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Background: Despite the improved survival rates of children with tetralogy of Fallot (TOF), various 
degrees of neurodevelopmental disorders persist. Currently, there is a lack of quantitative and objective 
imaging markers to assess the neurodevelopment of individuals with TOF. This study aimed to noninvasively 
examine potential quantitative imaging markers of TOF neurodevelopment by combining radiomics 
signatures and morphological features and to further clarify the relationship between imaging markers and 
clinical neurodevelopment metrics.
Methods: This study included 33 preschool children who had undergone surgical correction for TOF and 
29 healthy controls (36 in the training cohort and 26 in the testing cohort), all of whom underwent three-
dimensional T1-weighted high-resolution (T1-3D) head magnetic resonance imaging (MRI). Radiomics 
features were extracted by Pyradiomics to construct radiomics models, while surface morphometry (surface 
and volumetric) features were analyzed to build morphometry models. Merged models integrating radiomics 
and morphometry features were subsequently developed. The optimal discriminative radiomics signatures 
were identified via least absolute shrinkage and selection operator (LASSO). Machine learning classification 
models include support vector machine (SVM) with radial basis function (RBF) and multivariable logistic 
regression (MLR) models, both of which were used to evaluate the potential imaging biomarkers. 
Performances of models were evaluated based on their calibration and classification metrics. The area 
under the receiver operating characteristic curves (AUCs) of the models were evaluated using the Delong 
test. Neurodevelopmental assessments for children with corrected TOF were conducted with the Wechsler 
Preschool and Primary Scale of Intelligence-Fourth Edition (WPPSI-IV). Furthermore, the correlation of 
the significant discriminative indicators with clinical metrics and neurodevelopmental scales was evaluated.
Results: Twelve discriminative radiomics signatures, optimized for classification, were identified. The 
performance of the merged model (AUCs of 0.922 and 0.917 for the training set and test set with SVM, 
respectively) was superior to that of the single radiomics model (AUCs of 0.915 and 0.917 for the training 
set and test set with SVM, respectively) and that of the single morphometric models (AUCs of 0.803 and 
0.756 for the training set and test set with SVM, respectively). The radiomics model demonstrated higher 
significance than did the morphometric models in training set with SVM (AUC: 0.915 vs. 0.803; P<0.001). 
Additionally, the significant indicators showed a correlation with clinical indicators and neurodevelopmental 
scales.
Conclusions: MRI-based radiomics features combined with morphometry features can provide 

1587

https://crossmark.crossref.org/dialog/?doi=10.21037/tp-24-219


Yang et al. Radiomics and morphometry evaluate TOF’s neurodevelopment1572

© AME Publishing Company.   Transl Pediatr 2024;13(9):1571-1587 | https://dx.doi.org/10.21037/tp-24-219

Introduction

Tetralogy of Fallot (TOF), the most prevalent form of 
cyanotic congenital heart disease (CHD), comprises four 
anatomical abnormalities: ventricular septal defect (VSD), 
pulmonary stenosis, right ventricular hypertrophy, and an 
overriding aorta (ORA). TOF is one of the most common 
cyanotic heart defects, accounting for approximately 7–10% 
of all CHD cases. The incidence of TOF is estimated 
to be about 1 in 3,000 live births (1). Despite significant 

improvements in the long-term survival rate of children 
with CHD due to advancements in medical care (2-7), 
Children with TOF still experience neurodevelopmental 
disorders (NDDs), including impairments in language, 
memory, attention, and executive function, which can 
potentially impact the long-term growth and development. 
These disorders are thought to be associated with several 
factors, including chronic hypoxemia due to reduced 
oxygenated blood flow, surgical interventions, and genetic 
abnormalities. The precise mechanism underlying 
neurodevelopmental impairments in children with CHD 
remains unclear (8-10) and may involve impaired cerebral 
oxygen delivery, altered brain maturation, and potential 
neuroinflammatory responses. Currently, the clinical 
assessment of neurodevelopment in children with CHD 
is relatively subjective and lacks objective quantitative 
diagnostic markers. Understanding these mechanisms is 
crucial for improving the long-term neurodevelopmental 
outcomes of children with TOF. Therefore, studying the 
brain development of children with TOF and identifying 
influential markers can enhance the monitoring of 
neurodevelopment. This can facilitate the implementation 
of appropriate and timely intervention measures to improve 
their quality of life (5).

Radiomics can be used to extract valuable quantitative 
information from medical images (11,12), and then learning 
or deep learning models can be employed for prediction 
and analysis. The potential means of discrimination can 
be discovered and clinical mechanisms can be revealed 
(13-16). Moreover, the in-depth information will provide 
more accurate evidence for clinical decision-making. 
Radiomics has been applied to various clinical decisions, 
diagnostic, and prognostic assessments (17-23). In recent 
years, there has been a growing utilization of radiomics 
in neurodevelopment. Several studies have demonstrated 
that radiomics information can provide valuable insights 
into NDDs and aid in the diagnosis and treatment within 
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clinical settings. Shin et al. applied a radiomics approach 
to predict adverse psychomotor development in preterm 
infants based on brain magnetic resonance imaging (MRI), 
showing that MRI-based radiomics analysis can predict 
adverse psychomotor outcomes in preterm infants (24). 
Another study conducted by Wagner et al. combined 
clinical parameters and radiomics features to predict adverse 
neurodevelopmental outcomes of extremely preterm 
neonates (25). Research on the diagnosis of attention-
deficit/hyperactivity disorder (ADHD) demonstrated 
that MRI radiomic features are potential diagnostic 
biomarkers of ADHD (26). Additionally, a study by Wang 
et al. predicted adverse motor outcomes for neonates with 
punctate white-matter lesions using MRI radiomics (27). 
These examples highlight the effective applications of 
radiomics in exploring neurodevelopmental conditions in 
children.

Structural MRI (sMRI) has become a crucial tool in 
medical imaging due to its ability to provide high-resolution 
images of soft tissues without radiation, making the 
noninvasive observation of brain structures possible. Its short 
scan time, high patient compliance, and accessibility have 
led to its widespread use in studies of brain development. 
Previous research has demonstrated the value of sMRI in 
various neurological conditions (28). For example, Shin 
et al. (29) used cortical thickness measurements from 
sMRI combined with machine learning to predict the 
conversion from mild cognitive impairment in Parkinson 
disease, illustrating the predictive power of sMRI in 
neurodegenerative conditions. sMRI can also reveal brain 
structure alteration in children with CHD. Morton et al. (30)  
identified that brain sulcus characteristics in children with 
TOF could serve as markers for neurodevelopmental risk. 
Meanwhile, Aleksonis et al. (31) reviewed relationships 
between structural neuroimaging and neurocognitive 
outcomes in adolescents and young adults with CHD, 
finding a correlation between worse brain structure and 
poorer cognitive performance. Dhari et al. (32) examined the 
impact of cardiopulmonary bypass (CPB) on neurogenesis 
and cortical maturation, while Claessens et al. (33) reported 
brain microstructural development with critical CHD based 
on sMRI. Additionally, a previous study using fetal brain 
volume predicted subsequent neurodevelopmental outcomes 
in children with CHD (34). These findings highlight the 
importance of sMRI in understanding and predicting 
neurodevelopmental outcomes in children with CHD and 
suggest its potential as a valuable tool in clinical research.

Therefore, various studies have been conducted based on 

sMRI to measure brain volume, cortical thickness, and other 
structural characteristics that indicate a developmental delay 
in children with CHD. However, most of this research has 
focused on superficial qualitative morphometric features of 
images, such as volume, surface area, and thickness, while 
often neglecting the more nuanced quantitative features 
that radiomics can provide. Radiomics can extract a large 
number of quantitative features from medical images, 
capturing subtle patterns and details not visible to the 
naked eye, including first-order statistics (e.g., histogram-
based features such as mean intensity and variance), shape-
based features (e.g., sphericity and surface area), and 
texture features [e.g., gray-level co-occurrence matrix 
(GLCM), which describes the spatial relationship between 
pixels]. Additionally, higher-order features derived from 
transformations such as wavelets can capture more complex 
patterns. These in-depth quantitative radiomic features are 
obtained through advanced image-processing techniques 
and can provide a more comprehensive assessment of brain 
structure. Therefore, in our study, we combined potential 
quantitative radiomics features with morphometry features 
to examine the neurodevelopment of children with TOF.

We identified potential imaging markers of TOF in 
preschool children based on radiomics combined with 
sMRI surface morphometric features, integrating machine 
learning models to examine the neurodevelopment of 
TOF. We then determined the correlation between 
imaging markers and clinical neurodevelopment metrics 
to advance intervention in the neurodevelopment of 
children with CHD and to improve the quality of life of 
children with TOF. We present this article in accordance 
with the TRIPOD reporting checklist (available at https://
tp.amegroups.com/article/view/10.21037/tp-24-219/rc).

Methods

Participants

In this study, 36 children with TOF who underwent CPB 
thoracotomy and 29 normal controls with an equal sex 
ratio, education level, and age were retrospectively recruited 
from June 2019 to October 2023. The inclusion criteria for 
children with TOF were as follows: (I) aged between 3 and 
6 years (preschool age, nonpreterm); (II) without congenital 
or metabolic diseases except TOF with pulmonary stenosis; 
(III) without central nervous system diseases, such as 
tumor or trauma; (IV) no history of psychiatric disease or 
psychotropic drug treatment; and (V) right-handedness. 

https://tp.amegroups.com/article/view/10.21037/tp-24-219/rc
https://tp.amegroups.com/article/view/10.21037/tp-24-219/rc
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Normal controls included (I) transient fever outpatients 
(healthy after follow-up) (II) children receiving regular 
physical examinations at children’s health clinics, and (III) 
volunteers from society. The inclusion criteria of normal 
controls were as follows: (I) no congenital or metabolic 
disease, (II) no history of psychiatric disease or psychotropic 
medication, (III) no central nervous system disease, (IV) no 
history of surgery, and (V) right-handedness; meanwhile, 
the exclusion criterion was contraindications to MRI 
examination. Three children with TOF were excluded 
due to low MRI quality. The images were then reviewed 
by two experienced pediatric neuroradiologists, blinded 
to the details of each participant’s medical history. If 
there was a difference in opinion, consensus was reached 
through discussion. The cases were randomly divided into 
a training set and a validation set at a 6:4 ratio (36 in the 
training cohort and 26 in the testing cohort). Figure 1 is the 
flowchart of participant recruitment in this study.

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study 
was approved by the Ethics Committee of the Children’s 
Hospital of Nanjing Medical University (No. 201907212-1), 
and informed consent was obtained from all the patients’ 
parents or legal guardians.

Clinical metrics and neurodevelopmental assessment

The Chinese version of the Wechsler Preschool and 

Primary Intelligence Scale Fourth Edition (WPPSI-IV) 
was used to evaluate the neurodevelopmental outcomes of 
children in the TOF group (preschool, aged between 3 and 
6 years) (35). The scale can test the verbal comprehension 
index (VCI), the visual-spatial index (VSI), the working 
memory index (WMI), and the full-scale intelligence 
quotient (FSIQ; scores with an expected average of 100). 
The VCI represents the capacity for language processing, 
such as understanding, reasoning, and communication. The 
VSI evaluates nonverbal abilities related to the analysis and 
organization of visual patterns. The WMI indicates the 
ability to temporarily hold and manipulate information. 

In addition, several crucial clinical metrics including body 
mass index (BMI), McGoon index (a clinical measurement 
used to assess the adequacy of the pulmonary arteries in 
patients with congenital heart defects), ORA, pulse oxygen 
saturation (SpO2), VSD, CPB time, and aortic cross-clamp 
(ACC) time were collected from the electronic medical 
records. Questionnaires were completed for the assessment 
of maternal education (ME), socioeconomic level (SEL), 
and maternal age at pregnancy (MAP), as these are typically 
associated with neurodevelopmental outcomes. The 
demographic indicators, age, and gender of the children 
were also recorded.

MRI parameters

All participants underwent a head 3-T MRI (Ingenia 3.0, 

Figure 1 The flowchart of participant recruitment in this study. TOF, tetralogy of Fallot; HC, healthy control.

Cases were enrolled from the 
Children’s Hospital of Nanjing 

Medical University (n=72)

Included cases:
(1)	 No congenital disease or metabolic 

disease 
(2)	 No history of mental illness or 

psychiatric medication 
(3)	 No central nervous system disease
(4)	 No history of surgery
(5)	 Right-handedness 

Excluded cases:
(1)	 Central nervous system disease, such 

as tumor or trauma (n=2)
(2)	 History of mental illness or psychiatric 

medication (n=2) 
(3)	 Scanning artifacts/low patient 

compliance (n=5)

42 cases with TOF 30 healthy controls

33 cases with TOF 29 healthy controls

The training cohort
(n=36, TOF =19, HC =17)

The validation cohort
(n=26, TOF =14, HC =12)

Excluded for head movement (n=1)
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Philips, Amsterdam, the Netherlands) scans with 32-channel 
head coils in the Radiology Department of the Children’s 
Hospital of Nanjing Medical University. All participants 
were required to stay awake for 8 hours before the MRI. 
Scans were conducted at night, either during natural sleep 
or under chloral hydrate sedation (1 mL/kg) with parental 
consent. Earplugs were used to mitigate scanning noise, 
and head restraints were applied to limit head motion. The 
specific parameters of high-resolution T1-weighted three-
dimensional (3D) imaging were as follows: time to echo 
(TE) =3.5 ms, time to repetition (TR) =7.9 ms, a field of 
view (FOV) =200 mm × 200 mm × 200 mm, slice thickness 
=1 mm, and acquisition time =4 min and 24 s. Conventional 
axial T2-weighted images were acquired to exclude brain 
injury under the following parameters: TE =110 ms, 
TR=4,000 ms, FOV =200 mm × 200 mm × 119 mm, slice 
thickness =5 mm, and acquisition time =1 min and 28 s. 

Image preprocessing

For the morphometry features, the raw Digital Imaging 
and Communications in Medicine (DICOM) images are 
first converted to Neuroimaging Informatics Technology 

Initiative (NIfTI) format using DCM2NII (https://people.
cas.sc.edu/rorden/mricron/dcm2nii.html/). Preprocessing 
was then performed to obtain standardized gray-matter 
volume (GMV) images, standardized white-matter volume 
(WMV) images, and standardized T1 images based on 
MATLAB (R2013b) toolbox Computational Anatomy 
Toolbox 12 (36) (CAT12) version 12.1 (http://www.neuro.
uni-jena.de/cat/) and Statistical Parameter Mapping 12 
(SPM12; https://www.fil.ion.ucl.ac.uk/spm/software/
spm12/). After the preprocessed images were aligned 
to the Montreal Neurological Institute 152 (MNI152) 
template space, the cortical thickness was calculated from 
the normalized images, with a 20.0-mm full-width-at-half-
maximum (FWHM) Gaussian kernel. 

For the radiomics features, first, N4 bias-field correction 
was carried out in SimpleITK version 2.0.2 (http://
simpleitk.org/) a package from Python version 3.7.6 to 
normalize the gray level of all MRIs. The voxel size was 
resampled to 1 mm × 1 mm × 1 mm. Gaussian filtering was 
applied with the sigma set at values of 0.5, 1.0, and 1.5. 
z-score normalization was performed on data after feature 
extraction. An overview of our workflow is illustrated in 
Figure 2. 
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Figure 2 The radiomics workflow for integrative analysis of TOF neurodevelopment. TOF, tetralogy of Fallot; SVM, support vector 
machine; LASSO, least absolute shrinkage and selection operator; WPPSI-IV, Wechsler Preschool and Primary Intelligence Scale Fourth 
Edition. 

https://people.cas.sc.edu/rorden/mricron/dcm2nii.html/
https://people.cas.sc.edu/rorden/mricron/dcm2nii.html/
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http://www.neuro.uni-jena.de/cat/
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Segmentation and feature extraction

Morphological features (surface and volumetric metrics) 
and radiomic features were extracted from the preprocessed 
images.

Each structural image underwent segmentation into gray 
matter, white matter (WM), and cerebrospinal fluid (CSF), 
followed by normalization to the MNI template space. 
Following this, volumetric metrics, including mean WMV, 
mean GMV, CSF, and total intracranial volume (TIV), 
surface features, and cortical thickness, were extracted based 
on SPM and CAT12.

Two experienced physicians delineated the 3D brain 
T1-weighted MRI images layer by layer (CSF removed) as 
regions of interest (ROIs) using an open-source software 
package (3D-Slicer version 5.0.2; https://www.slice r.org). 
Furthermore, radiomics features of ROI were obtained with 
Pyradiomics (https://pyradiomics.readthedocs.io/en/latest/
features.html). All features were extracted in accordance 
with the Image Biomarker Standardization Initiative 
(IBSI) standards (37), which include first-order histogram 
features characterizing voxel intensity distributions (mean, 
variance, skewness, kurtosis, and homogeneity, among 
other statistical measures), second-texture features for 
characterizing differences in internal heterogeneity [gray 
level co-occurrence matrix (GLCM), gray-level size zone 
(GLSZM), gray-level run-length matrix (GLRLM), 
neighboring gray-tone difference matrix (NGTDM), 
and gray-level dependence matrix (GLDM)], shape 
characteristics (both 2D and 3D), and higher-order filter 
transform characterization (wavelet features). To ensure 
the reproducibility of the results, resampling and z-score 
normalization were performed on the images and data. To 
remove dimensionality differences, all data were normalized 
to the 0-to-1 range via min-max normalization. The 
binwidth was set to 25. The radiomics features extracted are 
listed in the supplementary file (https://cdn.amegroups.cn/
static/public/tp-24-219-1.docx).

Intraobserver and interobserver agreement

Physician 1, with 11 years of professional experience, 
performed ROI delineation twice within a week to analyze 
intragroup consistency, and physician 2, with 5 years of 
professional experience, independently performed the same 
delineation once at the same time to analyze intergroup 
consistency. The Dice coefficient was used to evaluate the 
overlap between the ROIs, which was calculated using 

the SimpleITK routine in Python. The extracted features 
were compared and analyzed to measure the intraobserver 
and interobserver agreement. The intraclass correlation 
coefficient (ICC) (38) was used to assess the consistency to 
ensure the reproducibility of characteristics. An ICC score 
≥0.75 was considered to have good agreement.

Feature selection and dimensionality reduction

Morphometry features were analyzed via univariate 
significance analysis to identify the features that were 
significantly different. To avoid the curse of dimensionality 
and reduce the bias from abundant radiomics features in 
model construction, feature selection and dimensionality 
reduct ion were  performed.  Firs t ,  normal i ty  and 
homogeneity of variance tests were performed, and 
significant features were selected via the independent 
samples t-test or Mann-Whitney test. Second, the features 
screened by the test were further reduced and selected to 
improve the accuracy and robustness based on least absolute 
shrinkage and selection operator (LASSO) regression 
(19,39). High-dimensional data with small samples 
are widely applied in LASSO regression, then LASSO 
regression was performed with the minimum criterion 
or one standard error (1-SE) criterion. Ten-fold cross-
validation was applied during the regression process, with 
an adjusted the lambda (λ). Consequently, the coefficients 
of unimportant features shrank to zero, and finally the 
significant features with nonzero coefficients were obtained.

Model construction and evaluation

The morphological models, radiomics models, and merged 
models were constructed, which included multiple logistic 
regression (MLR) and support vector machine (SVM). 
MLR and SVM were used to assess the potential imaging 
markers. The MLR model was built with backward stepwise 
regression. The SVM model was constructed with radial 
basis function (RBF). The optimizing the Gaussian kernel 
size (γ∈ [0.001, 1]) and regularization parameters (C∈ 
[1, 10,000]) were used to improve the stability of the 
SVM model through five fold cross-validation to select 
the best-performing model. Previous studies have shown 
that SVM algorithms perform well in small-sample data 
and have excellent performance in medical image analysis 
(19,40,41). Finally, the models were evaluated, which 
included calculating the area under the receiver operating 
characteristic curve (AUC), positive predictive value (PPV), 

https://pyradiomics.readthedocs.io/en/latest/features.html
https://pyradiomics.readthedocs.io/en/latest/features.html
https://cdn.amegroups.cn/static/public/tp-24-219-1.docx
https://cdn.amegroups.cn/static/public/tp-24-219-1.docx
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negative predictive value (NPV), sensitivity, and specificity. 
The same modeling and evaluation approach was also used 
in the validation set. All methods were performed in R 
version 4.1.0 (The R Foundation for Statistical Computing; 
https://www.r-project.org/).

Correlations of radiomics features with clinical and 
neurodevelopment metrics

In this study, the Shapiro-Wilk normality test was used 
to examine the normality distribution of clinical and 
neurodevelopmental indicators. Pearson correlation or 
Spearman correlation analyses were then performed based 
on the distribution to further characterize the quantitative 
imaging metrics and neurodevelopmental correlations, 
in addition to their underlying clinical mechanisms. 
Furthermore, we corrected for age and sex and used MLR 
to clarify the relationship between radiomics characteristics, 
neurodevelopmental score, and clinical indicators, with 
covariates being controlled for.

Statistical analysis

Statistical analyses were employed using R version 4.2.3 
(https://www.r-project.org/). The normality of distributions 
was evaluated with the Shapiro-Wilk test, while the 
Bartlett test was employed to check variance homogeneity. 
Continuous variables are presented as means or medians 

depending on their distribution and were compared using 
the independent samples t-test or Wilcoxon rank sum test. 
LASSO regression combined with MLR was executed 
through the “glmnet” package, and the correlation matrix 
was depicted using “ggplot2”. SVM models were developed 
using the “e1071” and “pROC” packages, and AdaBoost 
models were constructed using “adabag”. Statistical 
significance was set at P<0.05. Pearson correlation analyses 
and Spearman correlation analyses were conducted using 
the “stats” package in R.

Results

Morphometry and radiomic features

The extracted morphometry features included GMV, WMV, 
TIV, CSF, and cortical thickness (Table 1). Results showed 
that children with TOF exhibited significant differences 
in GMV, WMV, TIV, and thickness characteristics 
compared to controls. Meanwhile, 851 radiomics features 
were extracted from the T1-3D image of each sample 
based on Pyradiomics, including first-order statistics (18 
features), shape-based (14 features), GLCM (24 features), 
(16 features), GLSZM (16 features), NGTDM (5 features), 
GLDM (14 features), and wavelet (744 features). 

Intra-observer and inter-observer agreement

The median intersection over union (IoU) for intraobserver 

Table 1 Comparison of demographic and morphologic features between the TOF and control groups

Variable Total (n=62)
Group

P
Control (n=29) TOF (n=33)

Age (years) (preschool) 4.14±1.18 4.42±0.91 3.89±1.33 0.10

GMV (cm3) 703.89±62.11 737.72±55.22 674.15±52.31 <0.001

WMV (cm3) 384.27±50.29 412.28±42.83 359.67±43.37 <0.001

TIV (cm3) 1,323.77±126.00 1,392.48±123.04 1,263.39±94.75 <0.001

Thickness (mm) 3.02±0.10 2.99±0.08 3.04±0.11 0.046

CSF (mL) 234.97±43.40 241.93±44.75 228.85±41.89 0.24

Gender 0.38

Male 37 (59.68) 19 (65.52) 18 (54.55)

Female 25 (40.32) 10 (34.48) 15 (45.45)

Continuous variables are expressed as the mean ± standard deviation according to the distribution of the data, and categorical variables 
are expressed as numbers (percentages). TOF, tetralogy of Fallot; GMV, gray-matter volume; WMV, white-matter volume; TIV, total 
intracranial volume; CSF, cerebrospinal fluid.

https://www.r-project.org/
https://www.r-project.org/
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ROI overlap was 95%, with an interquartile range (IQR) of 
94% to 96%. For interobserver ROI overlap, the median 
IoU was 84%, with an IQR of 79% to 85%.

For intraobserver agreement, the agreement rate of all 
851 features reached 97.4% (mean ICC =0.961, median 
ICC =0.988). For interobserver agreement, all 851 features 
reached 85% agreement (mean ICC =0.899, median ICC 
=0.966). We found that the 22 features with the poor 
intraobserver agreement were included in the features with 
an interobserver agreement.

Feature selection and dimensionality reduction

The morphometry features, including GMV, WMV, TIV, 
and thickness, which showed significant differences, were 
selected through univariate analysis.

For high-dimensional radiomics features, a total of 496 
features showed a Gaussian distribution with homogeneity, 
among which 486 were found to be significant according to 
the independent samples t-test. For the remaining features, 
77 features showed significant differences according to 
Mann-Whitney tests. Subsequently, all significant features 
were subjected to LASSO regression. Eventually, 12 features 
were retained by LASSO, and 10-fold cross-validation was 
performed with the best-tuned regularization parameter λ 
of 0.049 under the minimum criterion. Figure 3. illustrates 
the feature selection process using LASSO. The significant 
features identified after selection and dimensionality 
reduction are presented in Table 2, in which “Image type” 

indicates whether the extracted radiomics features were 
transformed by advanced filtering.

Model construction and evaluation

Both morphological models and radiomics models achieved 
excellent performance, and notably, the merged models 
were superior to any single model.

For morphological models in the training cohort, the 
AUC of the SVM was 80.3% (95% CI: 68.9–91.6%) and 
that of MLR was 80.8% (95% CI: 70.0–91.6%), while 
the performances of the validation cohort were 75.6% 
(95% CI: 53.8–97.8%) and 79.2% (95% CI: 61.0–97.3%), 
respectively.

For radiomics models,  the SVM model showed 
excellent performance, with an AUC of 91.5% (95% CI: 
83.9–99.2%); the optimal γ value of RBF was 0.001 and 
that of C was 1,000. The MLR model demonstrated strong 
performance, with an AUC of 88.5% (95% CI: 80.2–
96.9%). Similarly, the validation set indicated the model’s 
potential effectiveness, with the SVM model achieving an 
AUC of 91.7% (95% CI: 76.5–100%) and the MLR model 
achieving an AUC of 88.1% (95% CI: 73.0–100%). 

Meanwhile, the merged models integrating superficial 
morphological features with deep radiomics features yielded 
an AUC of 92.2% (95% CI: 84.9–99.4%) for SVM in the 
training set and an AUC of 91.7% (95% CI: 76.5–100%) 
in the test set; meanwhile, the MLR had an AUC of 88.8% 
(95% CI: 80.5–97.1%) in the training cohort and 90.0% 
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(95% CI: 75.2–100%) in the test cohort. All the models’ 
specific evaluation results are shown in Table 3. The 
performances of the merged model, the radiomics model, 
and the structure model with MLR are shown in Figure 4.

Correlations of morphological features with clinical and 

neurodevelopment metrics 

The  morphological features were correlated with 

Table 2 Significance features selected after dimensionality reduction

Order Image type Feature type Radiomics feature

1 Original Shape Maximum 3D diameter

2 Wavelet-LLH First order Maximum

3 Wavelet-LHL First order Kurtosis

4 Wavelet-LHH First order Mean

5 Wavelet-HLH GLRLM Long-run emphasis

6 Wavelet-HHL First order Median

7 Wavelet-HHL GLSZM Small-area low-gray-level emphasis

8 Wavelet-HHH First order Maximum

9 Wavelet-HHH First order Mean

10 Wavelet-HHH GLRLM Run percentage

11 Wavelet-LLL First order Maximum

12 Wavelet-LLL GLSZM Size zone nonuniformity

GLSZM, gray-level size zone matrix; GLRLM, gray-level run-length matrix.

Table 3 The performance of machine learning models

Models AUC Accuracy Sensitivity Specificity PPV NPV

Radiomics

Training cohort (N=36) SVM 0.915 0.855 0.879 0.828 0.853 0.857

MLR 0.885 0.823 0.849 0.793 0.824 0.821

Test cohort (N=26) SVM 0.917 0.885 0.857 0.917 0.923 0.846

MLR 0.881 0.808 0.786 0.833 0.846 0.769

Morphometry

Training cohort (N=36) SVM 0.803 0.774 0.818 0.724 0.771 0.778

MLR 0.808 0.726 0.758 0.690 0.735 0.714

Test cohort (N=26) SVM 0.756 0.769 0.786 0.750 0.786 0.750

MLR 0.792 0.700 0.714 0.667 0.714 0.667

Merged

Training cohort (N=36) SVM 0.922 0.871 0.878 0.862 0.878 0.862

MLR 0.888 0.800 0.848 0.724 0.777 0.808

Test cohort (N=26) SVM 0.917 0.885 0.857 0.916 0.923 0.846

MLR 0.900 0.808 0.786 0.833 0.846 0.769

AUC, area under the receiver operating characteristic curve; PPV, positive predictive value; NPV, negative predictive value; SVM, support 
vector machine; MLR, multivariable logistic regression.
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Figure 4 The AUC curve of the merger model, the radiomics model, and the morphologic model. (A) The training set (AUCradiomics =88.5%, 
AUCmorphologic =80.8%, AUCmerger =88.8%) and (B) the validation set (AUCradiomics =88.1%, AUCmorphologic =79.2%, AUCmerger =90.0%). 
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neurodevelopmental scales and clinical features, as shown 
in Tables 4,5. Notably, there were differences in structural 
features and WMI. WMI was significantly associated 
with GMV (P=0.03; t=0.44), WMV (P=0.02; t=0.46), TIV 
(P=0.03; t=0.42), and thickness (P=0.04; t=–0.41). Meanwhile, 
VSD was significantly associated with GMV (P=0.01; t=0.45), 
WMV (P<0.001; t=0.58), TIV (P=0.04; t=0.36), and thickness 
(P=0.04; t=0.35). Significant differences remained after 
regression correction for age and sex.

Correlations of radiomics features with clinical and 
neurodevelopment metrics 

Radiomics signatures were found to be associated with 
neurodevelopment and clinical metrics (Figure 5 and 
Table S1). Correlation of significance features with 
neurodevelopmental scales was further assessed to be able 
to identify quantitative imaging features associated with 
different cognitive functions that could noninvasively 

Table 4 Correlations of morphological features with neurodevelopment metrics

Feature VCI VSI WMI FSIQ VAI NVI GAI

GMV

t 0.26 0.36 0.44* 0.36 0.23 0.40* 0.28 

P 0.20 0.07 0.03 0.07 0.26 0.04 0.16 

WMV

t 0.30 0.28 0.46* 0.35 0.38 0.32 0.29 

P 0.14 0.17 0.02 0.08 0.06 0.11 0.15 

TIV

t 0.17 0.25 0.42* 0.22 0.20 0.33 0.15 

P 0.39 0.22 0.03 0.27 0.32 0.10 0.47 

Thickness

t −0.37 −0.06 −0.41* −0.29 −0.30 −0.24 −0.23 

P 0.06 0.79 0.04 0.16 0.14 0.24 0.26 

*, P<0.05. VCI, verbal comprehension index; VSI, visual-spatial index; WMI, working memory index; FSIQ, full scales intelligence quotient; 
VAI, vocabulary comprehension index; NVI, nonverbal index; GAI, general ability index; GMV, gray-matter volume; WMV, white-matter 
volume; TIV, total intracranial volume.

https://cdn.amegroups.cn/static/public/TP-24-219-Supplementary.pdf
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probe for identifying markers of developmental disorders. 
This could establish the foundation for exploring the 
neurodevelopmental mechanisms of TOF. Overall, 
the texture features after wavelet transform indicated 
high heterogeneity, with wavelet-High-High-Low 
(HHL)-GLSZM-small-area-low-gray-level-emphasis 
(SAGLE) showing a significant correlation with the 
neurodevelopmental scale (Figure 6A). Similarly, the first-
order features after wavelet transformation [wavelet-Low-
High-Low (LHL)-first-order-kurtosis], characterizing 
heterogeneous differences, also showed significant 
correlations with neurodevelopmental indicators. The 
SAGLE feature of GLSZM, characterized by small areas 
and high heterogeneity, was negatively correlated with 
SpO2 (r=−0.433; P=0.02) and positively correlated with 
VSD (r=0.302; P=0.09), CPB time (r=0.349; P=0.046), and 
ACC time (r=0.397; P=0.02) (Figure 6B). These findings 
suggest that brain heterogeneity in TOF children may be 
associated with the severity of the condition and hypoxia 
during surgery. Additionally, the rough low heterogeneity 
of long-run emphasis (LRE) from GLRLM was negatively 
correlated with ORA (r=−0.448; P=0.009) and positively 
correlated with the McGoon index (r=0.388; P=0.03) 
(Figure 6C). This implies that brain heterogeneity in TOF 
may be related to the extent of aortic and pulmonary 
malformations. Similarly, the run percentage from GLRLM, 

representing high heterogeneity, was positively correlated 
with ORA (r=0.401; P=0.02) and negatively correlated 
with the McGoon index (r=−0.402; P=0.03). These results 
are illustrated in Figure 6, with details parameters and 
explanations provided in Table S1.

Furthermore, MLR analyses of radiomics characteristics 
with scale scores and clinical indicators were conducted, and 
the results showed that after correction for age and gender, 
there was still a significant negative correlation between 
wavelet-HHL-GLSZM-SAGLE and FSIQ. The results are 
summarized in Table S2 in the Supplementary Material.

Discussion

TOF is the most common cyanotic CHD in children. 
Preschool age is  a crit ical  period for growth and 
development, making it highly significant to investigate 
whether children with CHD exhibit neurodevelopmental 
abnormalities and to explore the underlying biological 
mechanisms driving these neurodevelopmental changes. 
However, most previous studies have concentrated on 
assessing the TOF neurodevelopment based on brain 
superficial morphometric features from sMRI (42-44). 
Our study showed that the sensitivity of deep quantitative 
features from radiomics (AUC =91.5%) was higher than 
that of visually assessed morphometric features (AUC 

Table 5 Correlations of morphological features with clinical metrics

Feature ME SEL MAP ORA McGoon SpO2 VSD BMI CPB time ACC time

GMV

t 0.01 0.08 0.19 0.02 0.03 0.14 0.45* 0.25 −0.18 −0.04

P 0.96 0.66 0.36 0.89 0.89 0.44 0.01 0.20 0.31 0.84

WMV

t 0.09 0.11 0.04 0.14 0.05 0.21 0.58** 0.17 −0.32 −0.21

P 0.62 0.57 0.86 0.44 0.80 0.24 <0.001 0.39 0.07 0.25

TIV

t 0.06 0.12 0.17 0.11 0.07 0.06 0.36* 0.22 −0.21 −0.06

P 0.77 0.53 0.41 0.53 0.72 0.76 0.04 0.27 0.24 0.72

Thickness

t 0.12 0.33 0.12 0.41* 0.03 0.02 0.35 0.24 0.32 0.24

P 0.53 0.07 0.54 0.02 0.87 0.92 0.04 0.23 0.07 0.18

*, P<0.05; **, P<0.001. ME, maternal education; SEL, socioeconomic level; MAP, maternal age at pregnancy; ORA, overriding aorta; SPO2, 
pulse oxygen saturation; VSD, ventricular septal defect; BMI, body mass index; CPB, cardiopulmonary bypass; ACC, aortic cross-clamp; 
GMV, gray-matter volume; WMV, white-matter volume; TIV, total intracranial volume.

https://cdn.amegroups.cn/static/public/TP-24-219-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TP-24-219-Supplementary.pdf
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Figure 5 Correlation bubble map of neurodevelopmental scales (A)/clinical metrics (B) and radiomics signatures. The color bar on the right 
represents the size of the correlation coefficient; the size of the ball represents a significant difference. GAI, general ability index; NVI, non-
verbal index; VAI, verbal reception index; FSIQ, full scales intelligence quotient; WMI, working memory index; VSI, visual spatial index; 
VCI, verbal comprehension index; ACC, aortic cross-clamp; CPB, cardiopulmonary bypass; BMI, body mass index; VSD, ventricular septal 
defect; SPO2, pulse oxygen saturation; ORA, overriding aorta; SALGLE, small area low gray level emphasis; LRE, long-run emphasis; 
SZNU, size zone nonuniformity normalized.
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Figure 6 The scatter plots of the radiomics features and neurodevelopmental scales/clinical metrics. VCI, verbal comprehension index; GAI, 
general ability index; FSIQ, full scales intelligence quotient; VAI, verbal reception index; VSI, visual spatial index; CPB, cardiopulmonary 
bypass; ACC, aortic cross-clamp; SpO2, pulse oxygen saturation; ORA, overriding aorta; SALGLE, small area low gray level emphasis; LRE, 
long-run emphasis; VSD, ventricular septal defect; SZNU, size zone nonuniformity normalized.
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=80.3%), which coincides with other research (26). 
Moreover, radiomics combined with morphometric features 
could achieve optimal results. Radiomics research has 
the advantages of being noninvasive and easily accessible, 
making it particularly suitable for pediatric populations. 
Therefore, the combination of radiomics and sMRI is 
expected to become a novel, easy-to-access method for 
guiding precise diagnosis in clinical practice.

As for morphological characteristics, this study found that 
the GMV, WMV, TIV, and cortical thickness of the TOF 
group were significantly different from those of the normal 
group. Additionally, the brain volume and cortical thickness 
of children with TOF were smaller than those of healthy 
controls, which is consistent with previous findings (34).  
Moreover, there is evidence that changes in thickness can 
lead to cognitive decline (45). 

Radiomics can leverage the potentially significant 
features of images, which can provide complementary 
information for distinguishing superficial structures. 
Wavelet transform decomposes images into various 
frequency subbands, facilitating the extraction of features that 
capture both fine and coarse details. The prominent features 
in this study included first-order features and texture features 
from wavelet transform, which is consistent with other 
studies that evaluated neurodevelopment (24,46), indicating 
that these radiomics features are imaging markers associated 
with neurodevelopment. Texture features, which reflect 
the roughness and fineness of MR images, can indicate the 
heterogeneity of images. The smaller the area is, the finer 
the image texture, which correlates with higher biological 
heterogeneity. In the context of lesions, this typically 
indicates increased malignancy; conversely, larger, less 
textured areas suggest a more benign nature. While GLSZM 
represents the size and number of connected domains of all 
gray levels in the image, GLRLM characterizes the length 
and number information of the “run” of all gray levels in the 
image. These features are also significant in the prognosis 
of neurodevelopment in preterm infants, white-matter 
abnormalities, and tumors. GLRLM features extracted 
from multiparametric MRI have been proven valuable 
for the early identification of disease (11). The GLRLM 
signature extracted from fluorine-18 fluorodeoxyglucose 
positron emission tomography (18F-FDG-PET) has also 
been shown capable of distinguishing primary central 
nervous system lymphoma from glioblastoma multiforme 
(GBM) (47). Shu et al. found that texture-based radiomics 
features of whole-brain WM could be used to predict the 
progression of white-matter hyperintensities (46); Wagner 

et al. predicted adverse neurodevelopmental outcomes of 
extremely preterm neonates based on MRI radiomics, thus 
further confirming the importance of GLSZM features in 
motor outcome prediction (25). Therefore, according to 
our findings, these factors may also be the potential causes 
of the neurodevelopmental abnormalities of TOF. Hypoxia 
or white-matter injury during surgery leads to adverse 
neurodevelopmental outcomes, which may be one of the 
explanations for our findings.

Our study demonstrated that novel radiomics frames 
including radiomics signatures and morphologic MRI 
signatures are effective in exploring neurodevelopment in 
patients with TOF. Radiomics and morphometry features 
provide a comprehensive view of brain development from 
both macro- and microstructure perspective. These results 
might also aid in developing a noninvasive method for 
neurodevelopmental prognosis. Our study provides a novel 
concept for the prediction of neurodevelopmental prognosis 
in children, and we showed that a machine learning model 
combining radiomics features and MRI morphometry 
features can accurately predict neurodevelopment in 
patients with TOF.

Interpretability is a substantial obstacle between 
radiomics and their cl inical  application (48),  and 
understanding the underlying biological mechanisms of 
diseases is of great significance to the clinical application 
of radiomics (49,50). It is worth mentioning that our study 
explored the interpretability of radiomics features by 
evaluating the correlation of significant radiomics features 
with neurodevelopmental scales and clinical metrics, which 
could better reflect the clinical biological mechanisms of 
neurodevelopmental changes in TOF. In recent years, 
radiomics has been widely applied to various diseases. 
This study further examined the relevance of clinical scale 
information by identifying imaging markers, which could 
be helpful in clarifying the related internal biological 
mechanism, enhancing clinical interpretability, and laying 
the foundation for further clinical diagnosis. We found 
that both the clinical intelligence scale and the clinical 
indicators each corresponded with radiomics features. 
There was a significant negative correlation between 
texture features and neurodevelopmental scales, indicating 
the high heterogeneity of brain structures. Radiomics 
features indicating high heterogeneity were significantly 
positively correlated with clinical indicators of hypoxia 
and deformities, suggesting that the heterogeneity of brain 
development in TOF may be attributable to the severity 
of the lesion itself and hypoxia, which is consistent with 
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previous speculation on biological mechanisms (42).
In the bulk of related research, especially that on brain 

neurodevelopment, complex sequences, such as Blood 
Oxygen Level Dependent (BOLD), diffusion tensor 
imaging (DTI), and arterial spin labeling (ASL), increase 
the assessment time in children, have poor compliance, and 
hamper image quality, and some sequences are not routine 
clinical sequences. In this study, clinical routine sequences 
were combined with radiomics features to leverage the ease 
of conventional MRI sequences.

Some limitations of our study should be addressed. 
First, the small sample size was small (M=62). Because this 
was a neurodevelopmental study of congenital disorders, 
neurodevelopmental scales and clinical demographics 
needed to be collected and the image quality of MR 
scanning ensured. Therefore, a large-sample analysis in 
the short term was impracticable. Further validation with 
a larger data set is needed before clinical application is 
possible. Moreover, additional external validation with cases 
from different institutions can improve the generalization of 
the model. Second, longer follow-up of patients is necessary 
to track their long-term neurodevelopment, identify 
additional possible risk factors, and develop effective early 
interventions. Our group is continuing to follow-up on 
infants and children who undergo TOF surgery. Finally, in-
depth exploration of the specific biological mechanism of 
the differences in brain development, which requires more 
adequate clinical, pathological, genetic, and other indicators 
and long-term follow-up, should be the focus of future 
research.

Interestingly, we also included parental education, 
educational attainment, and age at conception among 
the clinical indicators that are considered likely to be 
associated with neurodevelopment and found no significant 
associations before or after correction. Whether this is 
related to the small sample or based on the nature of the 
disease mechanisms requires further discussion.

Conclusions

Radiomics combined with sMRI features can be used as 
noninvasive imaging markers to identify the differences 
in neurodevelopment in preschool children with TOF. 
Therefore, the merger of radiomics features with superficial 
morphological features to derive deep radiomics features 
can be used to evaluate the neurodevelopment of children 
with TOF. Moreover, this may be able to generate 
complementary information on macrostructure and 

microstructure and thus additional provide references for 
clinical decision-making.
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