019, respectively, Supplementary Table 24) with group-wise comparisons presented for Shannon index and 
richness in Fig. 2b. Assessment of inter-individual differences in the overall gut microbiota composition by beta-
diversity additionally revealed dissimilarities in the overall microbial community between the medication-use 
categories in a permutational multivariate analysis of variance (p = 0.001) (Fig. 2c).

Associations between medication use and gut species
Using the partial Spearman correlations adjusted for age, sex, BMI, and Shannon index we observed 97 signifi-
cant associations between 26 different medications/medication-classes and abundance of 40 individual species 
(q < 0.05) (Fig. 3, Supplementary Table 3), and the majority (80%) of the associations were positive. Prevalence 
and full taxonomy of the associated species is presented in Supplementary Table 29.

The highest number of associations (q < 0.05), altogether 48, were observed between 16 different species and 
use of the medication-class ‘Drugs for acid related disorders’ or its ATC-subordinates (ATC A02, A02B, A02BC 
or A02BC01). In medication users belonging to this group, higher relative abundance of several Streptococcus 
species was observed as were higher relative abundances of Bifidobacterium dentium, Rothia mucilaginosa, two 
Veilonella species, two Limosilactobacillus species, Klebsiella oxytoca, Parvimonas micra, Allsocardovia omnicolens 
and Scardovia wiggsiae. For ten of these PPI-associated gut species we identified the oral counterpart species in 
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MODS saliva metagenomic data. The relative abundance of all these ten gut species correlated (p < 0.05) with 
the abundance of corresponding species from the oral microbiota (Table 3).

Among the strongest associations were those with medications used in diabetes, in particular metformin. 
Higher relative abundance of Escherichia marmotae and E. coli and lower relative abundance of Romboutsia 
timonensis were observed in users of metformin (q <  10–7) and all these associations were found to be stronger 
at the substance level (metformin) rather than on the superior medication class levels. Similarly to users of met-
formin, users of antidepressants, selective serotonin reuptake inhibitors (SSRIs), and/or sertraline had a lower 
abundance of R. timonensis. Only negative associations were seen between use of antidepressants and gut bacterial 
species, with lower abundance of Clostridium disporicum (HG3A.0222) and Eubacteriales sp. (HG3A.0093) in 
users of antidepressants and SSRI, Lachnospiraceae sp. (HG3A.0433), Bifidobacterium bifidum, and Eubacteriales 
sp. (HG3A.0190) in users of SSRI, and Clostridiaceae sp. (HG3A.0238) in users of antidepressants.

Further associations were observed between usage of beta-blockers, selective beta-blockers and metoprolol 
and higher abundance of Oscillospiraceae sp. (HG3A.1161). In users of NSAIDs (ATC M01A), the fungus Sac-
charomyces cerevisiae was observed in higher abundance while Anaerostipes hadrus (HG3A.0003) was seen in 
higher abundance in users of propionic acid derivative types of NSAIDs.

Among users of nasal preparations, a higher abundance of seven species was detected. Nasal corticosteroids 
were associated with five of these species including two Oscillospiraceae species (HG3A.0770 and HG3A.0998), 
two Eubacteriales species (HG3A.0717 and HG3A.0709) and Erysipelotrichales sp. (HG3A.0303). In addition, 
nasal preparations were associated with higher abundance of K. oxytoca and Clostridium sp. (BSD2780061688st1.
H5). Concerning oral corticosteroids, users of betamethasone were observed to have higher abundance of 
Clostridia sp. (HG3A.0011). Use of any inhalation steroids and specifically budesonide inhalants associated 
with lower abundance of Ruminococcus sp. (HG3A.0131), while use of combined mucolytic cough mixtures 
associated with lower abundance of Ruminococcus sp. (HG3A.0126) and higher abundance of Lachnospiraceae 
sp. (HG3A.1512). L. vaginalis, with a prevalence of only 5.4% (females 4.3%, males 6.6%), that was observed to 
be more abundant among users of PPIs, was additionally positively associated with use of angiotensin II receptor 

Table 1.  Characteristics of participants in the Malmö Offspring Study. a Data is given as mean ± SD or N (%). 
E% energy percentage, BMI body mass index, IBS Irritable bowel syndrome. b258 participants did not report. 
cCombined self-reported- (latest week) and drug register data from the latest 12 month: users coded as 1, all 
others coded as 0. P-values comparing the drug-usage groups are from the t-test for continuous variables and 
from Chi-squared test for the categorical variables, except for in comparisons including cells < 5 observations 
they are from Fisher exact test. Significant p-values (< 0.05) are in bold.

Variables N
Alla

N = 2223

Self-reported drug usage, latest  weekb P-value

No drugs
N = 1026

1–4 drugs
N = 863

 ≥ 5 drugs 
(polypharmacy)
N = 76

No drugs vs 
polypharmacy

1–4 drugs vs 
polypharmacy

0–4 drugs vs 
polypharmacy

Age (years) 2223 40.4 ± 13.9 37.8 ± 13.0 43.2 ± 14.0 50.3 ± 12.7 1.6E−12 1.2E−05 2.3E−09

Sex (women) 2223 1159 (52.1) 487 (47.5) 513 (59.4) 47 (61.8) 0.02 0.77 0.16

BMI (kg/m2) 2223 25.9 ± 4.7 25.3 ± 4.4 26.4 ± 5.0 29.0 ± 4.8 2.5E−9 1.6E−05 1.2E−07

Current smoker 1958 310 (15.8) 159 (15.6) 140 (16.3) 11 (14.5) 0.93 0.81 0.86

Alcohol intake 4 times 
per week or more 1953 75 (3.8) 31 (3.0) 41 (4.8) 3 (3.9) 0.73  > 0.99 0.77

Leisure time physical 
activity level, sedentary 
or low

1947 906 (46.5) 454 (44.7) 403 (47.0) 49 (66.2) 5.4E−04 2.2E−03 8.3E−04

Education level, uni-
versity 1954 731 (37.4) 373 (36.3) 333 (38.7) 25 (33.3) 0.65 0.43 0.53

Fibre intake (E%) 1607 1.87 ± 0.63 1.84 ± 0.63 1.89 ± 0.60 1.95 ± 0.62 0.26 0.53 0.36

Antibiotic use in the last 
6 months, self-reported 1859 262 (14.1) 112 (11.7) 130 (15.7) 20 (27.0) 3.0E−04 0.02 2.0E−03

Antibiotic use in the last 
12  monthc 2223 417 (18.8) 140 (13.6) 193 (22.4) 25 (32.9) 1.2E-05 0.05 1.2E−03

Prevalent disease

 Diabetes 1902 53 (2.8) 3 (0.3) 34 (4.0) 16 (21.3) 7.9E−17 9.2E−10 8.1E−22

 Hypertension 1903 348 (18.3) 84 (8.6) 217 (25.5) 47 (62.7) 1.9E−41 2.1E−11 1.7E−23

 Myocardial infarction 1895 19 (1.0) 1 (0.1) 6 (0.7) 12 (16.2) 8.1E−14 1.4E−18 1.9E−37

 Stroke 1896 19 (1.0) 3 (0.3) 15 (1.8) 1 (1.4) 0.25  > 0.99 0.53

 Celiac disease 1893 23 (1.2) 8 (0.8) 14 (1.7) 1 (1.3) 0.49  > 0.99 0.61

 IBS 1899 320 (16.9) 118 (12.1) 179 (21.0) 23 (30.7) 1.3E−05 0.07 1.9E−03

 Crohn’s disease 1897 13 (0.7) 2 (0.2) 9 (1.1) 2 (2.7) 0.03 0.22 0.09

 Ulcerative colitis 1898 19 (1.0) 4 (0.4) 10 (1.2) 5 (6.7) 1.7E−04 4.8E−03 6.4E−04

 Cancer 1897 75 (4.0) 25 (2.6) 43 (5.1) 7 (9.3) 3.3E−03 0.20 0.03
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Medication
ATC-code Variable  namea Number of  usersb(%)

Antiinflammatory and antirheumatics non steroids
M01A NSAID_and_Glucosamine_M01A 379 (17.0)

 Propionic acid derivatives (NSAID)
 M01AE NSAID_M01AE 233 (10.5)

  Ibuprofen
  M01AE01 NSAID_Ibuprofen_M01AE01 173 (7.8)

  Naproxen
  M01AE02 NSAID_Naproxen_M01AE02 46 (2.1)

 Acetic acid derivatives and related substances
 M01AB NSAID_M01AB 142 (6.4)

  Diclofenac
  M01AB05 NSAID_Diclofenac_M01AB05 137 (6.2)

Antihistamines for systemic use
R06A Antihistamines_Oral_R06A 238 (10.7)

 Other antihistamines
 R06AX Antihistamines_Oral_Other_R06AX 168 (7.6)

  Desloratadine
  R06AX27 Antihistamines_Oral_Desloratadine_R06AX27 95 (4.3)

  Loratadine
  R06AX13 Antihistamines_Oral_Loratadine_R06AX13 63 (2.8)

Drugs for acid related disorders
A02 Drugs_acid_related_disorders_A02 225 (10.1)

 Drugs for pepctic ulcer and gastro-oesophageal reflux disease
 A02B Drugs_peptic_ulcers_reflux_A02B 215 (9.7)

  PPI
  A02BC PPI_A02BC 201 (9.0)

   Omeprazol
   A02BC01 PPI_Omeprazol_A02BC01 166 (7.5)

Other analgesics and antipyretics
N02B Other_analgetics_antipyretics_N02B 217 (9.8)

 Paracetamol, plain
 N02BE01 Paracetamol_N02BE01 178 (8.0)

Paracetamol, incl combinations
N02AJ06, N02BE01 Paracetamol_ALL 187 (8.4)

Nasal preparations
R01 Nasal_preparations_R01 183 (8.2)

 Decongestants and other nasal preparations for topical use
 R01A Nasal_topical_R01A 161 (7.2)

  Corticosteroids nose
  R01AD Corticosteroids_Nasal_R01AD 155 (7.0)

   Mometasone
   R01AD09 Corticosteroids_Nasal_Mometasone_R01AD09 111 (5.0)

 Phenylpropanolamine
 R01BA01 Phenylpropanolamine_R01BA01 40 (1.8)

Other drugs for obstructive airway diseases, inhalants
R03 Drugs_obstructive_ariways_R03 171 (7.7)

 Adrenergics inhalants
 R03A Adrenergics_Inhalants_R03A 152 (6.8)

  Selective beta-2-adrenoreceptor agonists
  R03AC Adrenergics_Beta2_agonist_Inhalants_R03AC 109 (4.9)

   Terbutaline
   R03AC03 Terbutaline_inhalants_R03AC03 68 (3.1)

  Adrenergics in combination with corticosteroids or other drugs, excl. Anticholinergics
  R03AK Adrenergics_combinations_inhalants_R03AK 68 (3.1)

   Formoterol and budesonide, combination
   R03AK07 Formoterol_budesonide_inhalants_R03AK07 56 (2.5)

  Inhalation steroids
  R03BA, R03AK Inhalation_steroids_ALL 121 (5.4)

   Budesonide
   R03BA02 Budesonide_Inhalants_R03BA02 53 (2.4)

Agents acting on the renin-angiotensin system
C09 Agents_RAS_system_C09 158 (7.1)

 ARB incl combinations
 C09C, C09D ARBs_ALL 91 (4.1)

  ARB plain
  C09CA ARBs_C09CA 77 (3.5)

   Losartan
   C09CA01 Losartan_C09CA01 43 (1.9)

  ACE-inhibitors inc. Combinations
  C09A, C09B ACEi_ALL 71 (3.2)

Cough and Cold preparations
R05 Cough_Cold_preparations_R05 149 (6.7)

 Cough suppressants and expectorants, combinations
 R05F Cough_suppress_expectorants_R05F 98 (4.4)

Continued
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blockers (ARBs) and with calcium channel blockers, of which the latter additionally associated with a higher 
abundance of Clostridiaceae sp. (HG3A.0608).

Polypharmacy associated with lower abundance of Eubacteriales sp. (HG3A.0137) and with higher abundance 
Enterococcus faecalis, Bacteroides uniformis, R. mucilaginosa, E. coli and L. vaginalis, of which the last three also 
associated with use of individual medications/medication-classes as presented above (Fig. 3). In the model 
adjusted for age, sex, and BMI but not for Shannon index (model 2, Supplementary Table 17), 61 associations 
were observed (q < 0.05) between polypharmacy and species, of which 72% were negative (Supplementary Fig. 3).

Table 2.  Frequencies of medication users in the Malmö Offspring Study (N = 2223). Medication class headings 
in bold, followed by subgroups in hierarchical ATC-order. aVariable names correspond to those in Fig. 3. 
bCombined self-reported- (latest week) and drug register data from the latest 12 months: users coded as 1, all 
others coded as 0.

Medication
ATC-code Variable  namea Number of  usersb(%)

  Opium derivatives and expectorants
  R05FA02 Cough_mixture_Opium_derivate_R05FA02 93 (4.2)

 Expectorants, excl. Combinations with cough supressants
 R05C Expectorants_excl_cough_supressants_R05C 63 (2.8)

  Mucolytics_comb
  R05CB10 Mucolytics_comb_R05CB10 41 (1.8)

Antidepressants
N06A Antidepressants_N06A 129 (5.8)

 SSRI Selective serotonin reuptake inhibitors
 N06AB Antidepressants_SSRI_N06AB 92 (4.1)

  Sertraline
  N06AB06 Sertraline_N06AB06 51 (2.3)

Lipid modifying agents
C10A Lipid_lowerers_C10A 123 (5.5)

 Statins
 C10AA Statins_C10AA 113 (5.1)

  Simvastatin
  C10AA01 Simvastatin_C10AA01 66 (3.0)

  Atorvastatin
  C10AA05 Atorvastatin_C10AA05 48 (2.2)

Beta blocking agents
C07 Betablockers_C07 112 (5.0)

 Beta blocking agents, selective
 C07AB Beta_blockers_selective_C07AB 94 (4.2)

  Metoprolol incl combinations
  C07AB02, C07FB02 Metoprolol_ALL 71 (3.2)

Corticosteroids systemic
H02A Corticosteroids_oral_H02A 110 (4.9)

 Glucocorticoids
 H02AB Glucocorticoids_oral_H02AB 109 (4.9)

  Betamethasone
  H02AB01 Betamethasone_oral_H02AB01 61 (2.7)

ASA, merged
N02BA01, B01AC06,N02BA51, N02AJ09 ASA_ALL 86 (3.9)

 Platelet aggregation inhibitors excl. Heparin
 B01AC Platelet_aggregation_inhibitors_B01AC 43 (1.9)

  ASA_anticoag
  B01AC06 ASA_anticoag_B01AC06 40 (1.8)

Levothyroxine sodium
H03AA01 Levothyroxine_H03AA01 86 (3.9)

Calcium channel blockers
C08 Calcium_channel_blockers_C08 71 (3.2)

 Amlodipine
 C08CA01 Amlodipine_C08CA01 44 (2.0)

Drugs for constipation
A06A Laxatives_A06A 70 (3.1)

Drugs used in diabetes
A10 Antidiabetics_A10 53 (2.4)

 Blood Glucose Lowering (excluding Insulines)
 A10B Antidiabetics_not_Insulins_A10B 38 (1.7)

  Metformin
  A10BA02
  A10BD20

Metformin_ALL 36 (1.6)

 Insulins and analouges
 A10A Insulins_and_analouges_A10A 23 (1.0)

Thiazides incl combinations
C03A, C03EA, C09BA, C09DA Thiazides_ALL 52 (2.3)

Diuretics
C03 Diuretics_C03 42 (1.9)
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Associations between medication use and the functional potential of the gut microbiota
In total, we found associations between 15 GMMs, each representing unique microbial functions, and four 
medications or medication classes or polypharmacy, using partial Spearman correlations adjusted for age, sex, 
BMI and Shannon index (q < 0.05, Fig. 4, Supplementary tables 34–48). Of these, lactate consumption I and 
arginine degradation II were positively associated with use of metformin, and methionine degradation with 
anti-diabetic medication class, while maltose degradation associated with use of acetylsalicylic acid (ASA). 
Altogether 10 GMMs were positively associated (q < 0.05) solely with polypharmacy. As different species may 
harbor genes that enable them to perform the same metabolic function, we combined the results of GMM and 
species associations with medication or polypharmacy usage in Fig. 5, to enable easier interpretation of both 
results together. For example, in metformin users we observed elevated abundance of lactate consumption I and 
arginine degradation II and both these GMMs are harbored by E. marmotae, a species with higher relative abun-
dance (q < 0.05) in metformin users (Fig. 5). Among the elevated GMMs in polypharmacy users, the strongest 
association (q = 0.001) was observed for dissimilatory nitrate reduction, aligning with E. coli and B. uniformis 
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Fig. 2.  Medication use and the gut microbial richness and evenness, and overall composition. (a) Violine 
plots of Shannon index in participants stratified by users (orange) and non-users (green) of 18 medications or 
medication-classes with correlations at q < 0.05, adjusted for age, sex, and BMI. Unadjusted P-values (in black) 
and FDR adjusted q-values (in blue) refer to partial Spearman correlation analyses. The three horizontal lines 
indicate the median and the 25th and 75th percentiles (interquartile range) of Shannon index of users and 
non-users of medications or medication classes. (b) Shannon index and richness of participants stratified by the 
number of medications used; 0, 1–4 or ≥ 5 (polypharmacy). Kruskal–Wallis test was used to calculate differences 
in Shannon index and richness between the three groups. P-values are presented for analyses before (in black), 
and after adjustments for sex, age, and BMI (in blue). The three horizontal lines indicate the median and the 
25th and 75th percentiles (interquartile range) of Shannon index. (c) The two principal coordinates (mds1 and 
mds2, obtained using multidimensional scaling (MDS) analysis) of the Bray–Curtis dissimilarity index (beta-
diversity) for participants stratified by the number of medications used. Each dot represents one individual, and 
colors indicate the group. Dissimilarities in the overall microbial community between the three groups were 
calculated by permutation test  (R2 = 0.002, p < 0.001).
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Fig. 3.  Associations between gut species and medication use. The heatmap displays partial Spearman’s rank 
correlations for all medications/medication-classes and polypharmacy (columns) that were significantly 
associated with any of the gut species (rows) adjusting for age, sex, BMI, and Shannon index. All correlations 
with q < 0.05 are indicated by •. Red indicates positive and blue negative correlations.

Table 3.  Correlations between relative abundances of gut species that associated with drugs for acid related 
disorders and their corresponding oral counterparts in 430 participants of the Malmö Offspring Study (MOS) 
and Malmö Offspring Dental Study (MODS) participants. ρ is the Spearman correlation coefficient and p is the 
nominal p-value for the correlation. Bold indicates statistical significance at 0.05 for unadjusted p-values and * 
indicates statistical significance at FDR 5%.

Gut species Oral species ρ p

Rothia mucilaginosa HG3A.0559 Rothia mucilaginosa Ho1A.0117 0.55 2.89E−35*

Rothia mucilaginosa HG3A.0559 Rothia mucilaginosa Ho1A.0001 − 0.09 7.04E−02

Scardovia wiggsiae HG3A.1737 Scardovia sp. Ho1A.0098 0.33 1.66E−12*

Alloscardovia omnicolens HG3A.1279 Alloscardovia omnicolens Ho1A.0123 0.29 1.68E−09*

Streptococcus parasanguinis HG3A.0117 Streptococcus parasanguinis Ho1A.0005 0.28 2.73E−09*

Veillonella dispar HG3A.0227 Veillonella dispar Ho1A.0018 0.27 2.06E−08*

Veillonella atypica HG3A.0357 Veillonella atypica Ho1A.0013 0.25 1.09E−07*

Bifidobacterium dentium HG3A.0579 Bifidobacterium dentium Ho1A.0146 0.24 7.19E−07*

Streptococcus gordonii HG3A.0713 Streptococcus gordonii Ho1A.0065 0.21 7.17E−06*

Streptococcus salivarius HG3A.0071 Streptococcus salivarius Ho1A.0002 0.15 2.00E−03*

Streptococcus salivarius HG3A.0071 Streptococcus salivarius Ho1A.0234 0.06 2.08E−01

Parvimonas micra HG3A.1231 Parvimonas micra Ho1A.0046 0.13 7.83E−03*
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which harbor these functions and associate with polypharmacy in our study (Fig. 5). Most of the polypharmacy 
associated functions belong to pathways encoding amino acid degradation, or energy metabolism and the five 
species that positively associated with polypharmacy in our study harbored between three and 11 of the GMMs 
that associated with polypharmacy.

Additional adjustments for fiber intake and leisure time physical activity level, and sensitivity 
analyses
These results are presented in the Supplementary information file (Supplementary results).

Discussion
In a large Swedish population-based cohort, we report associations between specific gut species and functional 
GMMs and commonly used medications/medication-classes and polypharmacy. We replicate earlier associations 
between use of PPIs, metformin, and SSRIs with specific gut species, and describe new associations with use of 
metformin, antidepressants/SSRIs, NSAIDs and NSAID-subtypes, ARBs, calcium channel blockers, beta-blocking 
agents, nasal preparations, inhaled or oral steroids and polypharmacy. Regarding metformin, we replicate earlier 
findings of increased lactate consumption I and arginine degradation II in users of this drug, and present new 
observations of elevated methionine degradation and anaerobic fatty acid oxidation in users of antidiabetic 
medications. We replicate previously described negative associations between Shannon index and use of PPI, 
paracetamol, metformin, and metoprolol and report new negative associations for inhalants for obstructive 
airways, oral corticosteroids, and levothyroxine. Further, among individuals with polypharmacy, we report dif-
ferences in the overall gut microbial composition and decreased richness and Shannon index, replicating previous 
 findings5, and describe both new and replicated associations between polypharmacy and specific gut species, of 
which some did not associate with any other specific medications. We further report numerous associations with 
deviations in the functional potential of the gut microbiome among those with polypharmacy, most of which 
were solely associated with polypharmacy and not with use of any individual medication.

Earlier studies of associations between medication use and gut microbiota using shotgun metagenomics in 
large cohorts have been  scarce5,12,24. MOS cohort represents the general population and both registry data on 
prescription medicines and self-reported medication use in the past week, including over-the-counter medica-
tions, were utilized. As not all medication-classes were available from the medication register due to the original 
design of MOS, the self-reported data added valuable complementary information, also regarding ongoing 
concomitant medication-use.
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Fig. 4.  Associations between gut metabolic modules (GMMs) and medication use. The heat map displays 
partial Spearman’s rank correlations for all medications/medication classes and polypharmacy (columns) that 
were significantly associated with any of the GMMs (rows), adjusted for age, sex, BMI, and Shannon index. All 
correlations with q < 0.05 are indicated by • . Red indicates positive correlations, and blue indicates negative 
correlations.
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Lower gut microbiota alpha diversity, commonly measured as richness (number of species) and richness 
and evenness (Shannon index), has been observed in numerous  diseases11,25 as well as among users of spe-
cific  medications5,11,17,24,26,27. We observed lower gut microbiota richness amongst users of almost 40% of the 
investigated medications, and 70% of these additionally associated with lower Shannon index. In line with 
Jackson et al.11, we found lower Shannon index in users of metformin, paracetamol, and PPI. Contrary to our 
results, Nagata et al.5 observed a higher Shannon index in PPI users, and our associations did not withstand the 
sensitivity-analyses, which showed substantial reductions in the correlation coefficients and thus the association 
might rather reflect previous antibiotic use or occurrence of polypharmacy. The associations of paracetamol and 
metformin with Shannon index did not withstand sensitivity analysis excluding polypharmacy users, which could 
reflect either decreased power as these medications were amongst the most common among those with polyp-
harmacy, or an impact of polypharmacy on Shannon index, or both. In our study, lower richness and Shannon 
index were also seen among users of beta-blockers, replicating earlier result in the Estonian microbiome  cohort24. 
Further, we observed lower richness and Shannon index in users of oral corticosteroids, and medications for 
obstructive airways, and decreased Shannon index amongst users of levothyroxine, which to our knowledge have 
not been reported before. The strengths of these correlations were generally preserved in the three sensitivity 
analyses. Overall, the further adjustment for fiber intake and physical activity were not observed to have any 
major impact on the associations between medications or polypharmacy and Shannon index.

Our study provides further convincing evidence, put forward in several earlier studies, for a strong connection 
between PPI use and gut microbiota. Concordant with earlier observational studies, a higher relative abundance 
of species of oral origin, like those of Streptococcus and Rothia genera, was characteristic for the gut microbiota of 
PPI users in our  study5,12,16,17,26. By repeated sampling, Nagata et al.5 demonstrated increased relative abundance 

Fig. 5.  Overview of the associations between medication use and gut species and gut metabolic modules 
(GMMs), and their connections. The inner circle shows all GMMs that are associated with medications or 
polypharmacy in Fig. 4, and the outer circle shows the species that harbor these GMMs amongst those species 
that are associated with any medication or polypharmacy in Fig. 3. Each colored bullet on the inner or outer 
circle represents specific medications or polypharmacy that are associated with a GMM or a species, respectively. 
Bullets that contain a minus sign refer to a negative association, all the others are positive associations. The plot 
was produced by using  iTOL50.
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of Streptococcus in the gut microbiota in individuals after starting with PPI, and a corresponding decrease after 
termination. This has been suggested to be mediated by the increased pH in the gut due to PPI use, which can 
promote colonization of certain bacteria at more distal parts of the digestive  tract10,26,28.

Most gut species with elevated abundance among PPI-users are normal habitants of the human oral flora. 
For 10 of 16 such species in the gut, we identified oral counterparts in MODS, and the relative abundance of all 
these correlated with the corresponding oral species, which is in line with the view that PPI use may promote 
transferal of certain oral species to the gut.

Both observational and interventional studies have demonstrated specific changes in the gut microbiota 
of metformin users and a direct anti-diabetic effect mediated by gut bacteria has been demonstrated by fecal 
transplantation from metformin treated donors to germ-free  mice14. Both improved glucose control and negative 
side effects of metformin have previously been attributed to gut microbiota mediated  mechanisms12,13,29. Results 
from our study provide support for metformin-related changes in the gut microbiota. We observed a higher 
relative abundance of two Escherichia species, E. marmotae and E. coli, among users of metformin, of which 
the association with E. coli has repeatedly been described in previous  studies10,13,14,29. E. marmotae is a recently 
described species, phenotypically indistinguishable from E. coli, that in most earlier studies likely has been 
misidentified as E. coli30. Consistent with previous studies, we also observed nominally decreased abundance of 
I. bartlettii in metformin  users13,14 and support for a causal connection was recently provided by a randomized 
trial where initiation of metformin in treatment of naïve adults resulted in decreased abundance of I. bartlettii29. 
Our study additionally identified R. timonensis in lower abundance among metformin users. Like E. marmotae, 
R. timonensis is a newly isolated species from the human  gut31, and has not been captured in earlier data-base 
dependent gut microbiota studies. However, this finding is supported by another recent large metagenomic study 
from Sweden where metformin use was based on plasma metabolome  data20.

A major feature of the gut microbiome is the metabolic functional potential which we investigated utilizing 
GMMs, representing metabolic modules that are assigned based on known functions of bacterial  genes22. Apart 
from the numerous GMM associations with polypharmacy, discussed later, associations with specific medications 
were restricted to antidiabetic medications including metformin, and ASA, of which the latter did not associate 
with any specific species in our study. In users of metformin, lactate consumption I was elevated, which is in line 
with associations of metformin with E. coli and E. marmotae, that harbor these functions, in our study. Metformin 
was further associated with arginine degradation II harbored by E. marmotae. In line with our results, Wu et al.14 
observed that initiation of metformin treatment led to upregulation of bacterial amino acid metabolism, includ-
ing arginine degradation. They further found increased fecal concentrations of lactate in the metformin-treated 
group, as compared to the placebo group, after 4 months of treatment. Here, we found an increase in lactate 
consumption I, and it is possible that the increased lactate levels in feces may benefit the expansion of species that 
can utilize lactate. Further evidence concordant with our results is by Nagata et al.5 reporting all genes related to 
lactate consumption I and arginine degradation II elevated in Japanese metformin users.

Gut microbiota interacts bilaterally with the central nervous system via the gut-brain  axis32 and has been 
associated with  depression33,34. Previous association studies of antidepressants and gut microbiota have provided 
diverging results. We solely found negative associations between antidepressants and gut species, which is in 
line with a recent study showing anti-microbial activity of several antidepressants in vitro on specific habitants 
of normal gut microbiota, including Bifidobacterium bifidum35, which we found in decreased abundance among 
SSRI users. All other SSRI associated species in our study belong to Clostridia, and two of them belong to Clostri-
diaceae family, which associated with SSRI use in an earlier  study11.

Changes in the gut microbiota as a consequence of use of subclasses of NSAIDs have been described in 
numerous animal studies, while large human metagenomic population studies are  lacking36. Of our study par-
ticipants, 17% used NSAIDs and this was associated with increased abundance of Saccharomyces cerevisiae, a new 
finding that needs confirmation in other studies. S. cerevisiae is a common yeast in fermented food and a frequent 
habitant of the gut  flora37 and has been attributed potential positive health outcomes such as protection of the 
gut mucosa and stimulation of the immune  system38. Anti-saccharomyces antibodies have been described as 
predictors of inflammatory bowel disease  progress39. One of two subspecies of Anaerostipes hadrus (HG3A.0003) 
was found in higher abundance among users of propionic acid derivative types of NSAIDs, while this species did 
not show any association with use of acetic acid derivative types of NSAIDs nor with the subordinate substance 
diclofenac. Previously, NSAID-type specific gut microbiota associations have been reported in a smaller study 
utilizing 16S  sequencing40, while no associations with NSAID use was found in a larger metagenomic study 
that did not differentiate between different types of  NSAIDs12. Further gut metagenomic studies and functional 
analyses are needed to elucidate the interconnectedness between the different NSAIDs, the gut microbiota and 
clinical outcomes.

In rodents, the antihypertensive effect of ARBs has been connected to beneficial changes in the  gut41,42. In our 
study we found increased relative abundance of L. vaginalis in users of both ARBs and calcium channel blockers, 
which is in line with increase of lactobacilli in the gut of mice treated with these  medications41,43, while these 
associations in humans are new. However, blood pressure lowering effect of probiotics containing Lactobacillus 
spp. has been shown in human studies and animal  models44. Another new finding of our study was the robust 
association between use of beta-blockers and increased abundance of one of 60 Oscillospiraceae species in our 
study (HG3A.1161).

Polypharmacy has been associated with various unfavorable health  outcomes7. Cumulative effects of several 
medications can be assumed to affect the intestinal  environment45, and confounding by polypharmacy in gut 
microbiota studies needs to be  considered5,10,12. Like in a previous  report12, polypharmacy associated with differ-
ences in the overall gut microbial composition in our study. Further, among those with polypharmacy all three 
alpha-diversity measures were decreased, which is in line with  some5 but not all previous  studies12. Explanations 
to this could be differences in the study populations and the metagenomic methods. The large population size of 
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our study, high resolution of the metagenomic method together with de novo identification of microbial species 
allowed us to identify a higher number of species than in most earlier studies, affecting the diversity measure-
ments and making between-studies comparison difficult. Our results yet need to be interpreted with caution, 
as the number of individuals with polypharmacy in MOS was limited, their medication use differed widely and 
the differences in diversity measures could also reflect underlying disease states.

In our study, polypharmacy associated with six species of which three, Enterococcus faecalis, Bacteroides 
uniformis and one Eubacterialis species (HG3A.0137), were not associated with any specific medication use. E. 
faecalis, is a common cause of antibiotic resistant hospital-acquired infection. Our finding is concordant with 
Nagata et al.5 report of a gradual increase of this pathobiont by the number of medications taken. Of the other 
polypharmacy associated species, R. mucilaginosa additionally associated with PPI use, E. coli with metformin/
antidiabetics and L. vaginalis with use of PPIs, ARBs, and calcium-channel blockers. R. mucilaginosa, which 
is a normal habitant of the oral  microbiota46, is an opportunistic pathogen that has been associated to various 
diseases. This bacterium has recently been described to harbor a catecholate-siderophore which produces iron-
scavenging  enterobactin47, similar to E. coli that gains survival advantage via production of  enterobactin48. Fur-
ther, R. mucilaginosa may increase virulence of other pathogenic species via a siderophore-sharing mechanism to 
supply them with iron. Interestingly, synergism between E. coli and B. uniformis has been suggested, where E. coli 
utilizes d-galactose generated by B. uniformis as a source of carbon for its own  growth49. In the model adjusted for 
age, sex, and BMI but not for Shannon index, considerably more associations between polypharmacy and species 
were seen, predominantly negative ones. Taken together, these findings might indicate that polypharmacy sup-
presses a broad range of species to a certain degree, and thereby paves the way for certain pathobionts to thrive.

Most of the observed associations with GMMs were observed for polypharmacy, with the strongest associa-
tion noted for dissimilatory nitrate reduction. This path converts nitrate via nitrite to ammonium and represents 
a common detoxification process in facultative anaerobic bacteria like E. coli. Altogether 13 GMMs associated 
with polypharmacy, and the five species that positively associated with polypharmacy in our study contained 
between 3 and 11 of the associated GMMs each, with E. coli harboring 11 of them. Concordant with our results, 
a Japanese  study5 reported positive associations with the number of medications taken and genes related to pyru-
vate dehydrogenase complex, proline degradation, lactate consumption I and NADH:ferredoxin oxidoreductase 
and ribose degradation all of which were among GMMs that associated with polypharmacy in our study. Nagata 
et al., also reported a positive association between polypharmacy usage and fatty acid degradation, which is in 
line with our findings of higher anaerobic fatty acid beta-oxidation in polypharmacy users.

Our study has several important strengths. To our knowledge, this is the largest study of European general 
population cohort to report connections between medication use and gut microbiota using high resolution 
metagenomic  sequencing5,12,24. Another strength is the high-quality medication data, collected from both ques-
tionnaire and medication-register. Further, the data of MOS cohort allows adjustments for known potential 
confounders such as diet and physical activity. Also, we performed analyses for the medications at different 
ATC-levels, which enabled identification of associations at both medication-class and substance level. Utilizing 
these strengths, we replicated several findings of previous studies, but also identified numerous new associations 
to be validated in future studies.

Our study also has some limitations. First, the study population is Swedish, and although the results align with 
earlier results in European studies, they may not be generalizable to other populations. Second, the cross-sectional 
design prohibits any conclusions about causality. Third, we could not address medication dosages, intermittent 
or continuous use, nor the potential impact of specific co-administrated medications on the observed associa-
tions. Fourth, due to the lack of data we could not account for stool consistency as a potential confounder in our 
analyses. Fifth, adjusting for Shannon index aiming to reduce false positive findings due to the collinearity of the 
relative abundances of species and Shannon index, might concomitantly have increased bias and decreased power 
if Shannon index acted as a collider or mediator in some cases. Therefore, we also report all analyses unadjusted 
for Shannon index. Sixth, adjustments for fiber intake and physical activity could only be performed in the 
subset of 1475 participants which decreased the power, however, the estimates of most associations remained 
similar to those in the whole study cohort, indicating that confounding by these factors was limited. Finally, the 
associations between medication use and the gut microbiota can obviously be confounded by the indications 
for the treatments, or by other factors that co-vary with the medication.

Conclusions
Utilizing medication-usage data from complementary sources, we identified many new associations between 
use of medications, medication-classes, and polypharmacy, and the gut microbiota diversity, species relative 
abundance and functional potential. Further, we confirmed several previously known associations and demon-
strated the association of PPI-associated gut species with their oral counterparts, supporting the view of species 
transposal from mouth to gut due to these medications. Our study adds new insights to our understanding of 
the interplay between medications and the gut microbiota composition and function in the general population.

Data availability
The source code and the summary data underlying all figures used to generate the results for the analysis are 
available upon request from the corresponding author (M.O-M.). Access to pseudonymized microbiota and 
phenotype data of MOS/MODS requires ethical approval from the Swedish Ethical Review Board and approval 
from the data access board (https:// www. malmo- kohor ter. lu. se/ uttag).
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