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Abstract

Precise spatiotemporal regulation of gene expression is of para-
mount importance for eukaryotic development. The maternal-to-
zygotic transition (MZT) during early embryogenesis in Drosophila
involves the gradual replacement of maternally contributed mRNAs
and proteins by zygotic gene products. The zygotic genome is
transcriptionally activated during the first 3 hours of development,
in a process known as “zygotic genome activation” (ZGA), by the
orchestrated activities of a few pioneer factors. Their decisive role
during ZGA has been characterized in detail, whereas the con-
tribution of chromatin factors to this process has been historically
overlooked. In this review, we aim to summarize the current
knowledge of how chromatin regulation impacts the first stages of
Drosophila embryonic development. In particular, we will address
the following questions: how chromatin factors affect ZGA and
transcriptional silencing, and how genome architecture promotes
the integration of these processes early during development.
Remarkably, certain chromatin marks can be intergenerationally
inherited, and their presence in the early embryo becomes critical
for the regulation of gene expression at later stages. Finally, we
speculate on the possible roles of these chromatin marks as car-
riers of epialleles during transgenerational epigenetic inheritance
(TEI).

Keywords H3K27me3; H3K9me3; Epigenetic Inheritance; Chromatin

Establishment After Fertilization

Subject Categories Chromatin, Transcription & Genomics; Development

https://doi.org/10.1038/s44319-024-00245-z

Received 22 February 2024; Revised 13 May 2024;

Accepted 21 August 2024

Published online: 16 September 2024

Introduction

In sexually reproducing species, the embryo predominantly relies
on maternally deposited products for the first stages of develop-
ment. After fertilization, the zygote of Drosophila undergoes a
series of rapid nuclear divisions within a common cytoplasm,
resulting in distinct cell nuclei known as syncytial nuclei (Bownes’
stages 1 and 2) (Figs. 1–3 top, for correspondence between Bownes’
stage and nuclear cycles) (Campos-Ortega and Hartenstein, 1985).
At nuclear cycle 8, three nuclei migrate posteriorly to form the pole

cells, with the remaining somatic nuclei still lingering in the
interior of the fly embryo. Up to this point, very few genomic loci
show transcriptional activity (Lécuyer et al, 2007; Pérez-Mojica
et al, 2023).

At nuclear cycle 9, somatic nuclei start to migrate toward the
cortical region of the embryo (Bownes’ stage 3). From nuclear cycle
10 onwards, the duration of the cell cycle increases and
transcriptional onset after mitosis is DNA-replication dependent
(Cho et al, 2022). At nuclear cycle 9, a few hundred of the
zygotically expressed genes display substantial transcriptional
activity, setting the stage for the minor wave of zygotic genome
activation (ZGA) (De Renzis et al, 2007; Harrison and Eisen, 2015;
Kwasnieski et al, 2019; Lott et al, 2011; Pérez-Mojica et al, 2023;
Vastenhouw et al, 2019). These early genes are mostly driven by the
activity of the pioneer transcription factor Zelda (Zld) (Harrison
et al, 2011; Liang et al, 2008; Pérez-Mojica et al, 2023). Because of
the quick pace of nuclear cycles, consisting of alternating S and M
phases only, early genes need to be particularly short, and are often
intron-less, in order to be promptly transcribed (Heyn et al, 2014;
Kwasnieski et al, 2019).

At nuclear cycle 14, more than 6000 zygotic genes are de novo
transcribed during the second and major wave of ZGA (De Renzis
et al, 2007; Ibarra-Morales et al, 2021; Kwasnieski et al, 2019; Lott
et al, 2011; Saunders et al, 2013). The expression of these genes is
mediated by the activity of Zld in concert with other pioneer factors
such as GAGA Factor (GAF) (Gaskill et al, 2021; Moshe and
Kaplan, 2017) Clamp (Colonnetta et al, 2021; Duan et al, 2021) and
Odd-paired (Opa) (Colonnetta et al, 2021; Duan et al, 2021;
Koromila et al, 2020; Soluri et al, 2020). These pioneer factors act
synergistically to expose DNA-binding sequences in gene regula-
tory elements, thus favoring the binding of transcription factors to
their target genes (Iwafuchi-Doi and Zaret, 2014, 2016). We
recently showed that the deposition of the histone variant H2Av
(the Drosophila ortholog of mammalian H2A.Z and H2A.X) by the
histone chaperone Domino, is required for the activation of more
than 4000 Zld-independent genes at nuclear cycle 14 (Ibarra-
Morales et al, 2021).

At this point, the cellularization of about 6000 cortical nuclei
occurs, transforming the fly embryo from a syncytial to a cellular
blastoderm architecture. The introduction of the G2 phase in the
cell cycle also occurs at this stage, lengthening the cell cycle to 1 h
(Bownes’ stages 5, 6, and 7). Mitosis happens during the imminent
20-minute-long gastrulation process (Bownes’ stages 6 and 7). The
combination of this stepwise ZGA with the concomitant
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degradation of maternal products defines the maternal-to-zygotic
transition (Hamm and Harrison, 2018).

Several excellent reviews have carefully described the current
knowledge on the role of pioneer factors in Drosophila ZGA (Hamm
and Harrison, 2018; Harrison and Eisen, 2015; Iwafuchi-Doi and Zaret,
2014, 2016; Lefebvre and Lécuyer, 2018). Considerably fewer efforts have
been made to specifically integrate the literature on chromatin regulation
during Drosophila early embryonic development (Boija and Mannervik,
2015). In this review, we gathered current knowledge on how chromatin
factors contribute to the proper spatiotemporal regulation of both
transcriptional activation and silencing during the early stages of
embryonic development. We also discuss the establishment of
constitutive heterochromatin in the early embryo. For instance, although
earlier work showed that heterochromatin formation coincides with
ZGA (Rudolph et al, 2007; Seller et al, 2019; Shermoen et al, 2010; Yuan
and O’Farrell, 2016), more recent studies indicate that this process begins
much earlier during fly development (Atinbayeva et al, 2024; Zenk et al,
2021). We summarize recent insights into how the genome starts to
organize its structure inside the nucleus, through the formation of long-
range chromatin contacts, topologically asscociating domains (TADs), A
and B compartments and homologus chromosome pairing. Finally, we
discuss the role of chromatin in intergenerational and transgenerational
inheritance of epigenetic modifications.

Fertilization and early divisions

From nuclear cycle 1 to nuclear cycle 8

Chromatin marks inheritance and histone replacement
Fusion of the parental haploid gametes, two highly specialized and
terminally differentiated cell types, gives rise to a totipotent
nucleus. This zygotic nucleus, in turn, will divide into daughter
nuclei that will progressively lose the totipotent state according to
their localization in the developing embryo (Campos-Ortega and
Hartenstein, 1985; Loppin et al, 2015).

In a Drosophila egg, maternal chromosomes are arrested at the
metaphase of meiosis I, with meiosis resuming upon egg activation
and sperm fertilization. While maternally inherited chromatin bears
canonical histones, the sperm chromatin contains highly basic
protamines and is very condensed (Bao and Bedford, 2016; Loppin
et al, 2015; Rathke et al, 2014). During Drosophila spermatogenesis,
histones are almost completely replaced with at least three types of
protamines (i.e., protamine-A, protamine-B, and Mst77F) (Rathke
et al, 2014), with the exception of a few loci that retain canonical
histones (Elnfati et al, 2016). The presence of Paternal Loss protein
is necessary for (H3–H4)2 tetramer eviction after H2A–H2B dimer
removal and consequent protamine incorporation. Lack of the

Figure 1. Chromatin marks, chromatin interactions, and nuclear organization during fertilization and early divisions.

Top left, schematic view of Drosophila embryos from pronuclear fusion (stage 1) to rapid nuclear divisions (stage 2). Time post fertilization, Bownes’ stage and nuclear
cycle are defined on the top bar. Top right, description of relevant histone marks and chromatin protein distribution during early stages of embryogenesis. Bottom left,
long-range chromatin interactions during early stages of embryogenesis. The triangles represent Hi-C interaction matrices. Along the linear representation of a
chromosome in black, pioneer factors are depicted in green. Bottom right, nuclear organization during early stages of embryogenesis. Homologous chromosomes (in blue
and red) are initially unpaired inside the nuclei (in gray).
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Paternal loss protein results in paternal inheritance of (H3–H4)2
tetramers, which impairs the male pronucleus integrity during
female meiosis (Dubruille et al, 2023).

Once the sperm enters the egg, extensive chromatin remodeling
will transform it into a mature male pronucleus. This process
entails the substitution of protamines with maternally provided
histones in a replication-independent manner (Emelyanov et al,
2014; Loppin et al, 2001). The paternal pronucleus is gradually
decondensed with the help of Dedhead, a thioredoxin enzyme that
catalyzes the reduction of disulfide bonds (Tirmarche et al, 2016).
Subsequently, H3.3/H4 dimers are incorporated by the histone
chaperone HIRA in cooperation with the Yemanuclein protein
(Aitahmed et al, 1992; Loppin et al, 2005; Orsi et al, 2013). In turn,
the histone chaperone ASF1 is required to load the H3.3–H4
dimers on the HIRA complex prior to histone deposition on
paternal DNA (Horard et al, 2018). These mechanisms ensure that
the paternal chromatin is marked with H3.3, whereas the maternal
chromatin is associated with the canonical histone H3. The histone
H3.3 variant, however, is not retained in the male pronucleus but is
gradually diluted during the first nuclear divisions (Bonnefoy et al,
2007). Male pronucleus decondensation also relies on the
chromodomain protein and chromatin remodeler CHD1 (Konev
et al, 2007; Orsi et al, 2009), whose critical role during the first
nuclear divisions was confirmed by a recent RNAi-based genetic
screen (Ciabrelli et al, 2023). The sperm nucleus is also the carrier
of another H3 variant dubbed CID (ortholog of mammalian CENP-
A), which associates with centromeric chromatin also in the
embryonic paternal chromatin (Dunleavy et al, 2012; Loppin et al,
2001). Consistent with a crucial role in determining the identity of
the centromeres and regulating mitotic spindle assembly, loss of
CID from sperm nuclei results in the loss of paternal chromosomes
early during the cleavage phase (Raychaudhuri et al, 2012). Sperm
and egg, therefore, introduce different histone variants in the early
embryo, which are initially retained on the chromatin of the male
and female pronuclei but are replaced by canonical histone variants
while the cleavage stage unfolds.

Constitutive heterochromatin establishment
Constitutive heterochromatin can be defined as the portion of the
genome that remains condensed during interphase in every nuclear
type. In Drosophila, constitutive heterochromatin occupies roughly
one-third of the genome, and is mostly concentrated at pericen-
tromeric regions, at telomeres, on the male Y chromosome, and on
chromosome 4. In addition, constitutive heterochromatin in the
form of discrete islands can also be found on euchromatic portions
of the chromosome arms (Eissenberg and Reuter, 2009). Studies
with micrococcal nucleases revealed that this type of chromatin is
characterized by low DNA accessibility and organized nucleosomal
arrays (Sun et al, 2001). Constitutive heterochromatic regions are
typically repeat-rich with a low density of genes, which, in turn, are
usually long, intron-rich, and associated with the histone
modifications H3K9me2/me3 and H4K20me3, and Heterochroma-
tin Protein 1a (HP1a) (Riddle et al, 2011; Schotta et al, 2002;
Yasuhara and Wakimoto, 2008).

The establishment of constitutive heterochromatin has been
studied for decades using the fly embryo as a model and with an
evolving array of cutting-edge techniques. Pioneering studies in the
early 90 s relied on the famous C-banding technique to describe the
distribution of constitutive heterochromatin in early embryos. This

approach showed that, with the exception of the Y chromosome,
constitutive heterochromatin is not a feature of pre-blastoderm
nuclei, while the banding pattern typical of alternating heterochro-
matic and euchromatic domains is clearly visible in ZGA embryos
(Vlassova et al, 1991). Later, it was shown that satellite DNA
compaction is visible already at nuclear cycle 8 (Shermoen et al,
2010), even though H3K9me2/3 enrichment, a typical hallmark of
heterochromatin, was not visible at this stage (Rudolph et al, 2007;
Seller et al, 2019; Yuan and O’Farrell, 2016). Interestingly,
H3K9me3 can be detected at the maternal pronucleus in the
mouse zygote immediately after fertilization (Arney et al, 2002;
Santos et al, 2005). In line with these observations, our lab recently
showed that H3K9me3 also decorates the maternal pronucleus of
the fly embryo (Atinbayeva et al, 2024). Furthermore, by generating
triple mutant fly embryos that lack all three maternally provided
H3K9 methyltransferases (i.e., G9a, Su(var)3-9 and Eggless/
dSetDB1), we demonstrated that H3K9me3 is not de novo
established, rather it is intergenerationally inherited from the
oocyte (Atinbayeva et al, 2024) (Fig. 1, top right). We found that
H3K9me3 is actively maintained on chromatin through early
nuclear division cycles (Atinbayeva et al, 2024), where it
predominantly associates with transposable elements. H3K9me3
is also detectable at low levels in Japanese killifish, medaka (Oryzias
latipes) embryos from early cleavage stages, similar to fly embryos
(Fukushima et al, 2023). By performing ChIP-seq assays with hand-
sorted embryos, we recently showed that also HP1a is bound to the
fly chromatin already during the first nuclear divisions (Zenk et al,
2021). The assembly of centromeric heterochromatin requires the
contribution of the homeobox protein Homothorax and when this
factor is not maternally provided, the CID protein is mislocalized
(Salvany et al, 2009). Interestingly, centromeric transcription is not
required for CID incorporation during early embryogenesis, unlike
at later developmental stages (Ghosh and Lehner, 2022).

Chromatin-mediated transcriptional silencing
Polycomb-mediated repression represents one of the main
mechanisms through which chromatin silencers repress gene
expression. In flies, Polycomb repressive complex 1 (PRC1) is
composed of Pc (Polycomb), Ph (Polyhomeotic), Psc (Posterior Sex
Combs) and Sce (Sex Combs Extra), and Polycomb repressive
complex 2 (PRC2) contains the core components E(z) (Enhancer of
Zeste), Su(z)12, Esc and Caf1-55 (Kassis et al, 2017). Sce is
the catalytic subunit of PRC1 and can ubiquitinylate the H2AK118
residue (Wang et al, 2004), whereas E(z) is the catalytic
subunit of PRC2 and is responsible for tri-methylating the
H3K27 residue.

Histone replacement studies in both flies (Leatham-Jensen et al,
2019; Pengelly et al, 2013) and mammals (Sankar et al, 2022)
revealed that E(z) histone methyltransferase activity is strictly
required for its function. In this respect, E(z) differs from Nejire
(ortholog of mammalian CBP and p300 proteins), Gcn5, Trr and
other histone modifiers (Cao et al, 2002; Ciabrelli et al, 2023;
Czermin et al, 2002; Müller et al, 2002; Rickels et al, 2017; Sankar
et al, 2022). Similarly, the catalytic activity of Sce is not strictly
required for the repression of canonical Polycomb target genes
(Pengelly et al, 2015). Recent findings suggest that H2AK118ub
facilitates H3K27me3 deposition but simultaneously antagonizes
Polycomb-mediated repression, making its balance crucial for gene
regulation (Bonnet et al, 2022).
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In 2017, work from our laboratory showed that H3K27me3 in
flies is intergenerationally transmitted from the maternal germline,
inherited by the female pronucleus, and maintained throughout the
nuclear divisions, an evolutionary conserved mechanism identified
also in mammals (Inoue, 2023). While the majority of the
H3K27me3 domains only appeared during the minor wave of
ZGA, thirty-two H3K27me3-rich domains could be already
observed at the early stages of embryonic development and
appeared to propagate until ZGA (Zenk et al, 2017). Defects in
H3K27me3 maternal transmission resulted in the misregulation of
Hox genes and embryonic lethality, and these phenotypes could not
be rescued by zygotic expression of E(z). Notably, H3K27ac
deposited by Nej accumulated where H3K27me3 was depleted,
especially at enhancer regions. Most of these enhancers that
aberrantly acquired higher levels of H3K27ac upregulated their
corresponding genes at nuclear cycle 14, but not earlier (Zenk et al,
2017). We concluded that the presence of H3K27me3 in wild-type
embryos is necessary to protect enhancer regions from spurious Nej
binding and its coactivator function. Nevertheless, at ZGA some
PREs are also bound by Nej, suggesting chromatin remodeling at
this stage and most likely in a cell type-specific fashion (Hunt et al,
2022). Therefore, correct H3K27me3 deposition guarantees proper
gene expression during ZGA. Histone replacement studies
confirmed the centrality of the H3K27me3 mark and its instructive
nature (McKay et al, 2015; Pengelly et al, 2013). Taken together,
these findings suggest that chromatin-mediated transcriptional
repression represents the default state during early embryonic
development. Transcriptional activators, with the help of chroma-
tin factors, likely need to overcome this silencing barrier at specific
loci with the correct timing, in order to achieve precision in
transcriptional regulation.

Chromatin-mediated transcriptional activation
During the early cleavage stage of development, the genome
undergoes rapid cycles of DNA replication and nuclear division
without intervening gap phases. Overall, the chromatin is not yet
transcriptionally competent at this stage. An exception to the rule is
represented by some transposable elements (i.e., copia, Doc,
Ste12DOR), whose mRNAs are transcribed already at stages 1
and 2 (Lécuyer et al, 2007). Toward the end of stage 2, a subset of
early expressed genes such as gap genes (e.g., giant, tailless, and
knirps), genes involved in sex determination (e.g., runt, scute, and
sisterless A) (ten Bosch et al, 2006), and in cellularization (e.g.,
bottleneck, dunk, and nullo) (Ali-Murthy et al, 2013; Pérez-Mojica
et al, 2023) begin to be transcribed, slightly anticipating the minor
wave of ZGA. Among these genes, some (e.g., deadpan) are
transcribed as early as nuclear cycle 6 (Pérez-Mojica et al, 2023).
Accordingly, active chromatin modifications (e.g., H3K4me3,
H3K36me3, H3K9ac) are virtually absent from early embryonic
chromatin (Chen et al, 2013; Li et al, 2014; Samata et al, 2020).

A notable exception is H4K16ac. The deposition of this histone
modification is accomplished by the evolutionarily conserved
histone acetyltransferase (HAT) Male absent on the first or MOF
(Feller et al, 2015). MOF resides in the MSL and NSL complexes. In
flies, the MSL complex is responsible for dosage compensation
(Hilfiker et al, 1997), while the NSL complex is responsible for the
activation of thousands of housekeeping genes (Sheikh et al, 2019).
Strikingly, H4K16ac is intergenerationally transmitted from the
mother and persists throughout early embryogenesis (Samata et al,

2020). Epigenetically transmitted H4K16ac primes the activation of
NSL-regulated housekeeping genes by inducing nucleosome
accessibility at thousands of genes before ZGA. Consistent with
this function, the expression of post-zygotic genes is impaired when
H4K16ac is not maternally deposited in oocytes. Within the MSL
complex, MOF is responsible for upregulating the expression of
X-linked genes exclusively in male flies in order to compensate for
gene dosage between XY males and XX females. In accordance,
maternal MOF depletion results in a sharp decrease in chromatin
accessibility (Samata et al, 2020), and 80% of maternal MOF
mutants are embryonic lethal, with all the adult survivors being
females. In contrast with the promoters of post-zygotic NSL-
regulated genes, the promoters of Zld-dependent genes are devoid
of H4K16ac (Samata et al, 2020). Histone replacement studies have
confirmed the centrality of H4K16ac (Copur et al, 2018). In
conclusion, during the first nuclear divisions the genome is not
conducive for pervasive expression, despite the accumulation of
active epigenetic marks at some loci.

Chromatin architecture
The three-dimensional organization of the eukaryotic genome
shapes the genetic material in the constrained nuclear space and
helps to coordinate fundamental processes, such as transcription
and DNA replication (Bonev and Cavalli, 2016). In Drosophila, as
in other eukaryotes, chromosomes occupy subnuclear regions
defined as chromosome territories (Cremer and Cremer, 2010).

Within the territories, transcriptionally active regions show
preferential long-range interactions with other active regions.
Similarly, inactive regions tend to cluster with other inactive
domains. The subnuclear distribution of active and inactive regions
establishes the so-called “A” and “B” compartments, respectively
(Lieberman-Aiden et al, 2009). Improvements in Hi-C resolution
led to the additonal division of A and B compartments into
subcompartments (Rao et al, 2014; Spracklin et al, 2023). The B
compartment was sub-divided into three inactive subcompartments
characterized by the following histone modifications and protein
factors in human cells: 1) H3K9me3 and HP1α and β; 2) H3K9me2
and H2A.Z and 3) H3K27me3 and PRC2 (Spracklin et al, 2023).

At the core of the 3D chromatin organization, we find the
topologically associating domains (TADs), linear genomic units
that strongly prefer to engage in internal interactions (Szabo et al,
2018). TADs are often composed of developmentally coregulated
genes and usually reside in a coherent chromatin environment
(Ciabrelli and Cavalli, 2015; Szabo et al, 2018). In Drosophila, TADs
were first identified in late embryos (Sexton et al, 2012). They
usually span tens of kilobases (Ramírez et al, 2018; Wang et al,
2018), with active TADs being on average smaller in size than
inactive ones (i.e., Polycomb-repressed, heterochromatic, or
Lamina-associated TADs).

During the first stages of Drosophila embryogenesis, the
chromosomes are rather unstructured, and neither stable long-
range interactions nor TADs are formed yet. Before nuclear cycle 9,
chromosomes show near-random folding and no signs of
compartmentalization (Hug et al, 2017; Ogiyama et al, 2018)
(Fig. 1, bottom). In addition, during the first nuclear cycles somatic
chromosome pairing is still absent (Fig. 1, bottom). Drosophila
melanogaster, like other dipteran insects, displays homolog pairing
of somatic chromosomes, which consists of the spatial association
of homologous chromosomes inside the nuclear space (McKee,
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2004). Studies in flies demonstrated that homolog pairing is very
important as it affects the regulation of gene expression through
molecular mechanisms like trans-silencing (Henikoff and Dreesen,
1989) and transvection (Duncan, 2002; Gubb et al, 1990). Homolog
pairing is pervasive in larval and adult tissues (95% of pairing in
larval wing discs), but it is weaker during embryogenesis (Fung
et al, 1998). During the first nuclear divisions, pairing is mostly
undetectable and it starts to manifest during the minor wave of
ZGA (Fung et al, 1998). In conclusion, at these early stages,
chromatin architecture is still not strictly structured, chromosome
arms are not paired and TADs are not yet defined.

Minor ZGA

From nuclear cycle 9 to nuclear cycle 13

Constitutive heterochromatin establishment
H3K9me2/3 is a hallmark of constitutive heterochromatin.
Previous studies showed that the H3K9me2/3 signal in D.
melanogaster can be detected as early as the interphase of nuclear
cycles 12–13 (Seller et al, 2019; Yuan and O’Farrell, 2016).
However, our recent work revealed the H3K9me2/3 mark from
fertilization onwards (Atinbayeva et al, 2024). H3K9me2/3 cover-
age and peak number increase dramatically during minor ZGA
compared to early nuclear cycles1-8 (Atinbayeva et al, 2024).
Similar to D. melanogaster, a recent study conducted in Drosophila
miranda showed that the number of H3K9me3 peaks dramatically
increases from nearly 1000 at stage 3 (nuclear cycle 9) to more than
50,000 at stage 4. H3K9me3 peaks can be detected already at
nuclear cycle 9 on TEs (Wei et al, 2021). Interestingly, however,
H3K9me3 deposition at earlier stages was not tested in this study,
leaving the doors open for the possibility that this mark might be
deposited earlier also in D. miranda as we reported for D.
melanogaster (Atinbayeva et al, 2024; Wei et al, 2021).

Few HP1a loci are detectable at interphases of cycles 11–13, but
HP1a enrichment could not be detected at every heterochromatic
locus analyzed (Yuan and O’Farrell, 2016). HP1a binding to
chromatin at these stages was confirmed by ChIP-seq experiments
in hand-sorted embryos (Zenk et al, 2021). HP1a was found to
associate both with pericentromeric heterochromatin and hetero-
chromatic islands interspersed in euchromatin at minor ZGA. Its
binding levels are comparable between minor ZGA and early
nuclear divisions. Moreover, HP1a-bound regions do not seem to
be broader during minor ZGA compared to earlier stages (Zenk
et al, 2021). HP1a levels on chromatin dramatically increase from
cycle 12 to cycle 14 (Seller et al, 2019), and HP1a can form phase-
separated liquid droplets detectable from the interphase of cycle 11
onwards (Strom et al, 2017).

Chromatin-mediated transcriptional silencing
Maternally inherited H3K27me3 is detected on many domains
during the minor wave of ZGA (Zenk et al, 2017). At this stage, the
presence of this histone modification is necessary for Polycomb-
mediated repression of certain gap genes such as giant (Pelegri and
Lehmann, 1994), knirps (Pelegri and Lehmann, 1994), tailless
(Liaw, 2022), and Krüppel (Mckeon et al, 1994). Pair-rule and
segment-polarity genes, whose expression precedes and determines
Hox gene expression patterns, are also regulated by Polycomb

group proteins (Mckeon et al, 1994). PRC1 and PRC2 are both
necessary for Polycomb-mediated repression already during these
early stages. In line with our findings (Zenk et al, 2017), a recent
study showed that homeotic genes are enriched with H3K27me3
way before the major ZGA, confirming the conclusion that
Polycomb-mediated repression is the default state on these loci at
this stage (Ghotbi et al, 2021). The repressed chromatin state
established by Polycomb-mediated deposition of H3K27me3 is
then reprogrammed through the precise spatiotemporal activation
of gene expression during embryonic development, occuring in a
segment-specific fashion.

Genome-wide transcriptional repression is also achieved by the
deposition of BigH1, the only H1 histone variant so far
characterized in Drosophila. This histone variant occupies the
whole genome from the early stages till nuclear cycle 14 (Pérez-
Montero et al, 2013). Histone H1 is an evolutionary conserved
chromatin protein, which binds both to intranucleosomal DNA
and to linker DNA and contributes to the formation of higher-
order chromatin structures (Prendergast and Reinberg, 2021;
Robinson and Rhodes, 2006; Zhou et al, 2013). H1 displays a
tripartite structure consisting of a central globular domain, which
interacts with DNA, and of the intrinsically disordered Lysine-rich
amino terminal (NTD) and carboxy-terminal (CTD) domains
(Allan et al, 1980). BigH1 shares the same tripartite structure as H1,
with the most substantial difference lying in the acidic nature of
its NTD.

At fertilization, Drosophila embryos are loaded with BigH1,
whose spreading on chromatin prevents premature transcription.
The replacement of BigH1 with canonical H1 in nuclear cycle 14
embryos paves the way to the major wave of ZGA (Pérez-Montero
et al, 2013) (Fig. 2, top). BigH1 null mutants die at cellularization,
displaying increased transcriptional activity and acceleration of
ZGA, together with a broad range of developmental defects such as
asynchronous nuclear divisions, mitotic defects, and nuclear
mislocalization (Pérez-Montero et al, 2013). These phenotypes
are accompanied by high levels of DNA damage. Ectopic expression
of BigH1 in Drosophila S2 cells revealed that BigH1 incorporation
competes with H1 binding, reduces nucleosome repeat length, and
interferes with RNA PolII binding (Climent-Cantó et al, 2020).
These functions are strictly dependent on the acidic ED domain
within the BigH1 NTD. Interestingly, BigH1 replacement with H1
results in increased nuclear volume. In addition, nucleosomes
formed in the presence of BigH1 are more stable than those
assembled with canonical H1 (Henn et al, 2020). Following
BigH1 substitution, there is, on average, one H1 molecule per
nucleosome during ZGA (Bonnet et al, 2019). In conclusion, the
presence of BigH1 provides another layer of default chromatin
silencing that will be overcome by its replacement with canonical
H1 during ZGA. In contrast with H3K27me3, however, BigH1 is
distributed on the whole genome. These two mechanisms differ in
their role in the selective silencing of specific loci (i.e., H3K27me3),
which can be overcome by specific transactivators, versus a broader
repression (i.e., BigH1) that is released with a precise temporal
control.

Chromatin-mediated transcriptional activation
The minor wave of ZGA ensues from the expression of a few
hundred zygotic genes (Harrison and Eisen, 2015; Kwasnieski et al,
2019; Pérez-Mojica et al, 2023; Vastenhouw et al, 2019). The

Filippo Ciabrelli et al EMBO reports

© The Author(s) EMBO reports Volume 25 | October 2024 | 4131 –4152 4135



expression of these zygotic genes mostly relies on the activity of the
pioneer factor Zld (Harrison et al, 2011; Liang et al, 2008; Pérez-
Mojica et al, 2023), while the role of chromatin modifiers in their
regulation has not been fully uncovered. ChIP-based studies
showed that H3K18ac, H3K27ac, and H4K8ac are already present
in early embryos, and their distribution gradually increases at later
stages (Li et al, 2014) (Figs. 1 and 2, top). These histone
modifications are deposited by Nej, a HAT ortholog of mammalian
CBP and p300 proteins (Feller et al, 2015). Our recent work
confirmed the Nej-dependent presence of H3K18ac and H3K27ac
during the first wave of ZGA and, albeit to much lower levels, also
at earlier nuclear cycles (Ciabrelli et al, 2023). The accumulation of
these histone modifications may follow the transcription of very
early genes, or it may indicate Nej binding at certain loci before
RNA PolII activity. In line with our results, Nej was recently found
to promote RNA PolII clustering downstream of Zld at cycle 12
(Cho and O’Farrell, 2023).

The other major Drosophila HAT is Gcn5, the catalytic subunit
of the SAGA, ATAC, ADA and CHAT complexes (Helmlinger et al,
2021; Torres-Zelada and Weake, 2021). Gcn5 is responsible for the
acetylation of H3K9 and H3K14 residues in flies (Feller et al, 2015),
although the latter acetylation can also be introduced by Chameau
in specific developmental contexts (Regadas et al, 2021). During

embryogenesis, the Gcn5-containing CHAT complex is responsible
for global H3K14ac (Torres-Zelada et al, 2022). In contrast to Nej-
dependent acetylation of histones, very few H3K9ac peaks could be
called at nuclear cycle 12 (Li et al, 2014). Recently, we have shown
that low levels of H3K9ac can already be detected during the first
wave of ZGA (Ciabrelli et al, 2023). However, the Gcn5-dependent
histone mark is detected on chromatin later than the Nej-
dependent ones (e.g., H3K27ac), in line with the specific role of
Nej in activating early Zld-dependent genes (Ciabrelli et al, 2023).

While Nej- and Gcn5-dependent acetylation marks start to
appear during the minor wave of ZGA, the maternally maintained
H4K16ac is already present on chromatin from early nuclear cycles
(Samata et al, 2020) (Figs. 1 and 2, top). From the zygote stage and
throughout embryogenesis, this histone modification is associated
with constitutively transcribed autosomal genes, where it ensures
chromatin accessibility at promoter regions before their transcrip-
tional activation (Samata et al, 2020). Interestingly, promoters of
early genes transcribed during minor ZGA are completely devoid of
H4K16ac (Samata et al, 2020), indicating that MOF-dependent and
Zld-dependent types of regulation are independent of each other.

H4K16ac is also deposited by the MSL (male-specific lethal)
complex on the male X chromosome in order to achieve dosage
compensation through 2-fold transcriptional upregulation. The

Figure 2. Chromatin marks, chromatin interactions, and nuclear organization during the minor wave of ZGA.

Top left, schematic view of Drosophila embryos from nuclear peripheral migration (stage 3) to nuclear cycle lenghtening (stage 4). Time post fertilization, Bownes’ stage
and nuclear cycle are defined on the top bar. Top right, description of relevant histone marks and chromatin protein distribution during stage 3 and 4 of embryogenesis.
Bottom left, long-range chromatin interactions during stage 3 and stage 4 of embryogenesis. The triangles represent Hi-C interaction matrices. Along the linear
representation of a chromosome in black, pioneer factors are depicted in green and RNA PolII in white within a red circle. Bottom right, nuclear organization during the
minor wave of ZGA. Homologous chromosomes (in blue and red) slowly begin to pair inside the nuclei (in gray).
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MSL complex consists of at least five proteins (MSL1, MSL2, MSL3,
MLE and MOF) and either the roX1 or the roX2 long noncoding
RNAs (Shevelyov et al, 2022). The MSL complex is initially
recruited at roughly 20 sites along the male X chromosome through
the binding to GA-rich MSL2 recognition elements (MREs). Later,
it spreads to nearby expressed genes (Alekseyenko et al, 2008;
Straub et al, 2008). A diffuse X chromosome territory coordinated
by MSL2 is first detectable during the major ZGA in XY embryos.
However, MOF accumulation on the male X chromosome begins
only at the gastrulation stage, just after the major ZGA (Samata
et al, 2020). This stepwise pattern coincides with roX1 and roX2
expression, starting during minor and major ZGA, respectively
(Lott et al, 2011; Meller and Rattner, 2002). Although MOF can be
detected on autosomes already during the minor wave of ZGA
(Samata et al, 2020), higher H4K16ac levels at the male X
chromosome compared with the autosomes are only detectable
from the late gastrulation stage onwards (Franke et al, 1996; Rastelli
et al, 1995; Rieder et al, 2019; Samata et al, 2020). In summary, even
though MSL-mediated dosage compensation of the male X
chromosome starts after cellularization, assembly and recruitment
of the MSL complex are progressively established already during
ZGA. Meanwhile, constitutively expressed genes display both the
H4K16ac mark and an open-chromatin conformation at their
promoters, even though they are not transcribed yet at the minor
ZGA stage.

Chromatin accessibility
The correct supply of maternal histones to the developing Drosophila
oocyte ensures proper chromatin accessibility and gene expression.
Indeed, decreased levels of maternal histones result in accelerated
ZGA, cell cycle lengthening, and premature gastrulation (Chari et al,
2019). Conversely, the overexpression of histones in the female
germline, like in the abnormal oocyte maternal effect mutant,
causes embryonic lethality (Berloco et al, 2001), delayed transcrip-
tion, and introduction of an extranuclear cycle before gastrulation
(Chari et al, 2019). In order to study chromatin accessibility,
ATAC-seq (Assay for Transposase-Accessible Chromatin using
sequencing) assays (Buenrostro et al, 2013) were conducted during
minor and major waves of ZGA in fly embryos (Blythe and
Wieschaus, 2016). ATAC-seq performed in nuclear cycles 11 to 13
embryos revealed that approximately one-third of all the open-
chromatin regions were already accessible at nuclear cycle 11 and
persisted till the major wave of ZGA, whereas the remaining two-
thirds were only established later (i.e., cycles 12 and 13).

Pioneer factors are responsible for the earliest detected open-
chromatin regions during Drosophila embryogenesis (Blythe and
Wieschaus, 2016; Schulz et al, 2015; Sun et al, 2015). More
specifically, Zld-dependent open regions become accessible earlier
than GAF-dependent ones (Blythe and Wieschaus, 2016). Simi-
larly, the pioneer factor Clamp binds its targets and contributes to
chromatin accessibility during the first wave of ZGA (Duan et al,
2021). Zld, GAF and Clamp can bind their motifs in a nucleosomal
context (Duan et al, 2021; McDaniel et al, 2019; Sun et al, 2015),
mediate chromatin opening (Duan et al, 2021; Gaskill et al, 2021;
Schulz et al, 2015; Sun et al, 2015), and facilitate the recruitment of
canonical transcription factors to their binding sites (Brennan et al,
2023; Foo et al, 2014; Kanodia et al, 2012; Reeves and
Stathopoulos, 2009).

The number and relative position of Zld binding sites are
predictive of its capability to dissipate nucleosomal barriers on
enhancers (Foo et al, 2014; Sun et al, 2015) and its action has an
effect specifically on the local chromatin environment (Sun et al,
2015). In particular, Zld binding leads to the depletion of 1 or 2
nucleosomes, whereas local Zld binding at multiple sites leads to a
broader depletion of nucleosomes (Foo et al, 2014). Zld accumula-
tion throughout ZGA is necessary for its activity (McDaniel et al,
2019), even though, its binding to chromatin is lost during mitosis
(Dufourt et al, 2019a; Dufourt et al, 2019b). Different from Zld, the
GAF protein is instead retained on mitotic chromosomes, where it
exerts a key role as an epigenetic bookmark during early
embryogenesis (Bellec et al, 2022; Bellec et al, 2018). In the future,
it would be of great interest to understand what chromatin loci
become accessible first and how early in development this process
occurs.

Chromatin architecture
Although TADs are not yet formed during the minor ZGA wave,
networks of long-range chromatin interactions are already
established at this stage and are conserved in different germ layers
(Espinola et al, 2021; Ogiyama et al, 2018). Interestingly, the loci
that are involved in early long-range chromatin interactions do not
correspond to future TAD borders (Messina et al, 2023) (Fig. 2,
bottom). Zld is required for the formation of several chromatin
hubs during these stages, connecting different Zld-rich regions with
each other or with target promoters (Espinola et al, 2021; Ogiyama
et al, 2018). Indeed, Zld-bound regions coalesce during the minor
wave of ZGA and create hubs of active genes (Ogiyama et al, 2018).

Overall, during the minor wave of ZGA, chromatin starts to
become progressively organized. At nuclear cycle 12, nearly 180
regions enriched in housekeeping genes engage in the establish-
ment of structures that resemble TAD boundaries (Hug et al, 2017;
Ogiyama et al, 2018). At nuclear cycle 12, TAD borders correlate
with the presence of Nej-dependent acetylation marks (i.e.,
H3K18ac, H3K27ac, and H4K8ac), while H3K9ac and “active”
methylation marks (i.e., H3K4me3, H3K36me3) will appear on
TAD boundaries only at nuclear cycle 14 (Hug et al, 2017).
Nonetheless, definitive TAD structures will emerge only later,
during the major wave of ZGA (Fig. 3, bottom).

During the minor wave of ZGA, homologous chromosomes start
to progressively pair (Fig. 2, bottom). At nuclear cycle 13, homolog
pairing at euchromatic regions reaches an average of 10%.
However, there is consistent variability between different loci
(Fung et al, 1998). Interestingly, some loci, such as the histone
locus, seem to pair before others, displaying 61% pairing at nuclear
cycle 13, while repeat-rich regions tend to become paired less
extensively than non-repetitive regions at this stage (Fung et al,
1998). More recent studies used a haplotype-resolved Hi-C to study
embryonic pairing and revealed that interactions between homo-
logous chromosomes spread genome-wide at the time when pairing
begins (Erceg et al, 2019). Moreover, the presence of Zld, but not of
GAF binding, correlates with the establishment of homologous
pairing at this stage (Erceg et al, 2019). In summary, chromatin
activation progressively transitions from random folding into a
partially ordered structure during the minor ZGA wave, in a
process that seems to be mostly coordinated by the pioneer
factor Zld.
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Major ZGA

Nuclear cycle 14

Constitutive heterochromatin establishment
Constitutive heterochromatin is clearly visible during the major
wave of ZGA. At this stage, constitutive heterochromatin has
segregated from euchromatic regions within the nuclear space
(Zenk et al, 2021), and the C-banding technique highlighted clear
bands in ZGA embryos (Vlassova et al, 1991).

H3K9me2/3 levels sharply increase at major ZGA (Atinbayeva
et al, 2024; Seller et al, 2019; Yuan and O’Farrell, 2016). At
pericentromeric regions of the current genome version (dm6),
H3K9me3 is fully established at major ZGA (Atinbayeva et al,
2024). H3K9me2/3 marks are critical for embryonic development
as triple mutant embryos that lack H3K9me2/3 display strong
defects in embryogenesis. In contrast, single mutants for each
H3K9 methyltransferase do not display strong embryonic

developmental defects. Intriguingly, the phenotypes of the triple
mutant embryos can be rescued by maternal, but not zygotic
Eggless/dSetDB1 expression, pointing out that H3K9me2/3 pre-
sence at early stages is required for embryonic development
(Atinbayeva et al, 2024). Eggless/dSetDB1 is the primary methyl-
transferase involved in the H3K9me3 deposition at pericentromeric
regions during ZGA (Atinbayeva et al, 2024). The presence of
H3K9me2/3 mark itself, but not Eggless/dSetDB1 protein per se, is
important for embryonic development as catalytic inactive Eggless/
dSetDB1 embryos exhibit similar embryonic developmental defects
as the triple mutant embryos (Atinbayeva et al, 2024).

HP1a binding at pericentromeric regions significantly increases
during major ZGA (Zenk et al, 2021). In contrast, HP1a
enrichment declines but does not disappear on chromosome arms
at this stage (Zenk et al, 2021). Indeed, more than 2000 HP1a peaks
(one-third of the total) could be detected along chromosome arms
at nuclear cycle 14 (Zenk et al, 2021). Consistent with these
observations, during the transition from minor to major ZGA,

Figure 3. Chromatin marks, chromatin interactions, and nuclear organization during the major wave of ZGA.

Top left, schematic view of Drosophila embryos during nuclear elongation and cellularization (stage 5). Time post fertilization, Bownes’ stage and nuclear cycle are defined
on the top bar. Top right, description of relevant histone marks and chromatin protein distribution during stage 5 of embryogenesis. Bottom left, long-range chromatin
interactions during stage 5 of embryogenesis. The triangles represent Hi-C interaction matrices. Along the linear representation of a chromosome in black, pioneer factors
are depicted in green, insulator proteins in blue and RNA PolII in white within a red circle. Bottom right, nuclear organization during major wave of ZGA. Homologous
chromosomes (in blue and red) are mostly paired inside the elongated nuclei (in gray).
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HP1a peaks progressively accumulate at pericentromeric hetero-
chromatin, but they do not spread along the chromosome arms
(Zenk et al, 2021). Moreover, at major ZGA, HP1a is suggested to
condense in phase-separated droplets exhibiting less circularity and
an increased immobile fraction as the interphase of cycle 14
proceeds (Strom et al, 2017). This phenomenon could be coupled to
the progressive assembly of the chromocenter (Shermoen et al,
2010). Interestingly, HP1a binding to chromatin is not completely
dependent on H3K9me2/3 given that triple mutant embryos that
lack H3K9me2/3 still retain HP1a bound to chromatin (Atinbayeva
et al, 2024; Yuan and O’Farrell, 2016). Instead, H3K9me2/3
deposition is required for HP1a foci/phase-separated liquid droplet
formation and growth (Atinbayeva et al, 2024). Indeed, the role of
HP1a during major ZGA seems to be mostly structural. HP1a
mediates the clustering and condensation of constitutive hetero-
chromatin at pericentromeric regions and contributes to the spatial
compartmentalization of inactive pericentromeric regions. In
contrast, the lack of HP1a does not affect RNA Poll II activity on
zygotic genes (Zenk et al, 2021).

Interestingly, even though the volume of DAPI dense regions in
H3K9me2/3-depleted Drosophila mutant embryos decreases, it
does not completely disappear, implying that additional mechan-
isms might be involved in constitutive heterochromatin formation
in early embryos (Atinbayeva et al, 2024). A possible candidate
protein that might explain these observations is the AT-hook
containing protein D1. D1 was shown to be enriched at satellite
repeats, and its mRNA and protein reduction leads to suppression
of Position Effect Variegation (PEV) (Aulner et al, 2002; Elgin and
Reuter, 2013). Accordingly, chromocenters are affected in mutants
for D1 and for another satellite-binding protein known as Prod at
later developmental stages (Jagannathan et al, 2019). Recent studies
have started deciphering the players involved in the establishment
of constitutive heterochromatin in the early stages of D.
melanogaster embryonic development. For instance, the
H3K4me2 demethylase Lsd1 was reported to be necessary for the
deposition of H3K9me2/3 (Rudolph et al, 2007). Also, the insulator
protein and pioneer factor GAF exert an important role in
heterochromatin formation at specific loci during early embry-
ogenesis. This protein binds to AAGAG satellite repeats, con-
tributing to their silencing and heterochromatin establishment
(Gaskill et al, 2023). Furthermore, maternally deposited Piwi and
piRNAs can target roo transposons, silence their expression, and
deposit H3K9me3 starting at ZGA until later stages of embryonic
development (Fabry et al, 2021). Further studies are, however,
required to fully unveil the mechanisms by which HP1a is recruited
to chromatin in early embryos as well as to dissect the role of
H3K9me3-dependent HP1a foci/condensates in heterochromatin
formation and embryonic development.

Chromatin-mediated transcriptional silencing
Thousands of genes are de novo transcribed during the major wave
of ZGA, while the maternally provided pool of mRNAs is actively
degraded in the embryo (Hamm and Harrison, 2018). At the same
time, transcriptional repressors and corepressors silence the
transcription of non-ZGA genes and ZGA genes that have to be
specifically turned off in some regions of the embryo. Indeed, the
ectopic expression of early genes involved in axes patterning,
segment specification or germ-layer formation results in major

developmental defects, which often lead to lethality (Campos-
Ortega and Hartenstein, 1985).

Among the mechanisms of chromatin-based gene silencing
acting at ZGA, Polycomb-mediated repression is the most
prominent and the best described so far (Schuettengruber et al,
2017). Most of the current knowledge on Polycomb-mediated
silencing in flies derives from studies of Hox gene regulation
(Ingham, 1983; Struhl and Akam, 1985; Wedeen et al, 1986). The
homeotic genes harbored in the bithorax and the Antennapedia
complexes display specific expression patterns, which determine
parasegment identity (Maeda and Karch, 2006). The levels of
H3K27me3 correlate with the establishment of silent regions along
the anterior-posterior axis. Anterior parasegments are all repressed
and marked with H3K27me3, whereas the most posterior
parasegments lack H3K27me3 domains on bithorax and on the
Antennapedia genes (Maeda and Karch, 2006). Moving from the
most anterior toward the posterior parasegments, H3K27me3
domains are progressively lost on these loci. H3K27me3 absence
correlates with a transcriptional active state and consequently with
parasegment identity (Bowman et al, 2014). Surprisingly, however,
PRC1 binding does not mirror H3K27me3 distribution at different
parasegments. Similarly, the PRC2 component Su(z)12 parallels
PRC1 binding, thus rendering the H3K27me3 histone mark the
only discriminant for parasegment-specific silencing (Bowman
et al, 2014). How PRC2 catalytic activity is stimulated at certain loci
or inhibited at others is still an open question. Recent studies
indicate that Polycomb repression represents the default state in
early embryos (Zenk et al, 2017). Hence, we speculate that the
presence of activators or histone demethylases would probably
interfere with E(z) activity during ZGA (Ghotbi et al, 2021).
Additional questions still await an answer. For instance, what is
PRC1 function on silenced genes? Why is its presence insufficient
to repress transcription in the absence of H3K27me3? Apparently,
PRC1 alone can taper the expression of some genes (Loubiere et al,
2016), but it could also stimulate gene expression in different
contexts. For example, it might facilitate Spt5 association with
enhancers (Pherson et al, 2017) and promote enhancer-promoter
interactions (Loubiere et al, 2020). PRC1 presence is necessary, but
not sufficient, for chromatin compaction at Hox genes and other
targets during ZGA (Cheutin and Cavalli, 2014). Strikingly, the
absence of Ph or Pc affects the chromatin compaction of Hox
clusters prior to ectopic transcription of Hox genes. Therefore,
open-chromatin states determined by the loss of PRC1 are the
cause and not the consequence of transcriptional activity (Cheutin
and Cavalli, 2018).

Besides Polycomb-mediated repression, alternative silencing
mechanisms take place during Drosophila major ZGA. For
instance, the histone deacetylase HDAC1, also known as Rpd3, is
responsible for correct segmentation through cooperation with the
pair-rule gene protein product Even-skipped (Mannervik and
Levine, 1999) and the gap gene protein product Knirps (Struffi and
Arnosti, 2005). The importance of HDAC1 during ZGA has been
recently confirmed. Maternal depletion of HDAC1 misregulates
hundreds of genes during major ZGA (Ciabrelli et al, 2023).
HDAC1 cooperates with the mesoderm-specific factor Snail and the
corepressor CtBP in repressing neuroectoderm genes (Nibu et al,
1998). The histone deacetylase HDAC3 is also involved in Snail-
mediated silencing during ZGA, through cooperation with the Ebi/
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SMRTER corepressor complex (Qi et al, 2008). HDAC3 corepres-
sion functions are independent of its catalytic activity, whereas its
deacetylase activity is required for gene activation of other targets
(Tang et al, 2023). In turn, CtBP cooperates with other early zygotic
transcription factors in establishing nuclear identity, including
Knirps, Krüppel, Giant and Hairy (Keller et al, 2000; Nibu and
Levine, 2001; Nibu et al, 1998; Poortinga et al, 1998; Struffi et al,
2004; Strunk et al, 2001). Both HDAC3 and CtBP corepressors were
also recently found as positive hits in a genetic screen for chromatin
factors involved in early embryogenesis, confirming their impor-
tance during major ZGA (Ciabrelli et al, 2023).

Finally, the transcriptional corepressor Grunge is required for
the correct segmentation of the embryo by repressing hunchback,
Krüppel, knirps, and fushi-tarazu expression (Erkner et al, 2002), as
well as its interacting partner Brakeless (Haecker et al, 2007) and
also the corepressor Groucho, limiting the expression of tailless and
huckebein to the poles of the embryo (Goldstein et al, 1999). Both
Grunge and Groucho requirement for embryonic development was
recently validated by a genetic screen (Ciabrelli et al, 2023), with
the lack of Groucho having more drastic effects on development,
even before major ZGA. In summary, different types of transcrip-
tional corepressors act synergistically to spatiotemporally control
gene expression at a time when thousands of genes are de novo
transcribed. Their precise regulation is of paramount importance
for embryonic development.

Chromatin-mediated transcriptional activation
Chromatin complexes cooperate with pioneer factors and with
specific transcriptional activators during ZGA. Both housekeeping
and developmentally-regulated genes need to be de novo activated
either in every nucleus or in specific embryonic domains,
respectively. Different types of chromatin coactivators regulate
these distinct classes of genes during ZGA. For instance, the HAT
Nejire (twisted in Japanese) plays a major role in the regulation of
hundreds of developmental genes (Ciabrelli et al, 2023). This
massive transcriptional coactivator (332 kDa) (Akimaru et al, 1997)
was initially characterized as responsible for the activation of early
zygotic genes in flies (Akimaru et al, 1997). Mutations in Nej
caused early lethality and a “twisted” embryo phenotype, originally
linked to the downregulation of the twist gene (Akimaru et al,
1997), but actually due to defects in Dpp-signaling (Lilja et al,
2003). In order to activate twist, Nej acts as a coactivator of the
transcription factor Dorsal, which in turn cooperates with Zld
(Boija and Mannervik, 2016). In line with these observations,
hundreds of Zld-dependent genes are regulated by Nej during ZGA
(Ciabrelli et al, 2023). The Nej protein is responsible for the
deposition of H3K18ac, H3K27ac and for H4 acetylations on K5
and K8 residues (Feller et al, 2015). Therefore, its contribution as a
transcriptional coactivator has been historically connected to the
deposition of these histone marks. Nonetheless, early reports
showed a Nej catalytically independent function in the activation of
pair-rule genes as even-skipped (Ludlam et al, 2002) or of the TGF-
β signaling genes rhomboid and tolloid (Lilja et al, 2007). More
recently, studies performed with the histone replacement system
demonstrated that precluding acetylation of H3K27 alone (Pengelly
et al, 2013) or together with H3.3K27 (Leatham-Jensen et al, 2019),
does not affect active genes in flies as well as in mouse ESCs (Sankar
et al, 2022; Zhang et al, 2019). In these studies, all observed
phenotypes were compatible with the loss of H3K27me3 Polycomb-

mediated repression but not with failure in gene activation. Finally,
recent work from our group demonstrated that loss of ZGA and
embryonic viability upon maternal knockdown of Nej are rescued
by maternal expression of a catalytically dead Nej protein (Ciabrelli
et al, 2023), confirming the existence of Nejire non-enzymatic
functions (Hunt et al, 2022). The specific point mutation we
introduced to generate Nej catalytically dead enzyme allowed us to
deactivate Nej’s catalytic activity without affecting its ability to bind
to chromatin or to interact with other essential partners.
Maintaining the integrity of these interactions is essential, as any
alteration could misrepresent the enzyme’s function and complicate
the interpretation of experimental results. These in vivo observa-
tions were further confirmed by in vitro experiments, showing that
the lack of Nej catalytic activity only marginally decreased its
transactivating function. Instead, deletion of the Nej NTD, which
harbors the KIX domain, almost completely abolishes its transacti-
vation function (Ciabrelli et al, 2023). The KIX domain in
mammals is necessary for the formation of heterodimers with a
range of transcription factors (Goto et al, 2002; Parker et al, 1996).
Collectively, these studies seem to suggest that the Nej protein itself
rather than its catalytic activity, could be crucial for gene regulation
and embryonic development. How Nej regulates RNA PolII activity
is still an open question.

The Gcn5 protein, a HAT responsible for H3K9ac and H3K14ac
deposition, is crucial for ZGA. Maternal knockdown of Gcn5
(Ciabrelli et al, 2023) or of core subunits of the Gcn5-containing
SAGA and ATAC complexes (Helmlinger et al, 2021; Li et al, 2017)
affects cellularization and later stages of embryonic development.
Lack of these components leads to the misexpression of hundreds
of genes during the major wave of ZGA (Ciabrelli et al, 2023) and
in later stages of embryonic development (Torres-Zelada et al,
2022). Unlike Nej, depletion of Gcn5 mostly affects housekeeping
rather than developmental genes. Moreover, most of the Gcn5-
dependent genes are not regulated by Zld and GAF at ZGA
(Ciabrelli et al, 2023). Yet, both Nej-dependent (e.g., H3K27ac) and
Gcn5-dependent acetylation marks (e.g., H3K9ac) are deposited on
every active TSS during ZGA (Ciabrelli et al, 2023). This apparent
discrepancy raises questions about the actual function of these
histone acetylation marks. Indeed, despite the depletion of
maternally provided Gcn5 before the end of embryogenesis, mutant
flies also lacking the zygotic Gcn5 HAT activity can still complete
several metamorphoses without any H3K9 acetylation and survive
till the puparium stage (Carré et al, 2005). Furthermore, a mutation
in the SAGA subunit Saf6 results in defective expression of SAGA-
dependent genes, even though H3K9ac is not affected (Weake et al,
2009). These results show that H3K9ac is neither necessary nor
sufficient to promote Gcn5-dependent gene activation in flies.
Recently, our laboratory showed how a catalytically dead version of
Gcn5 can completely rescue the Gcn5 mutant phenotype during
early embryogenesis and ZGA. Our work demonstrated that the
presence of Gcn5 itself, and therefore of its associated macro-
molecular complexes, but not of its catalytic activity, is important
for the activation of hundreds of genes during ZGA and
consequently for embryonic viability (Ciabrelli et al, 2023).

Other HATs also exert important roles during ZGA, even
though they have been investigated to a lesser extent. For instance,
the HAT Enok is responsible for H3K23ac deposition in vitro
(Feller et al, 2015) and also during early embryogenesis (Huang
et al, 2014). Although most of the genome seems to be occupied by
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H3K23ac in cell culture conditions (Feller et al, 2015), only a few
genes are affected by its absence during ZGA in living embryos
(Ciabrelli et al, 2023; Huang et al, 2014). These results could be
explained by a different distribution of the H3K23ac mark between
cell culture conditions and ZGA. Alternatively, it is possible that
the H3K23ac mark is also relatively abundant during ZGA, but the
role of Enok during embryogenesis might not be strictly linked to
transcription. For instance, this HAT might elicit PCNA unloading
during DNA replication (Huang et al, 2016). Similarly, the
functions of the Tip60 and the Chameau HATs, which are
responsible for the acetylation of H4K12ac (Feller et al, 2015),
have not been thoroughly investigated in the context of ZGA.
Recently, we showed that the lack of Chameau results in
morphological defects during early embryogenesis, with very few
embryos reaching the gastrulation stage (Ciabrelli et al, 2023).

An evolutionarily conserved class of chromatin factors that are
critical for gene activation during Drosophila ZGA are the
Trithorax (Trx) group proteins (Kassis et al, 2017). Trithorax
group genes are genetically classified as positive regulators of
Drosophila Hox gene expression, which specify segment identity
along the antero-posterior embryonic axis (Ingham, 1981). In
accordance, Trx mutants phenocopy loss-of-function mutations in
the Hox genes (Digan et al, 1986; Forquignon, 1981; Shearn et al,
1987). The founder of the Trx group is the trx gene itself, which
encodes a histone methyltransferase responsible for H3K4 methy-
lation. Besides Trx, flies express two other histone methyltrans-
ferases responsible for H3K4 methylation, namely Trithorax-
related (Trr) and Set1, all belonging to the evolutionary conserved
COMPASS complexes (Piunti and Shilatifard, 2016).

Trx catalyzes H3K4me1 on Polycomb/Trithorax regulatory
elements (PRE/TRE) (Tie et al, 2014), although in vitro studies
revealed that Trx mutations also affect H3K4me2 levels (Rickels
et al, 2016). Set1 is responsible for the majority of the H3K4me2
and H3K4me3 deposition at TSSs in flies (Herz et al, 2012).
The levels of H3K4me1 and H3K4me3 chromatin occupancy are
very limited in Drosophila before major ZGA (Chen et al, 2013; Li
et al, 2014; Samata et al, 2020), albeit a discrete number of
H3K4me1 peaks could be already detected at nuclear cycle 8 (Li
et al, 2014).

Trr is specifically responsible for H3K4me1 at enhancer regions,
and its absence hinders H3K27ac (Calo and Wysocka, 2013; Piunti
and Shilatifard, 2016; Rickels et al, 2017). It has been previously
postulated that the deposition of H3K4me1 is a key determinant for
enhancer functions (Creyghton et al, 2010). Nonetheless, flies
bearing a SET-domain deficient Trr protein are viable, indicating
that gene expression programs can be activated in the absence of
H3K4me1, and despite reduced H3K27ac levels at enhancers
(Rickels et al, 2017; Rickels et al, 2020). These findings were
recapitulated in mammalian systems (Cao et al, 2018; Dorighi et al,
2017) and confirmed previous studies in flies (Hödl and Basler,
2012) and in yeast (Krogan et al, 2002; Nislow et al, 1997), showing
that H3K4 methylation is not required for, but rather a
consequence of, transcriptional activity (Morgan and Shilatifard,
2020). Other Trx group proteins operate at enhancers, including
two components of the mediator complex (i.e., Skuld and Kohtalo),
which promotes enhancer-promoter looping (Janody et al, 2003).
Several components of chromatin-remodeling complexes were also
identified as Trx group proteins, e.g., Brahma, the catalytic subunit
of SWI/SNF complex (Mohrmann et al, 2004). Finally, the pioneer

factor GAF, encoded by the trithorax-like gene, is also classified as a
Trx group gene (Farkas et al, 1994). In conclusion, Trx group
proteins are important regulators of ZGA genes, particularly those
involved in developmental programs and expressed in specific
regions, segments or presumptive germ layers.

Chromatin accessibility
At ZGA, anterior-posterior and dorsal-ventral axes have already
been established, and differential gene expression is a direct
consequence of embryo axial polarization (Campos-Ortega and
Hartenstein, 1985). Does chromatin accessibility mirror such a
variegated transcriptional pattern? Chromatin accessibility is
similar in the anterior and posterior halves of nuclear cycle 14
embryos (Haines and Eisen, 2018). Therefore, based solely on
accessibility, it is not possible to distinguish between anterior and
posterior embryos. In the future, assessing the accessibility of
individual nuclei will be necessary to address this question.
Remarkably, even the promoters of those genes that are expressed
in the anterior half of the embryo do not display different levels of
chromatin accessibility along the AP axis (Haines and Eisen, 2018).
Interestingly, the only exceptions are enhancer regions, which show
a mild increase in chromatin opening in the half of the embryo
where they are supposed to operate, even though partial chromatin
opening is also observed in the opposite and inactive half (Haines
and Eisen, 2018).

Nuclear sorting of specific segments along the AP axis through
an exogenous reporter system allowed for a more fine-grained
resolution of the chromatin landscape during Drosophila blas-
toderm stage (Bozek et al, 2019). This work confirmed that the vast
majority of open-chromatin peaks are conserved in different
regions of the embryo at bulk but not at single nucleus resolution.
Moreover, differences in chromatin accessibility in one-quarter of
the detected peaks were enriched at enhancers regions (Bozek et al,
2019). Chromatin accessibility was also investigated in DV tissue
mutant embryos composed of presumptive dorsal ectoderm,
neurogenic ectoderm, or mesoderm. In line with results obtained
for the AP axis, enhancers showed increased accessibility along the
DV axis (Hunt et al, 2024).

Deciphering chromatin accessibility differences in the hetero-
geneous Drosophila embryo is a complex task. The advent of
single-cell techniques further shed light on the chromatin landscape
across early embryogenesis. Single-cell ATAC-seq experiments
corroborated the observations collected in earlier bulk studies using
the DNAse I enzyme (Thomas et al, 2011). The results showed high
variability in chromatin accessibility among different developmen-
tal windows throughout embryogenesis (Calderon et al, 2022;
Cusanovich et al, 2018). Moreover, nuclear heterogeneity in
chromatin accessibility along the embryo’s AP axes was confirmed
to be a feature of early embryos, in particular at enhancer regions
(Haines and Eisen, 2018).

Single-cell chromatin accessibility confirmed this pattern not
only for the AP axis, but also for the DV axes (Cusanovich et al,
2018). Interestingly, some studies showed that the presence of
transcription factor binding sites alone could not completely
explain these differences in chromatin accessibility during regio-
nalization (Haines and Eisen, 2018; Hannon et al, 2017). Due to the
intricate nature of early Drosophila development, capturing
precisely the chromatin dynamics during ZGA has always been
challenging and despite many efforts in the field, a detailed map at
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single-cell resolution of the chromatin landscape at this stage is still
missing. Moreover, studies aimed at understanding the surround-
ing chromatin context of regulatory elements may be crucial to
elucidate the mechanisms shaping the chromatin dynamics of early
embryogenesis.

Chromatin accessibility at this stage is also achieved by the
action of pioneer factors. Their main function consists of exposing
enhancers’ chromatin to the binding of transcription factors. The
activation of about 600 genes at nuclear cycle 14 is dependent on
Zld (Ibarra-Morales et al, 2021; Liang et al, 2008), whereas about
400 genes directly depend on GAF (Gaskill et al, 2023). Clamp
mostly cooperates with Zld in the expression of early ZGA genes
(Duan et al, 2021) but also acts independently on other targets
(Colonnetta et al, 2021). Other genes rely on multiple pioneer
factors, and this redundancy ensures that the lack of one factor will
not decisively compromise their activity (Colonnetta et al, 2021;
Duan et al, 2021; Gaskill et al, 2021).

Whereas many Zld and Clamp-dependent genes are expressed
early during cleavage, GAF-dependent genes are active only at
nuclear cycle 14 (Blythe and Wieschaus, 2016; Gaskill et al, 2021).
At this stage, hundreds of genes are regulated at the RNA PolII
pausing/elongation step (Blythe and Wieschaus, 2016; Saunders
et al, 2013), in order to achieve coordinated gene expression (Lagha
et al, 2013). Indeed, shorter cell cycle lengths, which are
characteristic of early ZGA stages, are not compatible with this
type of transcriptional regulation (Chen et al, 2013; Kwasnieski
et al, 2019). The idea that GAF could be the main factor involved in
the regulation of paused cycle 14 genes is corroborated by in vitro
studies in Drosophila cell lines. These studies show that GAF-
dependent genes are indeed regulated at the RNA PolII pause/
release and transition to the productive elongation step (Boija et al,
2017). In addition, GAF-dependent genes are enriched for core
promoter elements typically found at pause/release regulated genes,
whereas Zelda-dependent genes are instead enriched with the
TATA-box motif, typical of genes regulated at the RNA PolII
recruitment step (Chen et al, 2013). Nonetheless, ZGA genes that
are coregulated by Zelda and GAF, are also regulated at the RNA
PolII pause/release step, indicating that Zelda-mediated regulation
is also compatible with this molecular mechanism (Boija and
Mannervik, 2016).

How do pioneer factors manage to render chromatin accessible
and transcriptionally competent? Are chromatin-remodeling com-
plexes recruited by pioneer factors to evict or displace nucleosomes
during ZGA?

By catalyzing ATP-dependent alterations in nucleosome struc-
ture or positioning, chromatin-remodeling complexes regulate
chromatin accessibility. Notably, several components of chromatin
remodelers represent an additional class of Trx group proteins,
including the ATPase subunit of the SWI/SNF complex Brahma
and other SWI/SNF components, Moira and Osa. These proteins
are part of the Brahma-associated protein complex (BAP) and
Polybromo-containing BAP complex (PBAP) (Mohrmann et al,
2004). Mutations in these genes cause homeotic transformations
(Harding et al, 1995; Tamkun et al, 1992). Certain loss-of-function
mutants (e.g., osa) phenocopied gap gene mutants, showing that
these chromatin-remodeling complexes are already involved in the
very early expression of zygotic genes regulating AP patterning
(Vázquez et al, 1999).

ATP-dependent chromatin-remodeling complexes represent the
most abundant class of proteins acting on chromatin at ZGA,
suggesting that they also have a structural role (Bonnet et al, 2019).
Studies performed in Drosophila cell cultures revealed that GAF
functions with PBAP (SWI/SNF family) to open up chromatin.
Downstream of this step, GAF synergizes with NURF (ISWI family)
in order to ensure efficient RNA PolII pause/release and transition
toward positive elongation (Judd et al, 2021). It is possible that GAF
acts similarly also during ZGA, but this hypothesis needs to be
experimentally tested.

Could Zld also cooperate with chromatin-remodeling factors, or
is its function independent of them? Future work is required to
elucidate the interplay between pioneer factors and chromatin
remodeling complexes during ZGA. Even though pioneer factors
might cooperate with chromatin-remodeling complexes to activate
developmental genes, it is important to note that most major ZGA
genes are pioneer-factor independent. Their expression instead
relies on the deposition of the histone variant H2Av at their +1
nucleosome mediated by the histone chaperone Domino (Ibarra-
Morales et al, 2021) (Fig. 3, top). As expected, lack of maternally
deposited Domino causes embryonic lethality. H2Av-dependent
genes display nucleosome phasing, unlike Zld-dependent genes,
whose nucleosomes are devoid of histone H2Av. Interestingly,
however, H2Av deposition per se does not affect chromatin
accessibility or nucleosome positioning at these loci. Therefore,
nucleosome distribution must be dictated by other chromatin
factors (Ibarra-Morales et al, 2021). How the presence of H2Av
mechanistically contributes to RNA PolII activity for thousands of
genes at ZGA is still unclear.

Chromatin architecture
Chromatin architecture acquires distinctive features during the
major wave of ZGA. Randomly folded chromosomes begin to
organize inside the nuclear space in concert with ZGA. At nuclear
cycle 14, TADs are finally well-defined (Gizzi et al, 2019; Hug et al,
2017; Ogiyama et al, 2018) (Fig. 3, bottom), and their internal
organization changes considerably upon transcriptional activation
(Gizzi et al, 2019). The temporal correlation between increased
RNA PolII activity and TAD establishment does not bear a causal
link. Indeed, chemical inhibition of the RNA PolII activity does not
interfere with TAD formation (Hug et al, 2017). Thus, TAD
establishment is independent of transcriptional onset. Nevertheless,
transcriptional inhibition results in a mild loss of inter-TAD
insulation, with increased inter-TAD and decreased intra-TAD
interactions (Hug et al, 2017).

Housekeeping genes are enriched at TAD borders, and they tend
to cluster three-dimensionally with other housekeeping genes (Hug
et al, 2017). In addition to histone marks, insulator-binding
proteins, such as Beaf-32, CP190, and CTCF, also reside at TAD
borders (Sexton et al, 2012) (Fig. 3, bottom). Despite their
suggestive subnuclear distribution, depletion of the factors during
early embryogenesis does not interfere with TAD establishment,
and ZGA is also mostly unperturbed (Cavalheiro et al, 2023). In
accordance, CTCF and CP190 are not required for the completion
of Drosophila embryogenesis, and their impact on gene expression
is not predominant (Gambetta and Furlong, 2018; Kaushal et al,
2022). Nonetheless, the simultaneous presence of at least one active
promoter and an insulator-bound region is required for the full
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insulation of a TAD border (Cavalheiro et al, 2023). The position of
TAD borders and other features of chromatin conformation are
surprisingly conserved during early embryonic development (Ing-
Simmons et al, 2021). Indeed, compartments, TADs, and even
enhancer-promoter loops are highly similar across presumptive
germ layers in the Drosophila cellular blastoderm nuclei (Espinola
et al, 2021; Ing-Simmons et al, 2021).

Besides their presence at TADs, insulator-binding proteins are
also enriched at tethering elements. Tethering elements can be
defined as genomic sequences that allow nearby enhancers to
engage in long-range interactions with promoters. TAD boundaries
and tethering elements have distinct roles and properties, even
though they share some similarities. TAD boundaries prevent
spurious interactions between enhancers and silencers harbored in
distinct TADs, thus compartmentalizing de facto the genome in
functional units. Tethering elements instead ensure precision and
timing of transcriptional dynamics (Batut et al, 2022). Consistent
with this, disruption of TAD boundaries causes TAD fusion,
whereas disruption of the tethering elements affects enhancer
function or its precision, with minimal impact on TAD structure.
Interestingly, multiple enhancers, driven by their tethering
elements, physically interact to form hubs, which usually contact
only one promoter at a time during ZGA (Espinola et al, 2021).
During ZGA, TAD boundaries are enriched for CTCF, Cp190, and
H3K4me3, whereas tethering elements are enriched in pioneer
factors and H3K4me1 (Batut et al, 2022). After ZGA, Polycomb-
repressed regions form repressive loops, relying on the action of
GAF, which is bound at PREs (Ogiyama et al, 2018). The ability of
PRC1 to multimerize via the oligomerization of Ph and Scm SAM
domains (Isono et al, 2013) can stabilize these GAF-dependent
long-range interactions (Loubiere et al, 2020). The clustering of
Polycomb-repressed chromatin domains inside the nucleus results
in the formation of the so-called “Polycomb bodies” (Bantignies
et al, 2011; Lanzuolo et al, 2007). GAF can also mediate long-range
interactions between active promoters through its POZ/BTB
multimerization domain (Li et al, 2023).

Constitutive heterochromatin regions coalesce during Droso-
phila ZGA. Hi-C experiments (Lee et al, 2020; Zenk et al, 2021)
have confirmed previous studies showing that pericentromeric
regions of different chromosomes are spatially connected in a
chromocenter (Miklos and Cotsell, 1990). In blastoderm nuclei,
centromeres start to cluster at the apical pole, in the so-called “Rabl
conformation” (Foe et al, 2000; Marshall et al, 1996). Telomeres
also coalesce at the nuclear periphery but in separate regions (Lee
et al, 2020). The strongest heterochromatic interactions reside
within the same chromosome arm, according to genomic
partitioning in chromosome territories (Lee et al, 2020). Moreover,
H3K9me2 regions embedded in chromosome arms, including
transposable elements, show preferential interactions with the
apical chromocenter, where pericentromeric heterochromatin
resides (Lee et al, 2020).

Recently, our laboratory showed that HP1a binding at
pericentromeric regions is necessary to establish constitutive
heterochromatin clustering. HP1a depletion specifically affects the
inactive B compartment and culminates in the loss of contacts
within and between pericentromeric regions. Lack of H3K9me2/3
obtained with H3K9M mutant embryos also resulted in pericen-
tromeric heterochromatin de-clustering (Zenk et al, 2021). Inter-
estingly, HP1a at ZGA localizes at constitutive heterochromatin,

but one-third of HP1a peaks are detected on chromosome arms,
where it is responsible for correct chromosome folding. In
agreement with this, HP1a depletion reduces inter-chromosomal
contacts while increasing intrachromosomal contacts and impair-
ing the proper segregation of the A and B compartments. Despite
its important role in chromatin organization, the lack of HP1a
affects the expression of just a handful of genes and repeats at ZGA.
Therefore, HP1a’s role at this particular developmental stage is
mostly different from its role in differentiated somatic cells (Zenk
et al, 2021). Indeed, in differentiated, somatic Drosophila S2 cells,
HP1a depletion does not lead to significant changes in genome
architecture (Zenk et al, 2021). Moreover, in mouse fibroblast cells,
the size, accessibility, and compaction of pericentromeric hetero-
chromatin foci are independent of HP1 (Erdel et al, 2020). In the
same cells, HP1 exhibits a very low capacity to form liquid-liquid
phase-separated droplets (Erdel et al, 2020). Therefore, we
speculate that the function of HP1 in driving B-compartment
establishment might rest on the ability of HP1a to assemble
constitutive heterochromatin domains specifically in early fly
embryos (Atinbayeva et al, 2024; Strom et al, 2017). Finally, in
line with previous studies (Fung et al, 1998), the level of
homologous chromosome pairing drastically increased from
nuclear cycle 12 to nuclear cycle 14 embryos, reaching the pairing
frequency of around 70% of the total at nuclear cycle 14 (Gizzi et al,
2019; Hiraoka et al, 1993) (Fig. 3, bottom).

Intergenerational and
transgenerational inheritance

Maternally inherited chromatin is not a blank page. Key epigenetic
marks such as H3K27me3, H3K9me3 and H4K16ac already
decorate the epigenome at specific loci in the zygote (Atinbayeva
et al, 2024; Samata et al, 2020; Zenk et al, 2017). Experimental
perturbation of this intergenerational inheritance leads to defects in
Polycomb-mediated silencing, heterochromatin activation, and
chromatin accessibility at promoters of late-expressed genes during
embryogenesis. Whereas most of the tested histone modifications
are not intergenerationally inherited (e.g., H3K4me1, H2K27ac,
H3K9ac), other histone marks might be retained in unfertilized
eggs. Interestingly, the intergenerationally maintained histone
marks characterized so far (i.e., H3K27me3, H3K9me3 and
H4K16ac) are the ones with a proven “instructive” function on
the underlying genetic material (Copur et al, 2018; Leatham-Jensen
et al, 2019; Pengelly et al, 2013; Penke et al, 2016). This function
might explain why they are intergenerationally transmitted,
whereas other marks that are rather a consequence of transcrip-
tional activity or other chromatin processes are instead not
transmitted. Because protamine replacement does not happen on
the entire paternal epigenome in Drosophila (Elnfati et al, 2016), it
is tempting to speculate that modified histones might also be
paternally transmitted to the progeny as they are in mouse
(Brunner et al, 2014; van der Heijden et al, 2006). It is also possible
that other epigenetic marks besides histone modifications can be
passed on from the father to the offspring. For instance, since
protamines themselves can be post-translationally modified, they
might be novel carriers of epigenetic information.

Epigenetic inheritance of these marks may convey critical
information for the correct development of the next generation
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(Fig. 4). On the other hand, they may carry more flexible and
complementary types of information that might be generated by the
response to specific stimuli in the parental lifespan. Intergenera-
tional inheritance refers to the epigenetic information transmitted
from the parent to the offspring. When the epigenetic information
is stably maintained across multiple generations, it is referred to as
transgenerational epigenetic inheritance (TEI) (Fitz-James and
Cavalli, 2022) (Fig. 4). Depending on the experimental system, TEI
can originate from both parents (Ciabrelli et al, 2017; Seong et al,
2011) or from the mother only (Bozler et al, 2019; Cavalli and Paro,
1998). Interestingly, early embryonic development seems to be a
developmental hotspot for TEI induction in flies (Cavalli and Paro,
1998; Seong et al, 2011), suggesting that at this stage, a plastic
chromatin state can integrate and propagate epigenetic signals.
Strikingly, TEI of alternative Polycomb-mediated repression has
been described in flies when induced by increased frequency of
chromatin long-range interactions (Bantignies et al, 2003; Ciabrelli
et al, 2017). TEI is also triggered when fly larvae are exposed to
specific antibiotics, resulting in ectopic induction of gene expres-
sion and longer pupation time in the following generations (Stern
et al, 2012; Stern et al, 2014). Constitutive heterochromatin
formation can be perturbed by the exposure of previous generations
to environmental stress. Environmental factors can also hinder
constitutive heterochromatin formation in a transgenerationally
inheritable fashion. Indeed, heat shock or osmotic stress induces
the phosphorylation of ATF-2, its consequent release from
constitutive heterochromatin, and failure in H3K9me2 deposition
(Seong et al, 2011). This disruption can be inherited by the next

generations despite the removal of the environmental stimulus.
Whether the H3K9me3 mark itself, a noncoding RNA species, or
alternative molecular carriers are responsible for this type of
inheritance is still an open question.

Finally, TEI of active states has also been described in flies. For
instance, heat-shock-mediated Gal-4 transactivation during embry-
ogenesis can be mitotically inherited until the adult stage and
meiotically inherited from the maternal side by the following
generations (Cavalli and Paro, 1998). On the other hand, there are
several other TEI studies in flies that lack a thorough molecular
characterization. Many of these studies seem to lend support to a
chromatin-based mechanism for epiallele inheritance, and it would
be of great interest to test this hypothesis in the future. For
instance, several reports point to diet-induced intergenerationally
or transgenerationally inherited phenotypes. High dosage of sugar
in paternal (Öst et al, 2014) or maternal (Buescher et al, 2013) diet
induces obesity in the F1 or even the F2 generation, respectively.
Furthermore, an imbalance in protein to carbohydrate ratio
(Towarnicki et al, 2022; Xia and de Belle, 2016) or genetically
induced transient obesity (Palu et al, 2017) can have deleterious
effects on the offspring. Strikingly, an imbalance in H3K27me3 and
H3K9me3 in the offspring during specific developmental windows
has already been observed when the parents were exposed to diet
perturbation (Öst et al, 2014). Finally, exposure of flies to Cadmium
(Sun et al, 2023) or to predatory wasps (Bozler et al, 2019) was
shown to induce transgenerationally inheritable phenotypes such as
wing defects or ethanol preference, respectively. Intriguingly,
Cadmium exposure results in global changes of histone marks

Figure 4. Intergenerationally inherited chromatin marks, epiallele induction and transgenerational phenotypes.

Left, parental (P0) generation. Parents can transmit their repertoire of histone modifications (in red) in physiological conditions, or after epiallele induction (e.g., chromatin
interactions, temperature stress, osmotic stress, diet stress) to the next generation (right). The F1 embryo could inherit a standard set of histone modifications or,
alternatively, a modified one, which could impair fly development or produce a viable intergenerational phenotype in the F1 adult. If the phenotype persists in the following
(i.e., F2) generations, it is defined as transgenerational epigenetic inheritance.
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such as H3K9me3 and H3K27me3 in the exposed generation,
which are both intergenerationally inherited (Atinbayeva et al,
2024; Zenk et al, 2017). Differently, the inheritance of ethanol
preference correlates with the inheritance of the maternal
epigenetic state of a single locus encoding the Neuropeptide-F
(Bozler et al, 2019).

Discussion

Chromatin fibers are subjected to enormous changes in the short
window of time between fertilization and cellularization in
Drosophila embryos. In these first 3 hours of fly development, the
chromatin reorganizes, and the epigenome integrates all the signals
required for accurate gene activation or repression. The chromatin
transitions from random folding into a highly organized structure,
which allows the genetic material to exert its main functions. Tight
regulation of these processes is paramount for precisely executing
the fly developmental program.

A growing body of evidence supports a model whereby
intergenerationally inherited chromatin is not transmitted in a
naïve state, but is already associated with histone marks such as
H3K9me3 and H3K27me3 deposited at specific loci. Once
inherited, these marks must be propagated across mitotic divisions
in order to maintain the epigenetic information on specific loci.
The mechanisms in place in Drosophila early embryos to
propagate certain epigenetic states might be, in principle, the
same as observed in other systems. During S phase, a reading
mechanism is involved in the recognition of the epigenetic mark
and the corresponding enzyme is triggered to catalyze the same
modifications on the newly assembled nucleosome (Margueron
et al, 2009; Ragunathan et al, 2015). It is possible however that
additional mechanisms may be in place to maintain the
intergenerationally inherited information. Given the smaller size
of the inherited H3K27me3 and H3K9me3 domains in early
embryos compared to their sizes at later developmental stages,
higher precision may be required to transmit these marks during
the early stages.

The presence of these histone modifications is important for
canonical developmental programs through constitutive hetero-
chromatin formation (Atinbayeva et al, 2024), Polycomb-mediated
gene silencing (Zenk et al, 2017), and transcriptional activation of
housekeeping genes (Samata et al, 2020). The rapid increase of
these marks at the onset of ZGA depends on their specific
functions. For instance, H3K27me3 role is to silence thousands of
genes that, at cycle 14, are now ready to be transcribed. Similarly,
H3K9me2/3 levels increase toward ZGA, and play an essential role
for the proper centromeric/pericentromeric compaction and
nuclear division (Atinbayeva et al, 2024). Together with hard-
wired developmental programs, a certain degree of epigenetic
flexibility on specific loci could determine the inheritance of
alternative epigenetic states across generations. We hypothesize
that H3K9me3 and H3K27me3 (Atinbayeva et al, 2024; Zenk et al,
2017), in addition to their physiological roles in epigenetic
inheritance, might also transmit environmentally induced changes
in germline chromatin. Future research in this direction is
necessary to fill the gap between an increasing number of reports
of chromatin-associated TEI phenomena and the molecular
mechanisms underlying their inheritance.

In conclusion, while significant progress has been made in
understanding the chromatin dynamics of early embryos, our
knowledge is far from complete. As we have outlined in Box 1,
numerous critical questions remain unanswered, underscoring
the vast potential for future research in this field. The journey
toward discoveries is ongoing, and unraveling these mysteries will
be key to advancing our comprehension of early embryonic
development.
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