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Background: Acute kidney injury (AKI) after spinal fusion is a significant morbidity that can lead to 
poor post-surgical outcomes. Identifying AKI risk factors and developing a risk model can raise surgeons’ 
awareness and allow them to take actions to mitigate the risks. The objective of the current study is to 
develop machine learning (ML) models to assess patient risk factors predisposing to AKI after posterior 
spinal instrumented fusion.
Methods: Data was collected from the IBM MarketScan Database (2009–2021) for patients >18 years old 
who underwent spinal fusion with posterior instrumentation (3–6 levels). AKI incidence (defined by the 
International Classification of Diseases codes) was recorded 90-day post-surgery. Risk factors for AKI were 
investigated and compared through several ML models including logistic regression, linear support vector 
machine (LSVM), random forest, extreme gradient boosting (XGBoost), and neural networks.
Results: Among the 141,697 patients who underwent fusion with posterior instrumentation (3–6 levels), 
the overall rate of 90-day AKI was 2.96%. We discovered that the logistic regression model and LSVM 
demonstrated the best predictions with area under the curve (AUC) values of 0.75. The most important AKI 
prediction features included chronic renal disease, hypertension, diabetes mellitus ± complications, older 
age (>50 years old), and congestive heart failure. Patients who did not have these five key risk factors had a  
90-day AKI rate of 0.29%. Patients who had an increasing number of key risk factors subsequently had 
higher risks of postoperative AKI. 
Conclusions: The analysis of the data with different ML models identified 5 key variables that are most 
closely associated with AKI: chronic renal disease, hypertension, diabetes mellitus ± complications, older age 
(>50 years old), and congestive heart failure. These variables constitute a simple risk calculator with additive 
odds ratio ranging from 3.38 (1 risk factor) to 91.10 (5 risk factors) over 90 days after posterior spinal fusion 
surgery. These findings can help surgeons risk-stratify their patients for AKI risk, and potentially guide post-
operative monitoring and medical management. 
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Introduction

Acute kidney injury (AKI) is a sudden, often reversible 
decrease in kidney function, usually measured as an increased 
serum creatinine level and/or reduced urine output (1).  
AKI after spine surgery can lead to significant morbidity, 
poor postoperative outcomes, and higher postoperative 
healthcare utilization (2). Identifying AKI risk factors and 
developing a risk model can raise surgeons’ awareness and 
allow them to take action to mitigate the risks. 

Relatively few studies have attempted to evaluate 
perioperative risk factors associated with AKI after spine 
surgery. Studies have found preoperative hypertension (3)— 
but not intraoperative hypotension (4)—to potentially 
predispose to postoperative AKI. One retrospective study 
identified male sex, anemia, hypertension, and volatile 
anesthetics to be risk factors for AKI, concluding that total 
propofol-based intravenous anesthesia could be better for 
preventing kidney injury (5). Intraoperative hypothermia has 
been shown to be protective against postoperative AKI (6). 

Only one study has attempted to create a predictive 
model for AKI after spine surgery, using a number of 
parameters including baseline glomerular filtration rates 
(GFR), Spinal Surgery Invasiveness Index, age, and 
preoperative hypertension that accounted for 64.4% of the 
variation in the postoperative GFRs (3). We present the 

largest study to date on this topic, incorporating machine 
learning (ML) models to stratify risk factors for AKI in a 
cohort of 141,697 patients after spinal fusion with posterior 
instrumentation. We secondarily present a simple tiered 
predictive calculator to help guide clinicians with patient 
risk stratification. We present this article in accordance with 
the STROBE reporting checklist (available at https://jss.
amegroups.com/article/view/10.21037/jss-24-15/rc). 

Methods

Data source

Patients were identified from the IBM MarketScan® 
Commercial Claims and Encounters and Medicare 
Supplemental and Coordination of Benefit databases (Ann 
Arbor, MI, USA) (https://www.merative.com/healthcare-
analytics/truven-health-analytics). The database is a 
collection of medical insurance claims databases from over 
300 employer-sponsored and Medicare supplemental plans, 
containing more than 240 million de-identified patient 
records. The database provides information on inpatient 
admissions, outpatient visits, and pharmaceutical encounters. 
The database was selected as it is one of the largest 
administrative claims databases and allows for longitudinal 
follow-up of continuously enrolled patients. As this was 
a retrospective cohort review of a national de-identified 
database, institutional review board (IRB) approval was not 
necessary. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Patient selection

The database was first queried for patients aged ≥18 years 
who underwent posterior spinal instrumentation (3–6 
vertebral levels) between January 1, 2009, and December 
31, 2021, as defined by the current procedural terminology 
(CPT) code ‘22842’ (posterior segmental instrumentation, 
e.g., pedicle fixation, dual rods with multiple hooks 
and sublaminar wires; 3 to 6 vertebral segments). Any 
procedures with associated traumas, malignancies, or 
infections were excluded via associated diagnosis code. 
Additionally, to ensure proper follow-up of the patient 
population, patients who were not continuously enrolled 
in the database for at least 6 months before surgery and 
3 months after surgery were excluded. Finally, to limit 
confounder effects, patients with any episodes of AKI within 
6 months prior to surgery were excluded.

Highlight box

Key findings
•	 A total  of  141,697 patients who underwent multi-level 

instrumented spinal fusion were analyzed with machine learning 
models to create a 90-day acute kidney injury (AKI) risk model.

•	 5 key variables most closely associated with AKI after surgery 
included: chronic renal disease, hypertension, diabetes without 
complications, older age (>50 years of age), and congestive heart 
failure.

What is known and what is new?
•	 AKI after spinal fusion is a significant morbidity that can lead to 

poor post-surgical outcomes.
•	 Identifying AKI risk factors and developing a risk stratification 

model can raise surgeons’ awareness and allow them to take actions 
to mitigate the risks.

What is the implication, and what should change now? 
•	 Surgeons can utilize these findings to identify patients who may 

benefit from closer post-operative monitoring and targeted medical 
management strategies including increased fluid resuscitation and 
avoidance of potential nephrotoxic agents.

https://jss.amegroups.com/article/view/10.21037/jss-24-15/rc
https://jss.amegroups.com/article/view/10.21037/jss-24-15/rc
https://www.merative.com/healthcare-analytics/truven-health-analytics
https://www.merative.com/healthcare-analytics/truven-health-analytics
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Study variables and outcomes

Patient demographic information was collected from the 
database including age and sex. Ages were grouped into 
five categories as defined by the database: 18–34, 35–44, 
45–54, 55–64, and 65+ years old. Comorbidity status was 
obtained using the Charlson Comorbidity Index (CCI). 
The CCI is a comorbidity measurement tool that is widely 
utilized to measure patients’ burden of diseases, which 
includes cardiovascular, neurologic, pulmonary, renal, 
and other chronic diseases (7). Additional comorbidities 
collected included obesity, smoking history, coronary artery 
disease (CAD), hypertension, hyperlipidemia, alcohol 
use disorder, depression, anxiety, atrial fibrillation, iron 
deficiency anemia, osteoporosis, valvular heart disease, 
a history of deep vein thrombosis (DVT) or pulmonary 
embolism (PE), and a chronic hypercoagulable state (e.g., 
diagnosis of protein C or S deficiency, Factor V Leiden, 
antiphospholipid antibody, lupus anticoagulant, or other 
thrombophilia). 

The primary outcome for this study was the diagnosis 
of AKI within 90 days after surgery. Longitudinal tracking 
within the database allowed us to identify patients who 
had a 90-day AKI; as a result, patients were grouped as 
either having an AKI after surgery or no AKI after surgery. 
Comorbidities and complications were queried utilizing 
the ninth and tenth edition International Classification of 
Diseases (ICD) diagnostic codes (Table S1 and Table S2, 
respectively) (8). 

Statistical analyses and predictive model construction

Descriptive statistics were generated based on demographics 
and CCI score between the two cohorts. Chi-squared tests 
were used to determine differences in categorical variables, 
and Student’s t-tests were used to analyze differences 
in continuous variables. To evaluate differences in each 
comorbidity collected, multivariate logistic regressions were 
performed, controlling for sex and age. Patients that had no 
AKI served as the reference group. All statistical analyses 
were conducted using R Studio (PBC, Boston, MA, USA). 
Statistical significance was defined as P<0.05 for all tests. 

Five ML models were utilized to predict patient risk 
factors for AKI within 90 days after surgery: extreme 
gradient boosting (XGBoost) tree, logistic regression, 
random forest, linear support vector machine (LSVM), 
and neural networks. XGBoost (9) is an advanced 
implementation of a gradient boosting algorithm with 

a tree model as the base model. Multiple decision trees 
are trained to make predictions and identify feature 
importance. Logistic regression is a well-known method for 
building clinical prediction models utilizing general linear  
models (10). Random forest is a popular ML algorithm also 
utilizing decision tree models to construct classification 
tasks. LSVM is a robust classification technique that maps 
data to a high-dimensional feature space and incorporates 
a linear separator to classify data into separate categories. 
It is particularly suited for use with wide datasets (11). 
Neural networks are also a popular ML model that relies 
on interconnected nodes and hidden layers to accurately 
classify data. 

Prior to ML usage, the data was randomly down-
sampled to half of the patients in the no AKI group. This 
was done in order to balance the data, as prediction models 
with heavily weighted sample sizes in one cohort can create 
skewed results (12). For instance, since 97.04% of patients 
in our study population had no AKI within 90 days after 
surgery, a ML model that predicts “no AKI” every time will 
still have 97.04% of correct predictions; thus, the predictive 
values may not be represented accurately. Furthermore, 
in order to minimize overfitting of our models, due to the 
large number of potential variables, we performed feature 
selection utilizing Pearson’s correlation to remove variables 
that were not categorized as highly predictive of AKI within 
the dataset. 

The data was then randomly partitioned in a 80:20 ratio 
of training and testing groups, where the testing data was 
evaluated after completion of the ML training process. 
Five-fold cross validation was used for the purposes of 
hyperparameter optimization. For each ML algorithm, 
four-fifths of the encounters within the 80% training split 
were randomly selected to train the corresponding model, 
and the remaining one-fifth was used as a validation set to 
determine model performance. This process gets repeated 
in total 5 times utilizing a new training and validation set. 
The combination of hyperparameters that performed the 
best across all five iterations was selected for incorporation 
into the final testing model, in which the entire 80% 
training split was trained on by the corresponding ML 
model before being tested on the 20% testing set. Figure 1  
displays a work-flow of the methodology utilized for 
building the ML models with incorporation of cross 
validation. 

In order to assess each ML prediction model, we computed 
the area under the receiving operating characteristic curve 
(AUROC) and derived sensitivity, specificity, positive 

https://cdn.amegroups.cn/static/public/JSS-24-15-Supplementary.pdf
https://cdn.amegroups.cn/static/public/JSS-24-15-Supplementary.pdf
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predictive value, negative predictive value, diagnostic 
odds ratio (OR), positive likelihood ratio, and negative 
likelihood ratio from each confusion matrix. ML models 
were performed using SPSS Modeler version 18.4 (IBM, 
Chicago, IL, USA). Finally, the model with the highest 
AUROC and diagnostic OR was then utilized to quantify 
the risks for developing 90-day AKI based on the top five 
feature selection derived from the respective model. AKI 
rates were incrementally calculated for patients with none 
of the top five risk factors to patients with all of the top five 
risk factors. Multivariate logistic regressions, controlling 
for age, sex, and all collected comorbidities were then 
performed to identify the ORs for developing a 90-day AKI 
in patients with increasing numbers of top five risk factors. 
Patients that did not have any of the top five risk factors 

served as the reference group. 

Results

Population demographics

A total of 141,697 adult patients who underwent posterior 
spinal fusion with segmental instrumentation (3–6 levels) 
were identified in the database from 2009 to 2021. Of the 
141,697 patients, 4,192 patients (2.96%) were found to have 
an AKI within 90-days after surgery (Table 1). Patients that 
had a 90-day AKI were older (64.80 vs. 58.24 years; P<0.001), 
less likely to be female (41.39% vs. 53.65%; P<0.001), and 
had a higher CCI score (3.27 vs. 2.22; P<0.001) compared to 
patients that did not have a 90-day AKI. 

Multivariate analyses of comorbidities 

Comparisons of patient comorbidities between the 
AKI and no AKI groups are shown in Table 2. Utilizing 
multivariate logistic regressions controlling for age and 
sex, patients that experienced a 90-day AKI were more 
likely to have congestive heart failure (OR 2.61; P<0.001), 
rheumatic disease (OR 1.15; P<0.001), chronic renal 
disease (OR 5.00; P<0.001), chronic lung disease (OR 1.29; 
P<0.001), peripheral vascular disease (OR 1.61; P<0.001), 
cerebrovascular disease (OR 1.64; P<0.001), myocardial 
infarction (OR 1.85; P<0.001), peptic ulcer disease (OR 
1.44; P<0.001), mild liver disease (OR 1.48; P<0.001), 
uncomplicated diabetes (OR 2.37; P<0.001), complicated 
diabetes (OR 3.09; P<0.001), solid malignant cancer (OR 
1.35; P<0.001), hemiplegia (OR 1.59; P<0.001), metastatic 
cancer (OR 2.44; P<0.001), human immunodeficiency virus 
(HIV) or acquired immunodeficiency syndrome (AIDS) 
(OR 1.91; P=0.02), obesity (OR 1.83; P<0.001), CAD 
(OR 1.70; P<0.001), hypertension (OR 3.36; P<0.001), 
hyperlipidemia (OR 1.43; P<0.001), alcohol use disorder 
(OR 1.49; P<0.001), depression (OR 1.21; P<0.001), atrial 
fibrillation (OR 1.73; P<0.001), iron deficiency anemia (OR 
2.06; P<0.001), valvular heart disease (OR 1.43; P<0.001), 
a history of DVT or PE (OR 2.08; P<0.001), and chronic 
hypercoagulability (OR 1.60; P<0.001). Based on individual 
multivariate logistic regressions, patients with chronic renal 
disease, hypertension, complicated diabetes, moderate/
severe liver disease, and congestive heart failure had the 

141,697 adult patients identified who underwent posterior 
spinal fusion with segmental instrumentation (3–6 levels)

Diagnostic codes used to identify those that had an acute 
kidney injury within 90-days after surgery

Down-sampling technique and feature selection applied to 
create final dataset

Model evaluation

Training data split (80%)

Model training (XGBoost tree, 
logistic regression, random 
forest, linear support vector 
machine, neural networks) 

5-fold cross validation with 
hyperparameter optimization

Test data split 
(20%)

Figure 1 Methodology for building machine learning models to 
predict acute kidney injury. XGBoost, extreme gradient boosting.
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Table 1 Baseline demographic data by 90-day AKI cohort

Characteristics No AKI AKI P value

Total patients, n (%) 137,505 (97.04) 4,192 (2.96)

Age (years), mean (SD) 58.24 (11.87) 64.80 (10.36) <0.001

Age group, n (%) <0.001

18–34 years 4,809 (3.50) 17 (0.41)

35–44 years 12,062 (8.77) 98 (2.34)

45–54 years 30,041 (21.85) 491 (11.71)

55–64 years 54,380 (39.55) 1,635 (39.00)

65+ years 36,213 (26.34) 1,951 (46.54)

Female patients, n (%) 73,778 (53.65) 1,735 (41.39) <0.001

CCI score, mean (SD) 1.81 (2.22) 3.89 (3.27) <0.001

AKI, acute kidney injury; SD, standard deviation; CCI, Charlson Comorbidity Index.

highest ORs for a 90-day AKI, respectively. 

Predictive model parameters and assessment 

Variable rankings from the five ML models can be seen in 
Table 3. In all models, chronic renal disease was selected 
as the most important variable for predicting a 90-day 
AKI after posterior fusion with spinal instrumentation. 
Furthermore, hypertension, congestive heart failure, and 
complicated diabetes were consistently featured by the 
different models (≥3) as top predictors of 90-day AKI. 
The models with the highest AUROC were the logistic 
regression and LSVM, which together predicted that 
patients with a chronic renal disease, hypertension, diabetes 
± complications, older age (>50 years old), and congestive 
heart failure were the most important variables for 
predicting an AKI within 90 days after surgery.

Assessment of the testing sets from each ML model is 
shown in Table 4. Three of the five models had an AUROC 
of >0.70. All of the models demonstrated strong specificity 
for predicting patients with a 90-day AKI but demonstrated 
weak sensitivity. The logistic regression model was selected 
as the model with the highest accuracy due to having the 
largest AUROC (0.75) with a high diagnostic OR (11.78). 
The AUROC for both the training and testing splits of the 
logistic regression model are displayed in Figure 2.

AKI risk stratification

In order to understand the AKI risks associated with 

the ML model rankings, patients with any top five risk 
factors for AKI from the logistic regression model were 
compared to patients that did not have any of the respective 
comorbidities (Table 5). Patients with no top five risk factors 
(n=16,139) had a 90-day AKI rate of 0.29%. Patients with 
any one of the top five risk factors (n=34,687) had a 90-day 
AKI rate of 0.96%, which was associated with a 3.38 greater 
OR of developing an AKI compared to patients with no risk 
factors (P<0.001). Furthermore, patients with any two of 
the top five risk factors (n=55,434) had a 90-day AKI rate 
of 2.42%, which was associated with 8.67 greater OR after 
multivariate logistic regression (P<0.001). Patients with any 
three of the top five risk factors (n=27,094) had a 90-day 
AKI rate of 5.06%, which was associated with 18.66 greater 
OR compared to patients with no risk factors (P<0.001). 
Patients with four of the top five risk factors (n=6,828) had 
a 90-day AKI rate of 11.57%, which represented 45.77 
greater OR compared to patients with no risk factors 
(P<0.001). Finally, patients with all five risk factors (n=1,515) 
had a 90-day AKI rate of 20.66%. This represented a 91.10 
greater OR for AKI compared to patients with none of the 
top risk factors (P<0.001).

Discussion

This represents the largest cohort of 141,697 patients 
who underwent posterior spinal instrumented fusion  
(3–6 levels) analyzed with predictive ML and logistic 
regression models to identify key risk factors for developing 
AKI postoperatively. In our study, the logistic regression 
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Table 2 Ninety-day AKI rates with multivariate odds ratios by patient comorbidities

Comorbidity No AKI (%) AKI (%) Odds ratio 95% CI P value

Congestive heart failure 6.57 20.61 2.61 2.40–2.82 <0.001

Rheumatic disease 20.63 23.03 1.15 1.07–1.24 <0.001

Chronic renal disease 6.75 32.59 5.00 4.66–5.37 <0.001

Chronic lung disease 27.62 34.49 1.29 1.21–1.38 <0.001

Peripheral vascular disease 13.41 26.88 1.61 1.49–1.73 <0.001

Cerebrovascular disease 13.42 26.67 1.64 1.52–1.76 <0.001

Myocardial infarction 4.91 12.40 1.85 1.68–2.04 <0.001

Dementia 0.54 1.24 1.31 0.98–1.75 0.06

Peptic ulcer disease 2.29 3.72 1.44 1.23–1.71 <0.001

Mild liver disease 7.08 10.26 1.48 1.34–1.65 <0.001

Diabetes w/o complication 22.22 45.49 2.37 2.22–2.52 <0.001

Diabetes w/ complication 7.66 25.02 3.09 2.87–3.33 <0.001

Solid malignancy 9.03 15.96 1.35 1.23–1.47 <0.001

Hemiplegia 2.80 5.13 1.59 1.38–1.84 <0.001

Moderate/severe liver 0.28 0.86 2.74 1.94–3.87 <0.001

Metastatic cancer (includes leukemia/lymphoma) 1.28 3.79 2.44 2.06–2.89 <0.001

HIV/AIDS 0.16 0.31 1.91 1.09–3.35 0.02

Obesity 27.69 38.17 1.83 1.71–1.95 <0.001

Smoking 17.93 13.41 0.93 0.84–1.01 0.10

Coronary artery disease 20.28 39.15 1.70 1.59–1.82 <0.001

Hypertension 67.11 90.63 3.36 3.02–3.74 <0.001

Hyperlipidemia 59.59 73.83 1.43 1.33–1.53 <0.001

Alcohol use disorder 3.39 4.84 1.49 1.29–1.72 <0.001

Depression 27.83 27.39 1.21 1.13–1.29 <0.001

Anxiety 13.57 11.98 1.06 0.96–1.16 0.25

Atrial fibrillation 5.12 13.02 1.73 1.57–1.90 <0.001

Iron deficiency anemia 6.09 12.48 2.06 1.87–2.27 <0.001

Osteoporosis 8.87 10.99 1.08 0.97–1.20 0.15

Valvular heart disease 12.96 22.99 1.43 1.37–1.60 <0.001

History of DVT/PE 1.58 3.53 2.08 1.75–2.47 <0.001

Chronic hypercoagulable state 1.72 2.53 1.60 1.31–1.95 <0.001

Multivariate logistic regression controlled for by age, sex (reference is No AKI group). Diabetes w/o complication includes diabetes w/o  
cardiovascular disease, nerve or eye damage, or skin conditions. AKI, acute kidney injury; CI, confidence interval; HIV/AIDS, human 
immunodeficiency virus/acquired immunodeficiency syndrome; DVT, deep vein thrombosis; PE, pulmonary embolism. 
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and LSVM models demonstrated the best prediction 
capabilities with area under the curve (AUC) values of 0.75. 
According to this model, the most important risk factors for 
developing AKI 90 days postoperatively were chronic renal 
disease, hypertension, diabetes mellitus ± complications, 
age >50 years, and congestive heart failure (Table 5). These 
five key variables formulate a simplified AKI risk calculator 
with additive ORs ranging from 3.38 (1 risk factor) to 91.10  
(5 risk factors). 

There is a dearth of literature specifically evaluating 
risk of AKI following spine surgery. Some studies have 
attempted to utilize multivariate logistic regression analysis 
to identify risk factors for AKI after spine surgery, similarly 
identifying hypertension as one of the most important 
variables (3,5). The analysis by Naik et al. developed a 
regression equation to predict postoperative GFR, which 
similarly factored in age and baseline GFR (i.e., chronic 

renal disease) (3). Their model could only account for 
64.4% of the variation in their sample of 726 patients. Our 
model incorporated the largest cohort of patients to date of 
141,697 and was able to generate a more accurate regression 
model that accounted for hypertension, age >50 years, 
and chronic renal disease. The overall 90-day rate of AKI 
in our patient cohort after posterior spinal instrumented 
fusion was 2.96%, which is very similar to the overall rates 
published by other studies: 1.0–4.0% (3-5,13). 

To our knowledge, this is the first study to utilize ML 
methodologies to attempt to develop a risk stratification 
model to predict AKI after spine surgery. Prior studies 
have attempted this in the field of cardiothoracic surgery 
(14,15). Some of the models utilized in this study, including 
LSVM and neural networks, approached an AUC of ~0.75 
of our logistic regression model. Similar risk factors were 
identified by these models, including chronic renal disease, 

Table 3 Top five important variables for risk of 90-day acute kidney injury by model

Model AUROC Variable 1 Variable 2 Variable 3 Variable 4 Variable 5

XGBoost tree 0.62 Chronic renal 
disease

Diabetes w/ 
complications

Male sex Congestive heart 
failure

Cerebrovascular 
disease

Logistic regression 0.75 Chronic renal 
disease

Hypertension Diabetes w/o 
complications

Older age* Congestive heart failure

Random forest 0.68 Chronic renal 
disease

Chronic pulmonary 
disease

Rheumatic  
disease

Obesity Valvular heart disease

Linear support  
vector machine

0.75 Chronic renal 
disease

Diabetes w/ 
complications

Congestive heart 
failure

Hypertension Diabetes w/o 
complications

Neural networks 0.74 Chronic renal 
disease

Hypertension Diabetes w/ 
complications

Alcohol use 
disorder

Chronic 
hypercoagulability

*, older age defined as patients >50 years old. AUROC, area under receiver operating characteristic curve.

Table 4 Confusion matrices by machine learning model

Method XGBoost tree Logistic regression Random forest Linear support vector machine Neural network

AUROC 0.62 0.75 0.68 0.75 0.74

Sensitivity 9.65% 1.05% 3.37% 0.00% 1.63%

Specificity 97.71% 99.91% 99.29% 100.00% 99.86%

Positive predictive value 18.36% 39.13% 20.28% 0.00% 38.89%

Negative predictive value 95.29% 94.97% 95.06% 94.93% 95.00%

Diagnostic odds ratio 4.56 11.78 5.37 N/A 11.82

Positive likelihood ratio 4.21 12.03 4.76 0.00 11.91

Negative likelihood ratio 0.92 0.99 0.97 1.00 0.99

AUROC, area under receiver operating characteristic curve; N/A, not available.
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congestive heart failure, hypertension, diabetes mellitus, 
and age >50 years. Although logistic regression in our study 
reported the highest diagnostic OR, the ML prediction 
models still showed value in our study. 

Overall, ML is useful in the context of understanding 
AKI risk after spinal surgery because it incorporates non-
linear methods and complex decision models that can adapt 
with repeated iterations in order to identify patterns for 
predicting outcomes. As a result, ML can identify important 
trends that may be beyond the scope when utilizing 
traditional analyses, especially when working with large, 

complex datasets. For example, Tables 1,2 demonstrate 
baseline differences in demographics and comorbidities 
through univariate and multivariate analyses. Due to the 
large baseline sample population, most of the P values are 
below 0.001. It is difficult to contextualize which variables 
most contribute to AKI. As a result, ML techniques are 
useful for incorporating all the covariates into models 
in order to partition through which variables are more 
contributory for AKI; thus, the findings from this study can 
potentially help guide by clinicians in postoperative medical 
management strategies. 
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Figure 2 Receiver operating curves of the training and testing splits for the logistic regression model. TP, true positive; FP, false positive.

Table 5 Risk calculator for 90-day AKI based on the number of comorbidities within the top 5 per the logistic regression model 

No. of risk factors in patients No. of patients 90-day AKI rate (%) Odds ratio 95% CI P value

0 16,139 0.29% Reference

1 34,687 0.96% 3.38 2.48–4.60 <0.001

2 55,434 2.42% 8.67 6.45–11.62 <0.001

3 27,094 5.06% 18.66 13.90–25.05 <0.001

4 6,828 11.57% 45.77 33.95–61.71 <0.001

5 1,515 20.66% 91.10 66.49–124.83 <0.001

Top 5 risk factors included chronic renal disease, hypertension, diabetes without complications, older age, and congestive heart failure. 
AKI, acute kidney injury; CI, confidence interval.
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There are several limitations to this study. First, we 
are limited to the data available to us through the source 
IBM MarketScan Database. For instance, we did not have 
access to specific variables such as perioperative medication 
usage. We also lacked specific intraoperative variables, 
such as intraoperative hypotension or blood loss that could 
contribute to postoperative AKI. However, one study has 
shown that intraoperative hypotension during spinal fusion 
may not necessarily correlate with postoperative AKI (4). 
The database also does not provide details on anesthesia 
used or total time of operation. While little is known about 
the influence of operative time on risk of AKI, one study has 
shown that sevoflurane anesthesia may be more associated 
with postoperative AKI compared to propofol (16). Future 
studies should incorporate these variables in identifying risk 
factors for AKI after spinal surgery. Additionally, the model 
represented in this study is designed to allow surgeons and 
clinicians to risk stratify patients based on preoperative 
factors. We were unable to cross-reference CPT code 22842 
with fusion codes to stratify our dataset across cervical, 
thoracic, and lumbar procedures. However, we removed 
trauma, infection, and malignancy diagnoses, allowing us 
to assume posterior spinal instrumentation would refer to 
a degenerative fusion. Another limitation of the study is 
the overall low AKI rate, which likely contributed to the 
overall low sensitivity values of our models. An up-sampling 
technique may be beneficial in future studies to better 
capture patients with AKI, although this method contains 
risks of overfitting and data noise. Finally, given our singular 
database, there could be limitations on the generalizability 
of our results. We recommend further study to externally 
validate our model and its results. 

Conclusions

We present the largest cohort of 141,697 patients who 
underwent spinal fusion with posterior instrumentation 
(3–6 levels) studied with ML and logistic regression 
methodologies to construct a risk stratification tool 
that incorporates five key factors with additive ORs: 
chronic renal disease, hypertension, diabetes mellitus ± 
complications, congestive heart failure, and age >50 years. 
Clinicians and surgeons can utilize the results of this study 
to risk stratify patients preoperatively and identify those 
who may benefit from closer monitoring postoperatively 
and targeted medical management strategies (e.g., fluid 
resuscitation, avoidance of nephrotoxic agents such as 
ketorolac or vancomycin) for AKI. 
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