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We proposed a deep learning method using a convolutional neural network on time-series (TS) images 
to detect and differentiate affected body parts in people with Parkinson’s disease (PD) and freezing 
of gait (FOG) during 360° turning tasks. The 360° turning task was performed by 90 participants (60 
people with PD [30 freezers and 30 nonfreezers] and 30 age-matched older adults (controls) at their 
preferred speed. The position and acceleration underwent preprocessing. The analysis was expanded 
from temporal to visual data using TS imaging methods. According to the PD vs. controls classification, 
the right lower third of the lateral shank (RTIB) on the least affected side (LAS) and the right calcaneus 
(RHEE) on the LAS were the most relevant body segments in the position and acceleration TS images. 
The RHEE marker exhibited the highest accuracy in the acceleration TS images. The identified 
markers for the classification of freezers vs. nonfreezers vs. controls were the left lateral humeral 
epicondyle (LELB) on the more affected side and the left posterior superior iliac spine (LPSI). The LPSI 
marker in the acceleration TS images displayed the highest accuracy. This approach could be a useful 
supplementary tool for determining PD severity and FOG.
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Parkinson’s disease (PD) is a neurodegenerative disease caused by the progressive loss of dopaminergic neurons 
in the substantia nigra pars compacta of the midbrain, which is critical for motor control1,2. One of the motor 
symptoms of PD, freezing of gait (FOG), reduces the forward progression of the feet despite the intention to walk 
and increases the risk of falls3. FOG episodes are provoked while turning, gait initiation, walking through narrow 
passages such as doorways, or performing several tasks during walking. People with PD and FOG (freezers) are 
at a heightened risk of experiencing falls and must exercise greater caution when performing postural transitions 
or turn tasks in their daily activities4.

Turning is more complex and challenging than straight walking because it requires greater interlimb 
coordination, dynamic balance, posture and gait coupling, and cognition5. The unilateral onset and asymmetry 
of progressive motor symptoms are unique characteristics of PD and may affect the upper and lower extremities 
during turning tasks6,7. Therefore, axial signs such as postural instability and asymmetric gait deficits, including 
repeated FOG episodes, can negatively affect overall mobility and daily activity8,9. Thus, these factors are essential 
for assessing disease severity and long-term monitoring10.

FOG can be diagnosed through subjective or objective methods, which require a trained clinician to 
observe FOG signs using tools such as the Movement Disorder Society Unified Parkinson’s Disease Rating 
Scale (MDS-UPDRS) Part III scale and the New Freezing of Gait Questionnaire (NFOG-Q)10. However, these 
clinical evaluations are subjective and present challenges for tracking fine-grained changes in PD symptoms2. 
The need for FOG classification extends beyond merely determining the presence of FOG in people with PD. 
Existing methods, such as video-based assessments by experts, may distinguish between FOG and non-FOG 
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episodes. Nevertheless, the focus of our research is on developing classification approaches that go beyond 
binary classifications. These approaches are expected to provide a more nuanced understanding of FOG severity, 
potentially aiding early PD diagnosis and contributing to a comprehensive evaluation of motor symptoms11. 
Therefore, we emphasize the necessity for objective and accurate technology to assess, diagnose, and classify the 
spectrum of PD symptoms, including FOG.

Recently, new methods have been developed for objectively measuring motor PD symptoms using artificial 
intelligence (AI) and signal processing technology12. These methods focused on improving disease severity 
discrimination and classification using features and comprehensive gait characteristics of people with PD13–15. 
Previous studies using various algorithms have been conducted to determine the optimal combination of gait 
parameters for identifying and classifying people with PD and healthy controls or subgroups such as freezers 
and nonfreezers16–19. However, these studies used only limited gait features and were at risk of overfitting the 
data owing to their high correlation with multiple variables15,20. This overfitting issue is exacerbated by small 
sample sizes and a lack of diverse datasets, leading to models that may not generalize well to new data21. These 
studies often fail to capture the complex, multidimensional nature of gait in people with PD, which reduces 
the robustness and applicability of the models in real-world scenarios15. Additionally, analyzing only a single 
wearable inertial sensor signal for specific movement data could limit the accurate evaluation of the extent of 
disease impairment. Moreover, analyzing single variables lacks reliability and sensitivity and cannot objectively 
identify body segments based on the severity of motor symptoms in people with PD22.

Signal data from wearable sensors, remote monitoring devices, and motion capture systems can be combined 
with an automated approach to overcome these limitations23,24. Previous studies have shown that utilizing 
advanced machine learning (ML) and deep learning (DL) technologies can significantly improve precision and 
sensitivity21,25. Mirelman et al.25. used multiple wearable sensors to measure gait and mobility features across 
different stages of PD, achieving high discriminatory values with mean sensitivities ranging from 72 to 83% 
and specificities ranging from 69 to 80%25. Similarly, Trabassi et al.21. demonstrated the effectiveness of using a 
selected set of inertial measurement unit (IMU)-derived gait features with various ML algorithms to classify PD, 
achieving a prediction accuracy higher than 80%. Their approach reduced the risk of overfitting and improved 
the interpretability of results21. These studies highlight the potential of AI in improving the accuracy and 
reliability of PD diagnosis and monitoring21,25.

Furthermore, these technologies can also learn to model movement patterns, such as tracking the gait 
pattern or real-world motion of PD. They can facilitate continuous and objective measurement and monitoring 
of disease severity through accurate predictive modeling26. Previous studies have suggested methods for 
capturing impaired gait patterns from lower back motion27–29, describing gait complexity as a topological 
nonlinear dynamics system30, exploring combinations of sensor locations31,32, and using three-axis position 
and acceleration data33–35, frequency, time-series (TS) of window lengths, and features34,36 with ML and DL 
algorithms24,34. These models, which have been trained to capture meaningful features associated with PD or 
FOG-related features, can help detect bradykinesia and FOG episodes2 and differentiate medication “on” and 
“off ” states37 during activities of daily living. They can also predict postural instability/gait difficulty scores 
during the 2-min walk test38 and characterize step and stride during the 10-m straight walk and timed up-and-
go test at a self-selected speed39,40. Although accuracy levels ranging from 82.7 to 96.7% have been achieved, the 
small sample size (8–31 patients) and class imbalance in most medical datasets remain a challenge. Moreover, 
the scarcity of data hinders its division into multiple sets for model training, validation, and testing38.

Capturing TS gait patterns during turning tasks to observe axial signs, such as postural instability and 
asymmetry, may be necessary to address the abovementioned issues and provide objective measures for 
diagnosing and monitoring people with PD and freezers. Kwon et al.24. reported that FOG is not limited to 
the lower extremities and involves significant upper extremity movements, potentially necessitating a holistic 
kinematic analysis of the entire body. Therefore, analytical and predictive models trained on overall body 
segment data to select optimal sensor attachment locations using the DL approach may be employed9,26,36.

The present study aimed (i) to identify body segments potentially exhibiting symptomatic differences 
between people with PD and healthy controls as well as among those experiencing FOG (freezers), those without 
FOG (nonfreezers), and controls and (ii) to propose DL models capable of classifying these groups using TS 
position and acceleration data obtained from the identified body segments. Hence, we studied convolutional 
neural network (CNN)-based DL algorithms with images for TS gait patterns during the 360° turning task on 
the more affected side at a preferred speed in people with PD and freezers. Our findings may be used to suggest 
clinical measurements as a supplementary tool to discover novel kinematic biomarkers and develop objective 
severity scales of individualized PD and FOG for nonpharmacological treatments.

Methods
Ethics approval and consent to participate
This study was performed according to the ethical standards of the institutional and national research committee 
and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. The study 
and its supplementary information files were approved by the Institutional Review Board of Dong-A University 
Hospital (IRB number: DAUHIRB-22-089) (see ethics approval letter). All patients provided written informed 
consent before data collection.

Participants
This study enrolled 60 individuals diagnosed with PD, comprising 30 individuals who experienced FOG 
(freezers) and 30 who did not experience FOG (nonfreezers), as well as 30 age-matched older adults as controls. 
The participants’ characteristics are summarized in Table  1, and a flow chart detailing their involvement is 
presented in Fig. 1. A neurology specialist diagnosed PD using the United Kingdom Parkinson’s Disease Society 
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Brain Bank diagnostic criteria41. The inclusion criteria for individuals were as follows: aged between 55 and 85 
years; had a modified Hoehn and Yahr stage of 2 or 3 (mild-to-moderate idiopathic PD)42,43; scored more than 
24 on the Mini-Mental State Examination (MMSE)44; showed a stable response to antiparkinsonian medications; 
were classified as freezers or nonfreezers based on the NFOG-Q assessment for FOG45; and could walk and stand 
unassisted during the clinical tests. Exclusion criteria included a history of cardiovascular, musculoskeletal, 
vestibular, or other neurological diseases; dependence on assistive devices for movement; and uncontrollable 
dyskinesia with drug therapy. The control group comprised healthy individuals without cognitive impairment or 
gait disturbance in the past 6 months46.

Fig. 1.  Flowchart of the study participants. PD: Parkinson’s disease; NFOG-Q: New Freezing of Gait 
Questionnaire.

 

People with PD

Controls (n = 30) p valueFreezers (n = 30) Nonfreezers (n = 30)

Sex (male/female) 19/11 16/14 14/16 0.466a

Age (years) 69.23 ± 5.33 69.23 ± 5.43 68.98 ± 5.57 0.943b

Height (cm) 159.36 ± 9.51 158.43 ± 8.37 159.74 ± 6.96 0.822b

Body weight (kg) 60.32 ± 8.49 60.96 ± 8.28 61.47 ± 7.33 0.857b

BMI (kg/m2) 23.73 ± 2.46 24.28 ± 2.67 24.08 ± 2.28 0.686b

MMSE (scores) 27.90 ± 1.92 27.10 ± 1.99 27.83 ± 1.53 0.112c

Disease duration (years) 8.56 ± 5.85 3.20 ± 2.44 - < 0.001d

Treatment duration (years) 7.80 ± 6.42 2.48 ± 2.31 - < 0.001d

L-DOPA equivalent dose 
(mg/day) 731.50 ± 329.98 437.18 ± 225.98 - < 0.001d

NFOG-Q (scores) 12.57 ± 7.30 - - -

Hoehn and Yahr scale 2.63 ± 0.41 2.27 ± 0.41 - < 0.001d

UPDRS total (scores) 53.43 ± 14.76 44.68 ± 11.21 - 0.012e

UPDRS part III (scores) 34.92 ± 9.06 32.90 ± 6.85 - 0.335e

More affected limb (left/right) 20/10 27/3 All right-handed < 0.001a

Table 1.  Physical and clinical characteristics of participants.  The data are presented as the mean ± standard 
deviation, with significant differences between groups indicated in bold (p < 0.05); PD: Parkinson’s disease; 
BMI: Body mass index; MMSE: Mini-Mental State Examination; L-DOPA: Levodopa; NFOG-Q: New Freezing 
of Gait Questionnaire; UPDRS: Unified Parkinson’s Disease Rating Scale. Statistical analyses include a Fisher’s 
exact test, b One-way ANOVA, c Kruskal–Wallis H test, d Mann–Whitney U test, and e Independent samples t 
test.
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Test procedures
All people with PD underwent assessments in the “defined off ” state, abstaining from antiparkinsonian 
medication for at least 12  h before measurements. After providing informed consent, the participants were 
evaluated using the UPDRS, modified Hoehn and Yahr scale, NFOG-Q, and MMSE (Table 1). Subsequently, 
they engaged in warm-up exercises and practiced three times before performing the 360° turning task. During 
this task, the more affected limb executed inner steps as participants turned around a cone at their preferred 
speed44 (Fig. 2). The left and right limb features were labeled most affected side (MAS) and least affected side 
(LAS) depending on the neurologist’s diagnosis of PD symptom onset. MAS refers to the side that developed 
symptoms first46–49.

The 3D motion capture system utilized six infrared cameras (Vicon MX-T10; Oxford Metrics, UK). A 
global coordinate system was defined with the positive X-axis to the right, positive Y-axis facing anteriorly, and 
Z-axis as the cross-product between the X- and Y-axes, with the positive Z-axis oriented superiorly (Fig. 2). 
Measurements, including height, body weight, shoulder offset, hand thickness, leg length, and elbow, wrist, knee, 
and ankle width, were collected bilaterally for estimating joint kinematics data46. Using a modified version of 
the Helen Hayes marker set, 39 reflective markers in 14 mm spheres were placed according to the Plug-in Gait 
full-body model (Vicon Motion Systems Ltd., Oxford Metrics, UK)50. As in our previous study46, these markers 
were positioned at anatomical landmarks.

Data analysis
The 3D motion capture system recorded the raw data at a sampling rate of 100 Hz, which were subsequently 
processed using Nexus software (version 2.12.0, Vicon, UK) and MATLAB R2018b (MathWorks, Inc., Natick, 
MA). The data underwent filtration employing a fourth-order Butterworth low-pass filter with a 10 Hz cutoff 
frequency determined through frequency analysis. The initiation of the 360° turning analysis phase was defined 
as the point when the angle between the pelvic and mediolateral vectors exceeded 10°. The end of the rotation 
occurred when the two vectors completed a 360° turn, and the 350° turning phase was subsequently analyzed46 
(Fig. 2).

Data preprocessing
The participants completed the 360° turning task within an average 5–15 s duration. We performed the following 
preprocessing procedures. First, we set the trial length to 896 samples, and each participant performed three 
trials for the 360° turning task. Each trial corresponded to one sample for the training and testing of the 
classification. This length was determined by multiplying the pixel size of an input image by an even number 
factor of 4 (224 pixels × 4 = 896 samples, approximately 9 s). We used zero padding in trials lasting less than 
8.96 s. Second, we normalized the data to eliminate the effect of differences in participants’ height and marker 
placement variations following reattachment. The normalization procedure involved centering the sensor data 
within each trial to achieve a median of 0 while retaining the original scale of the sensor data. Only the median 
value of the data was adjusted to align with the zero reference point. Third, we calculated the acceleration 
of each marker. The collected motion data were position-based. The position dataset was derived from a 3D 
motion capture system. This system placed 39 reflective markers on anatomical landmarks and included the 
center of mass (COM), resulting in 40 markers. The acceleration dataset in wearable applications is preferable 
because of its popularity and ease of access. The collected motion data were position-based, and to analyze the 
acceleration characteristics, we calculated the acceleration of each marker by performing the second numerical 

Fig. 2.  Schematic illustrating the experimental setup and analysis phase for the 360° turning task.
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differentiation of the position data. This process involved computing the change in velocity over time for each 
marker’s 3D coordinates, providing acceleration values for each point in time.

Another additional step was to calculate the magnitude of the 40 markers in 3D coordinates to combine the 
information of each component of the X-, Y-, and Z-axes. The magnitude was calculated using the following 
formula: Mag =

√
x2 + y2 + z2. In particular, the magnitude of the COM was calculated using the formula 

MagCOM =
√
x2 + y2 because we speculated that the z-component of the COM marker had no vital information 

for the classification. In data preprocessing, we applied no normalization to maintain intersubject variability, 
which may be an essential feature, for example, stride length. The entire network structure used in this study is 
presented in Fig. 3.

TS images and CNNs for classification
TS imaging methods
We expanded the perspective of the data from one-dimensional (1D) TS to 2D images to analyze the temporal 
aspect of the processed motion data using TS imaging methods: a recurrence plot (Rec)51 and Gramian Angular 
Field (GAF)52. These approaches offer two benefits: (i) they increase the dimension of the feature space, 
allowing for the inspection of motion data, and (ii) they exploit well-developed CNN-based DL architectures for 
classification. The following section provides further details on TS imaging methods.

Rec plot
Rec is a method used to convert a 1D TS to a 2D image by representing recurring states of the TS51. Given a TS, 
X = (x1, · · · , xn), with a length of n, the trajectory at a discrete time point i is:

	
−→x i =

(
xi, xi+τ , · · · , xi+(m−1)τ

)
, ∀ i ∈ {1, . . . , n− (m− 1) τ }

Fig. 3.  Workflow of the convolutional neural network approach based on time-series images. 3D: Three-
dimensional; COM: Center of mass; PD: Parkinson’s disease; Cons: Control group; F: Freezers; NF: 
Nonfreezers. The co-authors have created the Fig. 3.
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where m is the dimension of the trajectories and τ  is the time delay. With these trajectories, the binarized 
recurrence matrix R̂i,j  with i and j being discrete time points are calculated as the pairwise distance between 
the trajectories, as shown below:

	 R̂i,j = Θ (ϵ − ∥−→x i −−→x j∥) , ∀ i, j ∈ {1, . . . , n− (m− 1) τ }

where ∥ · ∥  is a norm operation, Θ  is the Heaviside function, and ϵ  is the recurrence threshold. One limitation 
of this formation is that the calculated values are all discretized. The Heaviside function and recurrence threshold 
were excluded from the above equation to calculate the continuous matrix element of the recurrence matrix. 
Therefore, the recurrence matrix with continuous values Ri,j  is expressed as

	 Ri,j = ∥−→x i −−→x j∥, ∀ i, j ∈ {1, . . . , n− (m− 1) τ }

We used the continuous recurrence matrix and set the dimension of the trajectories m as 1 and the time delay 
τ  as 1 to simplify the conversion of the TS motion data into 2D images.

GAF
GAF52 is also a TS data visualization method representing a TS as a 2D polar coordinate system. The general 
procedure of GAF with a given TS X is as follows. First, min–max normalization was applied to TS X.

	

∼
X=

(∼
x1, · · · ,

∼
xn

)
,

∼
xi =

(xi −max (X) + (xi −min (X)))

max (X) − min (X)

Subsequently, the rescaled TS 
∼
X was projected into polar coordinates by turning the rescaled observations 

∼
xi 

to the angle φ i.

	
Φ = (φ 1, · · · , φ n) , φ i = cos−1

(∼
xi

)
, −1 ≤ ∼

xi ≤ 1,
∼
xi ∈

∼
X

In the third step, we generated a GAF matrix using the calculated angle φ i. There are two variations based on 
the type of trigonometric formula used to generate the GAF matrix. The Gramian Angular Summation Field 
(GASF), which uses the trigonometric sum with the cosine function to calculate the matrix, was chosen for 
data analysis. The following equation shows how the trigonometric sum was used to calculate the GASF matrix.

	

GASF =




cos(φ 1 + φ 1) · · · cos(φ 1 + φ n)

cos(φ 2 + φ 1) · · · cos(φ 2 + φ n)... . . . ...
cos(φ n + φ 1) · · · cos(φ n + φ n)




CNNs
To classify PD vs. controls and classify freezers vs. nonfreezers vs. controls using the processed TS images, three 
architectures were used: a residual neural network (ResNet)53, a dense convolutional network (DenseNet)54, and 
SqueezeNet55. In this study, the input image size of the CNN model was set to 224 × 224 pixels. We used a ResNet 
model with 18 layers, a DenseNet-121 model consisting of four dense blocks with 6, 12, 24, and 16 channels, and 
the SqueezeNet v1.0 model.

ResNet
ResNet is a famous convolution-based deep neural network that classifies 2D images. It introduces a residual 
block, which creates a shortcut between the input and output layers to enable the training of deeper neural 
networks without vanishing or exploding gradient problems. This skip in the connection between layers 
helps propagate gradients through the neural network during training. The skip-in connection in ResNet is 
implemented by summing the outputs H(· ) and the inputs x.

	 H (x) = F (x) + x

where F  is an activation function with a weight parameter w and a bias parameter b, similar to the output of 
a general neural network. We express the summation of the input x as identity mapping. To perform identity 
mapping in the residual block, which means transferring the input to the output, there are two cases: (1) when 
the dimensions of the input and output layers are the same and (2) when they are different. The first case is 
solved easily using elementwise summation. The second case had two solutions, as proposed by He et al.53. One 
is zero padding to match the input and output dimensions before elementwise summation. The other uses 1 × 1 
convolutional layers for the projection from the input dimension to the output dimension.

DenseNet
DenseNet was proposed to improve performance using fewer parameters than ResNet54. The critical concept of 
DenseNet is to use all previous feature maps for identity mapping. The authors focused on the possibility that the 
summation used in the residual block prevents information flow in the network. To solve this limitation, they 
introduced dense connectivity to concatenate all preceding feature maps for identity mapping. x↕ is the output 
of the ↕th layer, and x0 represents the input of the network. The concatenation operation is expressed as follows:
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	 x↕ = H↕
([

x0, x1, . . . , x↕−1

])

where H↕ is a composite function of batch normalization (BN), ReLU, and 3 × 3 convolution. H↕ receives the 
feature maps of all preceding layers, x0, x1, . . . , x↕−1, and [· ] refers to concatenation.

In addition, the authors introduced two operations to reduce the number of feature maps: a bottleneck layer 
and compression. The bottleneck layers consist of BN-ReLU-1 × 1 convolution followed by BN-ReLU-3 × 3 
convolution. The bottleneck layer contains a 1 × 1 convolution to reduce the number of parameters of the input 
feature maps. Compression is a way to reduce the dimensions of feature maps with a compression factor θ in a 
transition layer that acts as a downsampling layer. The transition layer consists of a 1 × 1 convolution layer and a 
2 × 2 average pooling layer between the dense blocks.

DenseNet avoids vanishing gradient problems by connecting preceding feature maps, and it benefits from 
feature reuse because dense connectivity maintains information from the beginning to the end of the network. 
This advantage allows DenseNet to outperform ResNet using fewer parameters and fewer computational 
resources.

SqueezeNet
SqueezeNet aims to create a smaller neural network with fewer parameters while maintaining its performance, 
making it suitable for harsh computational environments55. The authors stated that AlexNet had 240 MB of 
parameters, whereas SqueezeNet had only 4.8 MB. To achieve this, the authors propose three strategies:

Using 1 × 1 convolution instead of 3 × 3 convolution for fewer parameters.
Decreasing the number of input channels to reduce the parameter size.
Downsampling was performed in the latter part of the network to obtain large activation maps (maximizing 

performance with fewer parameters).
SqueezeNet includes a fire module comprising a squeeze layer (with only 1 × 1 convolutions) and an 

expand layer (with many 1 × 1 and 3 × 3 convolutions). For the second strategy, the authors set the number of 
hyperparameters in the squeeze layer to be less than that in the expand layer.

Statistical analysis
Data normality was assessed using the Shapiro–Wilk test. One-way analysis of variance and independent t tests 
or nonparametric statistics were used to analyze the means and standard deviations of all participants’ physical 
and clinical characteristics. All the statistical analyses were performed using IBM SPSS Statistics for Windows, 
version 22.0 (IBM Corp., Armonk, N.Y., USA). The significance level was set at p < 0.05.

Based on the CNN models and TS imaging methods, the classification analysis was performed as follows and 
is presented in Fig. 4.

Five repeated random subsampling validation techniques were used to calculate the standard deviation, and 
t tests were used for statistical analysis.

For training and testing the CNN models, the dataset was split into training, validation, and test sets at 
percentages of 50%, 20%, and 30%, respectively.

For the two-class classification (PD vs. controls), the dataset initially consisted of 180 samples for PD and 90 
samples for controls. Oversampling was performed to address data imbalance, resulting in 360 samples for the 
entire dataset. In the three-class classification (freezers vs. nonfreezers vs. controls), the dataset comprised 270 
samples, with 90 samples per class. To perform an unbiased analysis, the imbalanced dataset of the control group 
was randomly oversampled using the imbalanced-learn (0.10.1) Python package.

Fig. 4.  Overview of sample sets and model evaluation procedures. PD: Parkinson’s disease; Cons: Control 
group; F: Freezers; NF: Nonfreezers; Acc: Accuracy; CNN: Convolutional neural network; s: Samples.
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To train the models, we set the hyperparameters as follows: a batch size of 32 or 500 epochs (with early 
stopping), utilization of the RMSProp optimizer with a learning rate of 1e-4, no momentum, and a smoothing 
constant of alpha = 0.99. To optimize the hyperparameters, the batch size (32) and epoch (500) were fixed, but 
the optimizers (Adam, SGD, and RMSprop) and learning rates (from 0.1 to 0.0001) were tuned for each CNN 
model. The models underwent a pretraining phase using the IMAGENET1K dataset and were subsequently 
fine-tuned using our dataset.

Results
Most relevant body segments used for classifying people with PD
We visualized 40 markers of body segments using TS images during the 360° turning task to identify the most 
prominent body segments for classifying the PD vs. controls (Fig.  5). Based on the position data, markers 
of interest were identified on the head, trunk, pelvis, and upper arm in the upper limb segment and on the 
femur, shin, and ankle in the lower limb segment. Furthermore, the neck, back, shoulder, wrist, and pelvis were 
identified in the upper limb segment, and the knee, shin, and heel were identified in the lower limb segment 
based on the acceleration data. The proposed algorithms, Rec and GASF, are based on CNNs.

To classify PD vs. controls, markers identified using Rec on the TS image position dataset (Pos_Rec) were left 
on the front of the head, sternum, right lower third of the lateral shank_LAS (RTIB), and right lateral malleolus_
LAS (RANK).

Markers identified using GASF on the TS image position dataset (Pos_GASF) were the left lower third of the 
upper arm_MAS, right third metacarpal head_LAS, right posterior superior iliac spine (RPSI), and right lower 
third of the lateral thigh_LAS.

The markers identified using Rec on the TS image acceleration dataset (Acc_Rec) were the seventh cervical 
vertebra (C7), right scapular medial border_LAS (RBAK), right shoulder_LAS (RSHO), right lateral femoral 
epicondyle_LAS (RKNE), and left lower third of the lateral shank_MAS (LTIB). Markers identified using GASF 
on the TS image acceleration dataset (ACC_GASF) were the left mediolateral styloid processes of the wrist_MAS 
(LWRA), right anterior superior iliac spine (RASI), and right calcaneus_LAS (RHEE).

The results were calculated from the test set, which was 30% of the entire dataset (50% for training, 20% for 
validating the trained models, and 30% for calculating the metrics for the results). Furthermore, the standard 
deviation of the results was calculated using the five repeated random subsampling validation techniques (the 
same for classifying “freezers”).

The confusion matrices of RTIB and RHEE in the classifications between PD and controls are presented 
in Fig. 6. Two markers were relevant to the identified body segments using the SqueezeNet model based on 
Pos_Rec and Acc_GASF with the highest accuracy. The SqueezeNet model achieved a sensitivity of 0.77 and a 
specificity of 0.76 for Pos_Rec and a sensitivity of 0.79 and a specificity of 0.78 for Acc_GASF.

Most relevant body segments used for classifying freezers
We visualized 40 body segment markers to classify freezers, nonfreezers, and controls into three groups (Fig. 7). 
Based on the position data, the body segment markers of interest were identified on the head, trunk, elbow, 
lower arm, wrist, and pelvis in the upper limb segment and the knee, shin, and heel in the lower limb segment. 
Furthermore, the head, trunk, back, elbow, wrist, finger, and pelvis were identified in the upper limb segment, 
and the knee, shin, ankle, and toe were identified in the lower limb segment based on acceleration data.

For the classification of freezers vs. nonfreezers vs. controls, the markers identified using Pos_Rec were the 
left bilateral on the back of the head, sternum, left lateral humeral epicondyle_MAS (LELB), right lower third of 
the forearm_LAS (RFRM), right mediolateral styloid processes of the wrist_LAS (RWRA), left lateral femoral 
epicondyle_MAS (LKNE), RTIB, and RHEE. The marker identified using Pos_GASF was RPSI. The markers 
identified using Acc_Rec were the right bilateral on the back of the head, sternum, COM, right lateral humeral 
epicondyle_LAS, RKNE, RTIB, and left second metatarsal head_MAS. The markers identified using Acc_GASF 
were the tenth thoracic vertebra (T10), left third metacarpal head_MAS, LWRA, left posterior superior iliac 
spine (LPSI), and left lateral malleolus_MAS (LANK).

The confusion matrices of the LELB and LPSI for the freezer, nonfreezer, and control classifications are 
presented in Fig. 6. The two markers with the highest accuracy were related to the identified body segments 
using a SqueezeNet model based on Pos_Acc_Rec. The SqueezeNet model achieved sensitivity values of 0.54 for 
controls, 0.70 for freezers, and 0.42 for nonfreezers and specificity values of 0.84 for controls, 0.78 for freezers, 
and 0.79 for nonfreezers.

Discussion
This study used the DL algorithm CNN based on TS images to identify body segments that can be used to classify 
people with PD and freezers during a 360° turning task. The CNN model demonstrated moderate performance 
in identifying classifiable body segments using position and acceleration TS images of the 360° turning phase. 
The main findings of this study can be summarized as follows: (1) Based on the position and acceleration data 
converted into TS images, 40 markers for whole-body segments were identified using a CNN. These TS images 
of body segments classified PD vs. controls into two groups and freezers vs. nonfreezers vs. controls into three 
groups. (2) The most relevant body segment markers for classifying PD vs. controls included regions such as the 
head, sternum, and lower limbs (RTIB, RANK). For the classification of freezers vs. nonfreezers vs. controls, 
markers on the head, trunk (sternum), and limbs (LELB, RFRM, RWRA, LKNE, RTIB, RHEE) were significant. 
These markers are associated with key regions involved in postural control and balance, which are often 
compromised in PD8,9. (3) Acceleration data revealed relevant markers on C7, T10, RBAK, RSHO, RKNE, and 
LTIB. These regions are crucial for dynamic movements and rapid adjustments, highlighting their importance 
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in tasks requiring quick changes in direction, such as turning5. (4) Body segment identification using a position 
and acceleration TS image-based CNN algorithm during the 360° turning task could be a practical approach for 
objectively evaluating and classifying people with PD and FOG.

Body segments for classifying people with PD vs. controls
We identified body segments for classifying PD vs. controls based on the positions of 40 markers and acceleration 
TS images during the 360° turning phase. Our results revealed that head, trunk, and pelvis markers identified 

Fig. 5.  Accuracy of convolutional neural network models for classifying people with PD and controls. The 
markers with the highest accuracy according to the TS images of position and acceleration data from 40 
markers at each body segment (red); PD: People with Parkinson’s disease; Cons: Control group; TS: Time 
series. The co-authors have created the Fig. 5.
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through position TS images could be linked to trunk and upper limb coordination ability, which is affected by 
the rigidity of the central body axis during turning56,57. Compared to controls, people with PD have limited 
sequential head, shoulder, trunk, and pelvic movements during turning. Limited coordination could increase 
the risk of falls during turning, suggesting that increased postural instability in advanced disease may lead 
to considerable turning disturbances58,59. Additionally, people with PD have lower activity in the cerebrum’s 
supplementary motor areas, affecting bilateral postural control and gait function, leading to dynamic instability 
when turning via the inner step of the MAS60,61. This result indicated that people with PD encountered challenges 
when turning toward the more affected limb48–51. Therefore, we suggest classifying people with PD and controls 
using the turning patterns of the head, trunk, arm, and pelvic segments related to upper limb coordination.

Our results identified wrist and heel markers as body segments from acceleration TS images of the distal 
body. These markers may indicate various motor symptoms of PD, such as tremors, bradykinesia, and FOG, 
especially during turning movements. They may also reveal asymmetries between the more and less affected 
sides of the body, typical in people with PD62. The acceleration patterns of these body segments showed greater 
variability in people with PD compared to controls, particularly in the distal body segments. These findings 

Fig. 6.  Confusion matrices for the most accurate markers for distinguishing between people with PD and 
controls: freezers, nonfreezers, and controls. The number of samples represents the five repeated random 
subsampling validation techniques, with 54 and 27 samples, accounting for 20% of the test dataset. Pos: 
Position data; Acc: Acceleration data; Rec: Recurrence plot; Cons: Control group; PD: People with Parkinson’s 
disease; F: Freezers; NF: Nonfreezers.
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provide insights into the deterioration of distal segment motor control due to neurological damage, including 
the supplementary motor area receiving input from the damaged basal ganglia in people with PD63.

Additionally, the progression of PD is associated with asymmetrical upper and lower limb movements64. 
Previous studies have shown that people with early to moderate PD exhibit lower symmetry in their upper and 
lower limbs than healthy controls when walking at their preferred speed on a straight path. This was determined 
using three-axis inertial sensors attached to the hand and shank63. Our findings demonstrated that the trunk 
(C7, RBAK, and RASI), arm (RSHO and LWRA), and lower limbs (RKNE, LTIB, and RHEE) were important 

Fig. 7.  Accuracy of convolutional neural network models for classification between freezers, nonfreezers, and 
controls. The markers with the highest accuracy according to the TS images of position and acceleration data 
from 40 markers at each body segment (red) are referred to as follows: F: Freezers; NF: Nonfreezers; Cons: 
Control group; TS: Time series. The co-authors have created the Fig. 7.
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body segments identified using acceleration TS images during turning. These findings suggest that wearable 
sensors could be valuable for assessing trunk and upper limb coordination and predicting falls due to postural 
instability and imbalances between the upper and lower limbs in people with PD during turning tasks56,57.

In our CNN approach, the RTIB and RHEE markers emerged as the most important body segments in 
the position and acceleration TS images for classifying people with PD and controls, respectively. The Acc_
GASF model achieved the highest accuracy for the RHEE marker in this study (78.3%). During turning, 
movement in lower limb segments, such as the shin and heel, is a sign of falls in early PD23, and a decrease 
in turning performance from acceleration signals can be observed when evaluating PD severity16. Turning is 
an asymmetric task requiring the simultaneous creation of a stepping pattern between limbs on both sides, 
weight transfer, and support61. However, people with PD and deteriorated dynamic stability require greater 
bilateral coordination ability than controls. They perform careful movements, take short and slow steps and use 
a wider turning radius as a compensation strategy to prevent falls during turning61. Therefore, understanding the 
impairment characteristics of distal body segment movements during turning tasks is important for predicting 
and classifying potential falls in early PD patients23,66.

Body segments for classifying freezers vs. nonfreezers vs. controls
We use a CNN model to identify body segments using position and acceleration TS images to classify freezers, 
nonfreezers, and controls. This model identified body segments associated with gait patterns that may accompany 
the characteristic movements of FOG during turning, such as short steps, ataxia, bradykinesia, and tremors. Our 
findings suggest that FOG is not limited to the lower limb and involves movements in the upper limb, further 
supporting the idea that FOG evaluation requires whole-body kinematic analysis25.

Our results revealed that markers of the arms and legs, including both the MAS and LAS, may detect dynamic 
instability that can increase the risk of falls in freezers during 360° turning60. In particular, arm (LELB) and leg 
(LKNE, RTIB, and RHEE) markers of the more and less affected sides may be associated with ipsilateral and 
contralateral temporal coordination, which could identify asymmetric characteristics of the upper and lower 
limbs during turning67. Our previous findings support these results, where a delay in temporal coordination 
between the upper and lower limbs during turning was associated with lower interlimb coordination ability 
in freezers48. These results also showed that markers of the trunk (sternum) and pelvis (RPSI) identified en-
bloc turning characteristics while turning in freezers26. En-bloc turning refers to a pattern lacking segmental 
movement dissociation typically observed in people with PD during turning tasks24. This finding highlights the 
significance of these specific body segments in understanding the motor abnormalities associated with FOG in 
PD patients22. We identified markers attached to the trunk (sternum and COM), back (T10), and pelvis (LPSI) 
from acceleration TS images. The turning characteristics of these freezers may be caused by delayed reaction 
times, abnormal automatic postural responses, and trunk axial movements compared with those of nonfreezers 
and controls68. Therefore, turning may threaten the stability of freezers and increase the risk of falls because it 
requires more precise and complex postural control than straight walking60.

A CNN model based on position and acceleration TS images was proposed to identify body segments that can 
identify and classify gait disturbances while turning in people with PD and freezers. Despite extensive research 
on human activity recognition and fall or FOG detection, the use of TS patterns in the turning phase to improve 
disease severity and classification remains under-researched27,69. Previous studies have predicted objective FOG 
and tremor severity scales using a single waist-worn triaxial accelerometer70, wrist inertial measurement unit 
sensor71, and whole-body marker set26 in a home or laboratory setting. They suggested that these monitoring 
systems could also be used in ambulatory or daily life to monitor FOG episodes or classify their severity70. Our 
results revealed that the trunk, arm, and lower limbs were important body segments identified using acceleration 
TS images during turning, which could be used to classify freezers vs. nonfreezers vs. controls. These segments 
are consistent with those identified in previous studies focusing on people with PD, encompassing freezers and 
nonfreezers16,64. This suggests that the body segments identified in our study represent those found in broader 
PD populations16. Our approach may be used for clinical evaluation and classification of people with PD and 
freezers to detect FOG and observe signs of disease progression. This may be achieved through wearable 
acceleration sensors attached to the trunk, wrist, waist, and ankle to capture time-series images in daily life71,72.

Our results also showed that the position and acceleration TS images of the LELB and LPSI markers were 
the most important body segments for classifying freezers, nonfreezers, and controls. The LPSI marker showed 
the highest accuracy in this study (50.4%) in the Acc_GASF model. For the context of 3-class classification, 
random predictions result in an average accuracy of 33.33%. Investigating the gait patterns of LELB and LPSI 
markers provides insights into motor symptoms, particularly FOG, during turning in people with PD49. The 
LELB marker pattern could indicate the patient’s ability to control the upper limb, influencing postural stability 
due to deteriorated upper limb movement for the MAS during turning50. This could also offer information 
related to symptoms associated with FOG, such as short steps and irregular movements49,50. Similarly, the 
movement of the LPSI marker reveals information regarding the patient’s posture and balance23. Pelvic or waist 
movements during turning may be associated with symptoms such as FOG and postural instability73. Therefore, 
a comprehensive evaluation of the turning gait patterns of the two markers may contribute to a more nuanced 
understanding of FOG, postural instability, and disease progression in people with PD49.

This study has a few limitations. First, the effects of the “On” and “Off ” medication states were not compared 
during the 360° turning tasks. Longitudinal studies are needed to assess various clinical characteristics in 
the medication “On” and “Off ” states and to generalize the discrimination of disease severity using turning 
characteristics.

Second, one participant experienced an FOG episode while turning toward the inner step of their more affected 
limbs. However, these patients were excluded from the analysis. The classification algorithm demonstrated the 
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ability to learn and model freezer turning patterns. Notably, there were no occurrences of freezing during the 
turning tasks, indicating successful differentiation between freezers, nonfreezers, and controls.

Third, this study analyzed TS data of the magnitude, 
√
x2 + y2 + z2, of 3D motions from 40 markers. 

The magnitude was calculated using the x-, y-, and z-components to simplify the analysis. Subsequently, a 
magnitude series representing a trial of the 360° turning task was transformed into a grayscale image. However, 
each component in the x-y-z coordinates may contain independent information for discriminating between PD, 
freezers and nonfreezers, and controls. Generating an RGB image instead of a gray image could help to reveal 
additional characteristics of the x-y-z components. The R-channel represents an image in the X-axis component 
of a 360° turning task trial, G is generated from the Y-axis, and B represents an image in the Z-axis component. 
Moreover, a larger checkerboard-like image that includes images generated from different markers and converted 
using different TS imaging methods may solve the problems described in this study. The performance of the 
informative checkerboard-like image is also an interesting question that was not scrutinized in this analysis.

Fourth, the acceleration data were calculated through numerical differentiation of the position data because 
the original dataset did not include acceleration information. Therefore, the acceleration results might differ 
from those of the accelerometer sensors. Nevertheless, we speculate that our acceleration results may explain the 
trends observed in accelerations measured by accelerometer sensors.

Finally, this study used three CNN models, ResNet, DenseNet, and SqueezeNet, to compare the performance 
of classifying TS images of 3D motion data of people with PD. However, many DL models in the literature 
can perform image classification. Therefore, future research should investigate advanced models and propose 
methods to improve performance.

In conclusion, our findings highlight potential methods for identifying body segments associated with motor 
symptoms during the 360° turning task in people with PD and FOG. Time-series images derived from these 
identified body segments may serve as a supplementary screening tool for assessing people with PD, including 
the FOG pattern. We anticipate that future research will pave the way for developing clinical applications 
involving assessment, diagnosis, and ongoing monitoring by integrating a broader range of time-series images 
obtained from wearable sensors placed on body segments directly correlated with PD severity.

Data availability
The datasets supporting this study’s findings are available from the corresponding author upon reasonable re-
quest.

Code availability
We do not have an available open-source code. The code for training and testing the deep learning models was 
written in Python 3.8 using PyTorch 1.9.1 and torchvision 0.10.1. The data management and feature processing 
scripts were written in Python 3.8 using pandas 1.3.3 and NumPy 1.21.2. The code used for the analysis may be 
requested by contacting the corresponding author.
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