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Abstract  
The aggregation of amyloid-beta peptide and tau protein dysregulation are implicated to play key 
roles in Alzheimer’s disease pathogenesis and are considered the main pathological hallmarks of 
this devastating disease. Physiologically, these two proteins are produced and expressed within 
the normal human body. However, under pathological conditions, abnormal expression, post-
translational modifications, conformational changes, and truncation can make these proteins prone to 
aggregation, triggering specific disease-related cascades. Recent studies have indicated associations 
between aberrant behavior of amyloid-beta and tau proteins and various neurological diseases, 
such as Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis, as well as retinal 
neurodegenerative diseases like Glaucoma and age-related macular degeneration. Additionally, these 
proteins have been linked to cardiovascular disease, cancer, traumatic brain injury, and diabetes, 
which are all leading causes of morbidity and mortality. In this comprehensive review, we provide an 
overview of the connections between amyloid-beta and tau proteins and a spectrum of disorders.
Key Words: amyloid-beta; cancer; cardiovascular diseases; diabetes; neurodegeneration; Tau; 
traumatic brain injury 

Introduction 
Extracellular amyloid plaques or senile plaques composed of the amyloid-beta 
(Aβ) and intracellular neurofibrillary tangles (NFT) comprising phosphorylated 
tau protein are known as the main pathological hallmarks of Alzheimer’s 
disease (AD) since the early 1900s when Alois Alzheimer first published his 
historical treatise that formally introduced the disease (Zilka and Novak, 
2006; d‘Errico and Meyer-Luehmann, 2020). While senile plaques and NFT 
are well-established pathological hallmarks of AD, the presence of one 
or both of these has also been reported in other diseases. In this review, 
we provide an overview of the physiological role of amyloid-beta and tau 
proteins, mechanisms underlying their accumulation, and pathogenesis in 
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diseases including cardiovascular diseases (CVD), cerebral amyloid angiopathy 
(CAA) and stroke, cancer, diabetes, retinal diseases, Parkinson’s disease (PD), 
traumatic brain injury (TBI) In addition, we briefly discuss the role of Aβ and 
tau protein in other conditions such as Autism, multiple sclerosis (MS), motor 
neuron disease, Huntington’s disease (HD), Creutzfeldt-Jakob disease (CJD) 
and Wilson’s disease (WD) where dysregulation of these two proteins has 
been reported (Figure 1). 

Search Strategy
We conducted a comprehensive literature search using various search 
engines, such as PubMed, Scopus, and Web of Science. The search was 
performed without any year restrictions, and we utilized keywords such as 
“amyloid-beta”, “amyloid plaques”, “senile plaques”, “tau”, and “neurofibrillary 
tangles”. Additionally, we manually screened the references of selected 
studies to identify potentially relevant articles for inclusion in this narrative 
review. Only English-language documents were considered. 

Amyloid-β Formation and Aggregation
Aβ refers to peptides with 36–43 amino acids that derive from amyloid-β 
precursor protein (AβPP, APP), APP is a single-pass transmembrane 
glycoprotein expressed in many tissues, especially in the brain in both 
neuronal and non-neuronal cells (Marsden et al., 2011; Chen et al., 2017). 
APP is located on chromosome 21q21.3  and belongs to a larger gene family 
in humans which has two other members including the APP-like protein-1 
(APLP1) and the APP-like protein-2 (APLP2). APP and APLP2 are expressed in 
several tissues, while APLP1 expression is limited to neural tissue (Pandey et 
al., 2016; Chen et al., 2017). These members have similar structures and are 
processed in the same manner; however, the Aβ sequence, which is involved 
in senile plaques is specific to APP (Chitranshi et al., 2021). Differential mRNA 
splicing of exons 7, and 8 results in the expression of three isoforms including 
the 695 amino acid isoform, which is the main isoform in the brain, and 
751 and 770 amino acid isoforms that are mainly expressed in peripheral 
cells and platelets (Figure 2). APP is first cleaved by ɑ- or β-secretase, which 
starts two different pathways, named non-amyloidogenic and amyloidogenic 
pathways, respectively (Kojro and Fahrenholz, 2005; Sun et al., 2015). In a 
non-amyloidogenic pathway, cleavage by ɑ-secretase results in the amino-
terminal fragment named secreted APP α (sAPP α) and the 83 amino acid 
long carboxyterminal fragments (CTF83 or C83), then CTF83 subjected to 
γ-secretase cleavage that produced P3 (3 kDa) and amino-terminal APP 
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intracellular domain; however, in the amyloidogenic pathway, β-secretase 
particularly beta-secretase 1 (BACE1) cleavage liberates the amino-terminal 
fragment named secreted APPβ (sAPPβ) and the 99 amino acid long 
carboxyterminal fragment (CTF99 or C99) that produced Aβ (4 kDa) and APP 
intracellular domain following cleavage by γ-secretase (Figure 3; Kojro and 
Fahrenholz, 2005; Zhang et al., 2011). Generated Aβ has 39–43 amino acids 
but Aβ with 40 amino acids is relatively more abundant (Murphy and LeVine, 
2010), while Aβ 42 is the predominant protein component in senile plaques 
probably due to faster aggregation of Aβ-42 compared to Aβ-40, and might 
be more toxic (Meisl et al., 2014; Wang et al., 2021). Several factors, including 
aging, inflammation, renal dysfunction, ischemia, genetic polymorphisms, and 
drugs, increase tissue deposition of Aβ by augmenting APP production or by 
decreasing Aβ clearance and degradation (Mawuenyega et al., 2010; Sadigh-
Eteghad et al., 2015; Abyadeh et al., 2023a).

Senile plaque formation is a four-step process including (1) primary 
nucleation, where Aβ monomers interact with each other molecules (lipids, 
alpha-synuclein) and form small soluble aggregates also called oligomers that 
are highly toxic and suggested to play a main role in cell and tissue toxicity; 
(2) elongation, in this step Aβ monomers add to existing soluble aggregates 
and increase aggregate length; (3) secondary nucleation, existing aggregates 
trigger the formation of new small soluble aggregates; (4) fragmentation, 
in which formed fibrils break down into several fibrils (Santos et al., 2016; 
Chen et al., 2017). Senile plaques have been observed in several diseases as 
mentioned before, particularly in the brain of AD patients, however, these 
plaques have also been observed in some cognitively normal older individuals 
(Murray and Dickson, 2014; Mormino and Papp, 2018). 

Tau Protein
Tau is a microtubule (MT) associated protein (MAP) that is involved in the 
assembly and stabilization of MTs and is also a key player in the DNA and 
RNA protection (Violet et al., 2014). Tau is encoded by the microtubule-
associated protein tau (MAPT) gene with a size of about 50 kb located on 
chromosome 17q21 and contains 16 exons, Alternative splicing of exons 2, 
3, and 10 leads to the formation of six different isoforms of 352–441 amino 
acids tau proteins, which can be divided into two groups namely 3E and 4R 
based on whether they have three or four carboxy-terminal microtubule-
binding repeat domains (Figure 4; Kolarova et al., 2012; Huda and Pan, 2018; 
Barbier et al., 2019). All of these six isoforms can be found in the brain and 
are mostly expressed by neurons and to some extent by astrocytes and 
oligodendrocytes (Mietelska-Porowska et al., 2014; Maté de Gérando et 
al., 2021). Tau interacts with the C-terminus of tubulin and increases their 
assembly into the MTs, which are involved in the formation and stability of the 
neuronal cytoskeleton, axonal transport, neurite outgrowth, and cell division 
(Rodríguez-Martín et al., 2013; Barbier et al., 2019). Physiologically, tau is a 
soluble and unfolded protein; however, in pathological conditions, it becomes 
insoluble and aggregates into paired helical filaments and NFTs (Figure 3). 
MT binding ability and DNA protection feature of tau protein is affected by its 
gene mutation, conformational changes, and post-translational modifications 
(PTMs), particularly phosphorylation (Violet et al., 2014). Tau protein 
undergoes several PTMs including phosphorylation, acetylation, truncation, 
nitration, glycation, glycosylation, and ubiquitination; however, as the most 
abundant PTM, phosphorylation of tau protein has been more studied and 
suggested as the key PTM in the pathological aggregation of tau (Mietelska-
Porowska et al., 2014; Abyadeh et al., 2020; Zhao and Zlokovic, 2021). 
Tau protein has about 85 serine (S), threonine (T), and tyrosine (Y) sites of 
potential phosphorylation and is mainly phosphorylated by glycogen synthase 
kinase (GSK)-3β, cyclin-dependent kinase 5, mitogen-activated protein kinase/
extracellular signal-regulated kinase (MAPK/ERK), and c-Jun N-terminal kinase 
in both physiological and pathological conditions and also dephosphorylated 
by the protein phosphatase 2A. Tau phosphorylation at specific sites is 
required for its normal function, however abnormal phosphorylation or 
hyperphosphorylation (hp-tau) triggers its conversion to a form that plays a 
pathological role (Mietelska-Porowska et al., 2014; Hobday and Parmar, 2021; 
Samimi et al., 2021; Abyadeh et al., 2022a). Abnormal phosphorylation and 
toxic tau formation are believed to be affected by several proteins such as Aβ, 
Fyn kinase, peptidylprolyl cis/trans isomerase, NIMA-interacting 1 (Pin1), heat 
shock cognate 70, heat shock protein 90, immunophilins FKBP51 and FKBP52, 
α-synuclein (α-Syn) or actin interacting protein PACSIN1 (Prots et al., 2013; 
Mietelska-Porowska et al., 2014).

Figure 1 ｜ Various diseases associated with tau protein and amyloid beta and some 
main related points. 
Created with BioRender.com. Aβ: Amyloid-beta; ALS: amyotrophic lateral sclerosis; 
AMD: age-related macular degeneration; APP: amyloid precursor protein; CAA: cerebral 
amyloid angiopathy; CJD: Creutzfeldt-Jakob disease; CSF: cerebrospinal fluid; CVD: 
cardiovascular disease; DAI: diffuse axonal injury; HD: Huntington’s disease; MS: multiple 
sclerosis; NTF: neurofibrillary tangles; OS: overall survival; PD: Parkinson’s disease; p-tau: 
phosphorylated tau; TBI: traumatic brain injury; TM2: type 2 diabetes; TTP: time to 
progression; WD: Wilson disease.  

Figure 2 ｜ APP gene and different isoforms resulted from alternative splicing. 
Created with BioRender.com. Aβ: Amyloid-beta; APP: Aβ precursor protein.

Figure 3 ｜ Two main pathological hallmarks of AD include the amyloid plaque and 
the NFT formation process including APP proteolysis in the non-amyloidogenic and 
amyloidogenic pathway, and also tau protein aggregation and NFT formation.  
Created with BioRender.com. Aβ: Amyloid-beta; AICD: intracellular domain; APP: amyloid 
precursor protein; NFT: neurofibrillary tangles; PHF: paired helical filaments; p-tau: 
phosphorylated tau; sAPP: soluble APP beta protein. 

Figure 4 ｜ Tau gene (MAPT) and different isoforms resulted from alternative splicing.  
Created with BioRender.com. MAPT: Microtubule-associated protein tau.

The pathological role of tau protein has been investigated in several 
disorders including brain neurodegenerative diseases, retinal diseases, 
PD, cancer, and TBI (Anderson et al., 2008; Baquero et al., 2011; Barbier 
et al., 2019). However, it has been studied more extensively in a group 
of neurodegenerative diseases termed tauopathies.  These disorders are 
histopathologically characterized by tau protein aggregates in neurons or glial 
cells, or both (Samimi et al., 2021). Tauopathies are divided into two groups: 
primary and secondary tauopathies. In primary tauopathies, tau is the main 



1264  ｜NEURAL REGENERATION RESEARCH｜Vol 19｜No. 6｜June 2024

NEURAL REGENERATION RESEARCH
www.nrronline.org Review

contributing factor of the neurodegenerative process such as Pick’s disease, 
progressive supranuclear palsy, and chronic traumatic encephalopathy (CTE), 
however, in secondary tauopathies, tau aggregation is not the primary cause 
of neurodegeneration (Josephs, 2017; Chung et al., 2021). Interestingly toxic 
forms of tau protein have been suggested to spread from cell to cell in a 
prion-like fashion, and injection of tau aggregates obtained from AD brain into 
the mouse brain was shown to induce endogenous tau aggregation, which 
indicated that toxic tau can acquire the ability to self-propagate, like the prion 
proteins that are responsible for CJD pathology (Walker, 2018). However, 
prion-like propagation of tau protein was shown to require isoform pairing 
between the infecting prion and the recipient cells and even tau aggregates 
from AD and CTE patients that have two isoforms (3R and 4R) did not 
significantly infect either 3R- or 4R-expressing cells (Woerman et al., 2016; 
Wood, 2018). 

Cardiovascular Diseases 
CVDs are the leading cause of death globally, which takes over 17.9 million 
lives each year and is estimated to reach 22.2 million death annually by 
2030 (Ruan et al., 2018). CVDs and AD share several risk factors (particularly 
aging) and pathological mechanisms. There is strong evidence indicating a 
causal association between CVDs and dementias; and individuals with CVDs 
are at higher risk of developing AD (Attems and Jellinger, 2014; Santos et al., 
2017; Tini et al., 2020). A growing body of experimental and clinical evidence 
suggests that Aβ, the pathological hallmark of AD, constitutes a risk factor for 
CVDs (Tublin et al., 2019; Stakos et al., 2020). Here, we summarize current 
knowledge on mechanisms underpinning Aβ pathogenesis in CVDs that are 
currently centralized around the pathogenesis of Aβ in vascular components.

CAA is a specific cerebrovascular disease in which Aβ plays a key pathological 
role, CAA is a cerebrovascular disorder that is caused by deposition of Aβ 
peptide (mainly Aβ1–40) within the capillaries, arterioles, leptomeninges and 
small to medium-sized cerebral blood vessels. It is believed to result from a 
defective drainage of neuronal Aβ from these vessels and faulty Aβ clearance 
but not overproduction of Aβ (Biffi and Greenberg, 2011; Goulay et al., 
2020; Stakos et al., 2020). The source of Aβ in CAA is mainly neuronal cells as 
observed in transgenic mice models and also blood plasma and the muscular 
layer of vessel walls (Herzig et al., 2006; Auriel and Greenberg, 2012; Goulay 
et al., 2020). Aβ40 is the predominant type of Aβ in vascular deposition. 
Although vascular deposition of Aβ1–42 is limited and it is the main Aβ species 
in parenchymal lesions of AD, its presence facilitates Aβ1–40 vascular deposition 
(McGowan et al., 2005; Schaich et al., 2019). Aβ deposition also impairs 
perivascular space drainage leading to perivascular space enlargement in 
the cortical grey matter and the underlying white matter, which can be 
seen in brain images and is a potential biomarker of neurovascular disease 
(Ramirez et al., 2016; Charidimou et al., 2017; Goulay et al., 2020). CAA 
results in hemorrhagic and ischemic lesions, blood-brain barrier breakdown, 
neurological deficits, cognitive impairment, stroke, dementia, and death 
(DeSimone et al., 2017; Goulay et al., 2020). While CAA increases the risk 
of stroke, in turn, stroke-induced hypoxia increases the expression of APP 
in vascular smooth muscle cells and thereby increases CAA development 
(Rensink et al., 2003; Goulay et al., 2020). Moreover, hypoxia condition 
stabilizes hypoxia-inducible factor-1ɑ, which bind to hypoxia-responsive 
element on the BACE1 gene promoter and leads to increased Aβ processing 
in both endothelial cells and macrophages and result in increased levels of Aβ 
particularly Aβ1–40 in patients with acute ischemic stroke (Schaich et al., 2019). 
Hypertension as a common risk factor between AD and stroke was shown 
to increase Aβ-induced neurovascular dysfunction, β-secretase activity, and 
amyloidogenic processing of APP (Faraco et al., 2016).

The presence of Aβ also has been reported in atherosclerotic plaque; 
atherosclerosis is a multifactorial disease and several risk factors contribute 
to atherosclerotic lesion formation (Mundi et al., 2018; Markin et al., 
2020). Inflammation plays a central role in the initiation and progression of 
atherosclerosis and currently, this disease is also known as an inflammatory 
disease (Spagnoli et al., 2007; Raggi et al., 2018). Aβ presence has been 
reported in human atherosclerotic plaques in the vicinity of activated 
macrophages and platelets (Tibolla et al., 2010; Lathe et al., 2014). In this 
regard, an in vitro investigation using human and murine cells indicated that 
platelet phagocytosis by perivascular macrophages leads to the processing 
of platelet-derived APP towards Aβ production, as mRNA of β-secretase has 
been found in macrophages. Subsequently, Aβ evokes macrophage activation 
as indicated by up-regulation of inducible nitric oxide synthase (a marker of 
macrophage activation), while phagocytosis of platelets from APP knockout 
mice did not stimulate macrophage activation (De Meyer et al., 2002; Jans 
et al., 2006; Spitzer et al., 2020). Moreover, Aβ is shown to be involved in 
macrophage inflammatory responses including increased reactive oxygen 
species (ROS) production and tumor necrosis factor-α expression via CD36-
dependent signaling cascade. CD36 is a cell surface receptor on macrophages, 
platelets, and microvascular endothelium that promotes inflammation and 
thereby atherogenesis (Canton et al., 2013). Further studies showed that Aβ1-
40 is the major form of Aβ within the human aortic atherosclerotic lesions 
and plasma levels of Aβ1–40 are associated with atherosclerosis progression 
(Jans et al., 2006). Moreover, APP overexpression in transgenic mice causes 
endothelial dysfunction through increasing oxidative stress and reducing the 
availability of nitric oxide; however, activation of peroxisome proliferator-
activated receptor-delta can prevent APP-mediated endothelial dysfunction 
and modulate the level of nitric oxide (Kokjohn et al., 2011). The association 
of Aβ1–40 with vascular aging has been reported by both in vitro and in vivo 
studies (Bonda et al., 2011; Laina et al., 2018). Aβ1–40 mediated vascular aging 

is decreased by sirtuin 1, also known as NAD-dependent deacetylase, through 
increasing the expression of ADAM10 (ADAM metallopeptidase domain 10), 
which is an important α-secretase, and promoting the non-amyloidogenic 
pathway (Laina et al., 2018). Results of in vivo studies also showed impaired 
endothelial function, vascular development, angiogenesis, telomerase activity, 
and increased cellular senescence following exposure to Aβ (Donnini et al., 
2010; Wang et al., 2015; Laina et al., 2018). However, increased circulating 
level of Aβ1–40 has been also observed in healthy elderly subjects, which might 
be due to decreased degradation of the peptide (Silverberg et al., 2010; Li 
et al., 2016). Current data are inconsistent with respect to the roles of Aβ in 
angiogenesis. While, in vitro studies indicate both anti-and pro-angiogenic 
features of Aβ in a dose-dependent manner, where higher concentration 
impairs angiogenesis and low concentration promotes angiogenesis through 
increasing cell proliferation, migration, and tube formation; in vivo studies 
showed increased cerebral vascularization in human AD brains and also APP 
transgenic animals (Biron et al., 2011; Cameron et al., 2012; Ristori et al., 
2020). 

There is also evidence indicating that Aβ interacts with endothelial cells of 
blood vessels and promotes the generation of superoxide radicals leading to 
impaired endothelial structure and function and a disrupted cerebrovascular 
autoregulation (Thomas et al., 1996; Niwa et al., 2002). In addition, a 
vasoactive role has been suggested for Aβ, which reduces acetylcholine-
induced relaxation, enhances contraction of blood vessels, and reduces 
cerebral blood flow, and pretreatment with superoxide dismutase significantly 
resolved Aβ-related effects (Thomas et al., 1996; Iadecola et al., 1999). 
Interestingly, NADPH oxidase 2 (Nox2) inactivation also resulted in reduced 
APP-mediated vascular dysfunction without changing brain Aβ load and 
amyloid plaques, which indicated the key role of Nox2-derived ROS in APP 
pathogenesis (Park et al., 2008). Plasma concentration of Aβ1–40 is reported 
as an independent marker of aortic stiffness and also is associated with the 
severity of coronary artery calcium deposition score and coronary artery 
disease (Stamatelopoulos et al., 2018a). 

In acute coronary syndrome, Aβ metabolism is increased and associated with 
clinical presentation, moreover, Aβ peptides possibly derived from platelet 
also accumulate in the myocardium with ischemic heart failure (Kitazume et 
al., 2012; Stamatelopoulos et al., 2018b; Inyushin et al., 2020). Interestingly, 
Aβ1–40 but not Aβ1–42 was reported to be increased and associated with 
coronary artery disease, and diabetes mellitus (DM) type 2 (Roeben et al., 
2016). Moreover, increased Aβ metabolism, inflammation, and cognitive 
dysfunction were observed in mice models of myocardial infarction induced 
by ligation of the left anterior descending artery, which indicated a causal 
association of infarction with AD (Hong et al., 2013). This hypothesis also 
has been confirmed in another study that showed increased ROS, Aβ 
deposition, tau protein phosphorylation, and activated microglia in the brain 
of myocardial infarction mouse models (Zhang and Luo, 2020). Intriguingly, a 
retrospective cross-sectional study found the intramyocardial aggregates of 
Aβ1–40 and Aβ1–42 in AD patients, in addition, these patients showed diastolic 
dysfunction, suggesting AD as a systemic disease that may lead to failure of 
several organs (Troncone et al., 2016). 

The expression of tau protein has been reported in the heart, and mouse 
modeling studies have shown that loss of this protein impaired cardiac 
function leading to elevated blood pressure, cardiac hypertrophy, and 
decreased left atrial contractility that was exacerbated with aging (Gu et al., 
1996; Betrie et al., 2017). However, like Aβ, dysfunctional tau protein is also 
reported in vascular disease, especially cerebrovascular disease, and in this 
regards several tau protein modifications have been reported including tau 
hyperphosphorylation, de-phosphorylation, and truncation. The association of 
plasma and cerebrospinal fluid (CSF) levels of tau protein has been reported to 
be associated with the risk of developing, severity, and outcome of stroke and 
the presence of cerebral microbleeds, which increase the risk of stroke and 
dementia (De Vos et al., 2017; Romero et al., 2020). Furthermore, its serum 
level was also shown to be elevated in patients with cardiac arrest, possibly 
released into the serum due to brain hypoxia, and was negatively associated 
with neurological outcomes after 6 months (Mörtberg et al., 2011; Randall et 
al., 2013). Overexpression of tau protein-induced blood vessel abnormalities 
in the mouse cortex such as abnormal and spiraling morphologies, increased 
density, and reduced size of blood vessels; these changes were associated 
with cortical atrophy and overexpression of angiogenesis-related genes 
including Serpine1, Vegfa, and Plau in CD31-positive endothelial cells (Bennett 
et al., 2018). Collectively, these results indicated that tauopathy adversely 
affects brain endothelial cells and the integrity of the brain’s microvasculature, 
resulting in hypoperfusion of the cerebral cortex (Thomas et al., 2015; 
Bennett et al., 2018). In turn, hypoperfusion may increase p-tau through the 
down-regulation of neuroglobin, a scavenger of ROS, increased free radicals, 
and the induction of neuroinflammatory cascade, ultimately leading to blood-
brain barrier compromised permeability and neuronal cell death (Raz et al., 
2019). 

Moreover, dephosphorylation and differential re-phosphorylation of tau 
protein in the canine brain has been observed after CA-induced ischemia and 
subsequent reperfusion. Immediate dephosphorylation of tau protein was 
observed after CA-induced cerebral ischemia, which was almost restored 24 
hours after reperfusion, apart from phosphorylation of Ser262/356, which is 
involved in microtubule binding ability of tau protein (Mailliot et al., 2000). 
Furthermore, accumulation of tau protein and NFT-like formations have 
been observed in the brain of rodent stroke model that was associated with 
aberrant activation of Cdk5 and phosphorylation of GSK3, indicating the key 
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role of Cdk5 and GSK3 in ischemia-induced phosphorylation and subsequent 
aggregation of tau protein (Morioka et al., 2006; Wen et al., 2007).

These studies collectively provide valuable insights into the complex 
relationship of Aβ and tau protein with cardiovascular and cerebrovascular 
diseases. They highlight the need for further research to understand the 
precise mechanisms underlying Aβ and tau protein dysregulation and its 
implications for cardiovascular and cerebrovascular health. Investigating the 
effects of Aβ and tau protein accumulation, modifications and their potential 
as diagnostic markers or therapeutic targets could help develop strategies for 
early detection and intervention in these diseases and also AD. 

Cancer
Cancer is the second leading cause of death globally, which has caused 
around 10 million loss of lives in 2020 (Sung et al., 2021). APP, APLP2, and 
gamma synuclein are reported to be overexpressed in gastrointestinal, breast, 
prostate, and lung cancers (Hansel et al., 2003; Wu et al., 2007; Takagi et al., 
2013; Pandey et al., 2015; Pandey et al., 2016; Ito et al., 2019). 

Increased expression of APP has been observed in mice and human 
breast cancer cell lines, particularly in those with higher metastatic 
potential, moreover, a level of APP was shown to be associated with tumor 
development. Accordingly, APP knockdown cancer cell lines showed reduced 
cell growth, migration, and invasion ability through modulating insulin-like 
growth factor 1/AKT signaling pathway and subsequently AKT/FOXO signaling, 
and also increased p27kip1 and caspase-3-mediated apoptosis and sensitivity to 
chemotherapeutic agents (Lim et al., 2014). However, there are also reports 
indicating intact levels of AKT and p-AKT upon silencing APP in bladder cancer 
cells, and a significant decrease in levels of RAS, RAF, and phosphorylated-
mitogen-activated protein kinase kinase. Moreover, silencing APP resulted in 
cell cycle arrest in the G2/M phase and inhibited cancer cells proliferation, 
migration, and invasion (Zhang et al., 2018). 

Furthermore, the presence of APP in human prostate cancer cell lines was 
shown to be triggered with copper, as levels of this metal ion were increased 
in several cancer tissues. APP mitigates copper-induced growth inhibition 
possibly through a mechanism mediated by its copper-binding domain located 
in the E1 extracellular domain and phosphorylation of tyrosine residues 
within the cytosolic domain (Gupte and Mumper, 2009; Gough et al., 2014). 
In this regard, APP was shown to play a key role in liver cancer resistance to 
5-fluorouracil (5-FU), an important anti-cancer drug; the level of APP in liver 
cancer cells showed an increase following treatment with 5-FU, and cell lines 
overexpressing APP were resistant to 5-FU. They showed decreased apoptosis 
possibly through increasing the expression of two apoptosis suppressor genes 
such as Bcl-2 and Bcl-xl and down-regulation of mitochondrial apoptotic 
pathways genes such as BAX and BID, while APP knock-down cells were more 
sensitive to 5-FU with a higher rate of apoptosis compared to the control cells 
(Wu et al., 2020a; Sethy and Kundu, 2021). 

In prostate cancer cells, increased level of APP was associated with increased 
proliferation and migration possibly through increasing the expression 
of metalloproteinase (MMP) genes such as ADAM10 and ADAM17, and 
epithelial-mesenchymal transition (EMT)-related genes, including VIM, and 
SNAI2. Interestingly ADAM10 and ADAM17 are reported to act as ɑ-secretases 
for APP, and increased expression of these metalloproteinases has been found 
in several cancers, such as breast cancer; Increased expression of ADAM10 
and sAPPα has been reported to be associated with worst outcome in non-
luminal breast cancer. Moreover, similar functional effects were observed 
upon the down-regulation of APP or ADAM10. Interestingly, knockdown of 
ADAM10 resulted in reduced cell migration, which was reserved by adding 
sAPPα but not APP, suggesting the key role of ADAM10 in APP-mediated 
toxicity (Tsang et al., 2018; Wozniak and Ludwig, 2018). In addition, high 
expression of ADAM17 was shown to be associated with a shorter survival 
rate for breast cancer patients, and blocking this enzyme resulted in reduced 
proliferation of breast cancer cells (McGowan et al., 2008; Tsang et al., 2018). 
EMT is a necessary step for tumor metastasis; up-regulation of some other 
mesenchymal markers including MMP‑9, MMP‑2, MMP‑3, N‑cadherin and 
vimentin, and down-regulation of epidermal‑associated markers such as 
N‑cadherin and cytokeratin were also observed in breast cancer cell lines 
upon treatment with Aβ. In addition, Aβ affected the phosphorylation level 
of MAPK signaling pathway components including, mitogen‑activated protein 
kinase kinase kinase 11 (MLK3), mitogen‑activated protein kinase kinase 4 
(MEK4), and mitogen‑activated protein kinase 10, interestingly MEK inhibitor 
significantly reduced the phosphorylation level of MAPK signaling pathway 
components and expression of EMT genes, suggesting that Aβ activates MAPK 
signaling pathway. The downstream transcription factor of this pathway may 
trigger the expression of EMT genes, leading to enhanced migration and 
invasion of human breast cancer cells (Shi et al., 2014; Zhao et al., 2019; 
Wu et al., 2020b). In nasopharyngeal carcinoma cells, also inhibition of APP 
expression caused down-regulation of the MAPK signaling and subsequently 
decreased expression of EMT genes and resulted in decreased cell viability, 
migration, and invasion (Xu et al., 2019). 

In pancreatic cancer cells, blocking β-secretase activity results in reduced 
growth and viability, however, did not affect the non-transformed pancreatic 
cell line (Peters et al., 2012; Pandey et al., 2016). Accumulation of both 
extracellular and intracellular Aβ in human glioma cells has been reported 
(Zayas‐Santiago et al., 2020). Moreover, plasma levels of Aβ40 and Aβ42 were 
found to be significantly higher in several cancer types including esophagus 
cancer, colorectal cancer, hepatic cancer, and lung cancer compared to 

normal controls, although were slightly lower than AD samples (Jin et al., 
2017). Accordingly, in AD patients with a cancer history, no differences were 
observed compared to AD patients without any history of cancer, but a 
significantly lower level of paired helical filament was observed in patients 
with a cancer history compared to control subjects (Yarchoan et al., 2017). 
Unlike the reported negative association of APP in cancer, increased levels 
of Aβ42 in tumor cells lead to telomere DNA damage, telomere uncapping, 
chromosome fusion, and telomere shortening, downregulation of telomerase 
reverse transcriptase and subsequently cell senescence and apoptosis (Qin 
et al., 2019). Furthermore, Aβ oligomers showed anti-proliferative effects on 
different cancer cells including human acute promyelocytic leukemia, human 
lung cancer, and human breast cancer (Pavliukeviciene et al., 2019). 

A growing number of epidemiological studies have indicated both positive 
and negative associations of tau protein level with the risk of development 
and progression of several cancers, for example, high tau levels were 
reported in patients with breast cancer, particularly in estrogen receptor-
positive and low-grade cancers and to some extent in estrogen receptor-
negative and high-grade tumors, showed to be positively associated with the 
longer median time to tumor progression and overall survival (Pusztai et al., 
2009; Baquero et al., 2011). However, in contrast to breast cancer, the level 
of tau protein was shown to be negatively associated with overall survival 
in epithelial ovarian cancer and prostate cancer patients (Smoter et al., 
2013; Sekino et al., 2020). Moreover, tau protein expression also affects the 
response to microtubule-targeting chemotherapeutic agents such as taxanes, 
a group of drugs that inhibit microtubule depolymerization through binding 
to the β-subunit of the tubulin heterodimer, leading to impaired microtubule 
dynamic and thereby inhibit the process of cell division; high levels of tau 
protein was reported to negatively affect drug response in patients with 
different types of cancer including ovarian, gastric, prostate, breast, and non-
small-cell lung cancer (Mimori et al., 2006; Smoter et al., 2013; Maloney et 
al., 2020; Papin and Paganetti, 2020). In vitro studies indicated that taxanes 
have the same tubulin-binding site as tau protein, therefore tau protein 
interferes with the binding of taxanes to tubulin and showed that the 
presence of tau protein decrease paclitaxel, a member of taxanes agents, 
binding and paclitaxel-induced MT polymerization (Rouzier et al., 2005; 
Gargini et al., 2019; Maloney et al., 2020). 

Tau and APP have two conformations including trans and cis-conformations, 
where trans-conformation is functional and “healthy”, and facilitate their 
normal functions, while cis-conformation is pathogenic, formed in stress 
conditions after phosphorylation, is dysfunctional and prone to aggregation 
(Kondo et al., 2015; Wang et al., 2020). Conformational conversion between 
cis and trans is mediated by the Pin1 enzyme, which is down-regulated in AD 
(Wang et al., 2020). Pin1-knockout mice represent AD features such as hp-
tau, Aβ accumulation, and neurodegeneration, surprisingly these mice models 
of AD were resistant to breast cancer induced by oncogene Ras or Neu over-
expression (Wulf et al., 2004; Lanni et al., 2021). These results indicated the 
importance of tau and Aβ up-stream regulators in the development of cancer, 
as Pin1 was shown to be increased in several types of cancer and promote 
oncogenesis (Yu et al., 2020), therefore it may be at the crossroad between 
cancer and neurodegeneration and observed changes in tau and Aβ levels in 
cancer stem from Pin 1 alteration. 

Diabetes Mellitus
In 2019, DM was reported to affect 463 million people worldwide and is 
estimated to hit 700 million by 2045. DM is also among the top 10 leading 
causes of death, and a major cause of blindness, kidney failure, heart attacks, 
stroke, and lower limb amputation (Saeedi et al., 2019; Sinclair, 2021). 
Diabetes is a disorder characterized by insufficient insulin and resistance 
to its metabolic effects, with hyperglycemia leading to chronic damage in 
multiple organ systems (Kottaisamy et al., 2021; Yao et al., 2021). Patients 
with diabetes show cognitive decline and also brain changes similar to those 
observed in AD brains and an increased prevalence of AD (nearly 65%) has 
been reported in diabetic patients, particularly in those with diabetes mellitus 
type 2 (DM2) (Arvanitakis et al., 2004; Stanciu et al., 2020). AD and DM share 
many risk factors and pathological changes such as the apolipoprotein E4, 
higher cholesterol, oxidative stress, mitochondrial dysfunction, inflammation, 
and resistance to insulin that comprises the core mechanism of DM2, which 
gave rise to a new term for AD named, type 3 diabetes (Stanciu et al., 2020; 
Diniz Pereira et al., 2021; Abyadeh et al., 2022). Increased plasma levels of 
Aβ40 (28%) and Aβ42 (37%) also have been observed in individuals with DM2 
(Peng et al., 2020). Insulin dysregulation may affect both the production 
and degradation of Aβ and lead to increased extracellular levels of Aβ 
through increasing the activity of β-secretase and decreasing the release 
of insulin-degrading enzyme (IDE; one of the major Aβ degrading enzyme) 
into the extracellular space via inhibition of the PI3K-Akt pathway, activation 
of which promotes non-amyloidogenic processing of APP, furthermore 
insulin competitively inhibits Aβ degradation via IDE (Gasparini et al., 2002; 
Shieh et al., 2020). Conversely, expression of IDE is shown to be reduced 
in both AD and DM2 mice models and the size of Aβ plaques was inversely 
correlated with IDE activity, therefore reduced levels of IDE in diabetes were 
suggested as a potential trigger of Aβ accumulation and cognitive decline 
in both AD and DM2 (Li et al., 2018; Delikkaya et al., 2019). Aβ oligomers 
were shown to make a substantial loss of neuronal surface insulin receptors 
(IRs) in hippocampal neuronal culture, which may contribute to insulin 
resistance condition and in turn insulin resistance increases Aβ production 
and deposition in cerebral blood vessels leading to increased AD pathology 
(Zhao et al., 2008). Moreover, BACE1 was shown to degrade IRs in the liver in 
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a glucose concentration-dependent manner and its plasma level and activity 
increase in diabetic conditions leading to a reduced amount of IRs; however, 
its effect on neuronal IRs is not still clear (Meakin et al., 2018; Bao et al., 
2021). In addition, global deletion of BACE1 was shown to be associated with 
reduced risk of diet-induced obesity and diabetes in mice, while neuronal 
BACE1 knock-in resulted in Aβ accumulation, neuroinflammation, and more 
interestingly systemic diabetes in mice, which indicated the increased central 
BACE1 activity in AD patients as the potential mechanism underpinning the 
higher prevalence of metabolic disorders in AD patients (Meakin et al., 2012; 
Plucińska et al., 2014; Plucińska et al., 2016). While studies showed the 
association of nutrient-induced insulin resistance with elevated Aβ deposition 
in the brain of both humans and diabetic AD model mice, genetically 
induced insulin resistance mice (deficient for either IRS-2 or neuronal insulin-
like growth factor 1 receptor) showed a protective effect against brain Aβ 
deposition, suggesting that the increased Aβ pathology might be due to high-
fat diet-induced metabolic stress or inflammation but not direct effects of 
insulin signaling dysfunction (Wakabayashi et al., 2019). Interestingly, early 
intranasal insulin administration was suggested as a therapeutic option to 
improve memory and cognitive performance in people with mild cognitive 
impairment or early AD. However, a recent report by the same group did 
not confirm their previous findings (Craft et al., 2012; Suzanne, 2012; Craft 
et al., 2020). A suggested mechanism for the beneficial effects of insulin on 
AD symptoms is through decreasing Aβ generation. Insulin was shown to 
decrease the endocytosis rate of AβPP and increase AβPP O-GlcNAcylation 
via Akt insulin signaling leading to decreased sAβPPβ and increased sAβPPɑ 
production, collectively increasing non-amyloidogenic processing of the APP 
(Kwon et al., 2019). 

There is a negative association between the level of tau protein 
phosphorylation and the insulin signaling pathway, which is interesting 
given the reports that patients with DM2 have increased CSF levels of p-tau 
(Moran et al., 2015; Lu et al., 2018). Moreover, the elevated level of tau 
hyperphosphorylation and its inability for binding to MTs have been observed 
in the brains of both DM1 and DM2 mice models (Chatterjee and Mudher, 
2018).

Insulin regulates the phosphorylation of tau protein through the PI3K/AKT 
signaling pathway that leads to GSK-3β phosphorylation and inactivation, 
therefore an impaired insulin signaling pathway results in GSK-3β-mediated 
tau hyperphosphorylation. In addition, tau protein phosphorylation is 
also negatively regulated through modification by O-GlcNAcylation and 
impaired insulin-PI3K-AKT signaling may also lead to abnormal tau hyper-
phosphorylation through down-regulation of O-GlcNAcylation (Liu et al., 
2011; Hobday and Parmar, 2021). In turn, tau hyperphosphorylation and 
aggregation could further contribute to insulin signaling impairment through 
interacting with phosphatase and tensin homolog deleted on chromosome 
10 (PTEN) which is a negative regulator of insulin/phosphoinositide 3-kinase 
signaling. In combination these changes can lead to cognitive dysfunction 
(Hobday and Parmar, 2021), which can be limited by the inhibition of GSK-
3β (King et al., 2013). Moreover, tau acetylation and truncation resulted 
in disrupted tau-microtubule interactions and hastened aggregation of 
pathological tau in AD patients. In this respect, increased acetylation 
and truncation of tau protein have been also observed in diabetic mice 
models in hyperglycemic conditions, and this may lead to its dysfunction 
and aggregation (Kim et al., 2009; Chatterjee and Mudher, 2018). Another 
mechanism that affects tau protein hyperphosphorylation in AD is mTOR/
S6K1 signaling, and its abnormal up-regulation is shown to be correlated with 
tau hyperphosphorylation and NFT formation in AD brains (Tang et al., 2013). 
mTOR/S6K1 signaling is also involved in glucose metabolism and required for 
memory formation (Sipula et al., 2006; Krebs et al., 2007; Lana et al., 2017). 
Interestingly up-regulation of mTOR/S6K1 signaling has been observed in the 
brain of diabetic mouse models and subsequent inhibition of mTOR signaling 
via rapamycin reduced the level of hp-tau and decreased DM-induced 
cognitive decline (Wang et al., 2014). Further analyses by the same group 
showed that caveolin-1, a transmembrane scaffolding protein that negatively 
regulates mTOR signaling, is down-regulated in chronic hyperglycemic 
conditions resulting in overactivity of mTOR/S6K signaling and subsequently 
tau hyperphosphorylation in neurons of diabetic rats (Wu et al., 2017a). 

Interestingly, insulin accumulation as oligomers was observed in the brain of 
AD patients with hp-tau aggregations. In addition, insulin accumulation was 
independent of whether the patient had DM or not, indicating that peripheral 
and brain insulin levels are independently regulated. Further in vitro analyses 
showed that hp-tau-induced intraneuronal accumulation of insulin may lead 
to decreased IR levels (Craft et al., 2017). The identified shared risk factors 
and pathological changes, such as apolipoprotein E4, higher cholesterol, 
oxidative stress, mitochondrial dysfunction, inflammation, and insulin 
resistance, provide insights into the intricate interplay between DM and AD. 
Additionally, the observed increase in plasma levels of Aβ40, Aβ42, and p-tau 
in individuals with DM suggests a potential role of these proteins in the 
development and progression of both conditions.

Retinal Disorders
The retina is an extension of the central nervous system with both derived 
from the neural tube. They are partially protected from the vasculature via 
blood-retinal and blood-brain barriers respectively. Moreover, upon aging 
both the retina and the central nervous system show extracellular deposits 
associated with degenerative pathology such as the drusen and senile 
plaques respectively (Ratnayaka et al., 2015). The retina is affected by Aβ 

accumulation in various neurodegenerative disorders. Visual impairment and 
retinal Aβ deposits have been reported in patients with early AD even before 
any significant neurodegeneration (Koronyo-Hamaoui et al., 2011; Criscuolo 
et al., 2018). 

Aβ is produced in the retinal ganglion cells (RGC) which along with retinal 
pigment epithelium (RPE) monolayer and other retinal neurons has been 
suggested to be the main sources of Aβ generation and secretion (Ohno-
Matsui, 2011). Retinal Aβ levels have been found to be increased with aging, 
for example, cultured RPE cells from geriatric mice showed a higher level of 
Aβ and β-secretase activity and a lower level of neprilysin (which clears Aβ), 
compared to the younger controls (Wang et al., 2012; Ratnayaka et al., 2015). 
In addition, increased accumulation of Aβ in the RPE-Bruch’s membrane 
interface and retinal/choroidal blood vessels and decreased blood flow rates 
was observed in C57BL/6 mice with aging (Berisha et al., 2007; Hoh Kam et 
al., 2010). The above-mentioned changes seem to be more significant in age-
related macular degeneration (AMD) and glaucoma. 

AMD is the leading cause of severe, irreversible vision loss in people over 
age 60 with a global prevalence of 170 million, which is estimated to hit 288 
million by the year 2040 (Kaarniranta et al., 2011; Pennington and DeAngelis, 
2016). Glaucoma is among the top three causes of blindness, affecting about 
76 million patients, and estimated to reach 111 million by 2040 (Allison et al., 
2020). A pathological role of Aβ have been reported in AMD and glaucoma 
which share many pathological events with AD, including oxidative stress and 
neuroinflammation. Furthermore, increased levels of Aβ has been observed 
in the retina of AD patients (Ning et al., 2008; Kaarniranta et al., 2011; Song 
et al., 2017; Jonas et al., 2018). AMD, glaucoma, and AD are all age-related 
diseases and some epidemiological studies have reported that patients with 
AMD or glaucoma may be at higher risk of developing AD (Lee et al., 2019; 
Wang and Mao, 2021). 

Drusen are one of the pathological hallmarks of AMD, comprising a complex 
of extracellular deposits of debris located between the basal lamina of 
the RPE and the inner collagenous layer of Bruch’s membrane (Spaide and 
Curcio, 2010). Disruption of retinal RPE following drusen formation leads 
to degeneration of photoreceptor cells that results in central vision loss in 
AMD patients. Studies have reported Aβ to be one of the major constituents 
of drusen and also to be present in the RPE of AMD patients, suggesting it 
may be a key player in AMD progression (Prasad et al., 2017; Wang and Mao, 
2021). Recent reports suggest that the most abundant Aβ species within 
the retina is Aβ40 (Wang and Mao, 2021). Late-stage AMD is associated with 
progressive RPE degeneration and can lead to either wet/exudative AMD 
with choroidal neovascularization or dry/non-exudative AMD with larger 
areas of RPE atrophy also known as geographic atrophy (Arya et al., 2018). 
Subretinal injection of Aβ42 was shown to be associated with RPE senescence, 
retinal degeneration, and AMD-like ocular pathology in mice (Liu et al., 
2015a). Moreover, treatment of human RPE cells with Aβ40 showed RPE 
atrophy and basal deposit formation along with increased production of 
vascular endothelial growth factor, monocyte chemoattractant protein-1, and 
interleukin 8 (IL-8) by RPE that are key players in the growth of the abnormal 
blood vessels (i.e., choroidal neovascularization). There was also a significant 
decrease in pigment epithelium-derived factor, which is a potent inhibitor of 
neovascularization, thereby promoting choroidal neovascularization formation 
in AMD (Stellmach et al., 2001; Yoshida et al., 2005; Wu et al., 2017b; Tian et 
al., 2021). 

Aβ-induced mitochondrial ROS were shown to be involved in Aβ-induced 
secretion of angiogenesis factor by RPE cells (Wu et al., 2017b). Proteomic 
analysis of RPE-choroid complex tissue samples from Aβ treated mice showed 
that Aβ impaired mitochondrial function and increased ROS production 
through up-regulating PU.1 (a transcription factor) which in turn activated 
NADPH oxidases, particularly NOX4-p22phox (Sun et al., 2020). Impaired 
mitochondrial function following exposure to Aβ was also observed in 
photoreceptor cells, with ribosomal machinery and cytoskeletal organization 
found to be altered upon exposure to Aβ in a time and concentration-
dependent manner (Deng et al., 2019, 2023). 

RGC apoptosis is a key step causing irreversible vision loss in glaucoma. While 
elevated intraocular pressure is recognized as the main trigger for RGC death 
the underlying mechanism is multifactorial and far from clear (Guo et al., 
2005). In a rat model of glaucoma, chronic ocular hypertension increased 
caspase-3 and caspase-8 activation which led to abnormal APP processing 
and increased Aβ level, which subsequently played a key role in pressure-
induced RGC death., Treatment with Aβ antibodies significantly reduced 
RGC apoptosis (Guo et al., 2007). Moreover, β-secretase inhibitors showed 
neuroprotective effects against glutamate-induced RGC death in vitro and 
also on retinal damage induced by optic nerve crush in vivo (Yamamoto et al., 
2004). Aβ also disrupts microvilli, the tight junctions, and adhesion of the RPE 
cells (Bruban et al., 2009). 

The effect of Aβ40 and Aβ42 on retinal inflammation have been reported 
in several studies, highlighting the importance of inflammation in all age-
related diseases. RPE, neuroretina, and vitreous analyses of animals (mouse 
and rat) that received intravitreal injections of Aβ showed overexpression of 
inflammation cytokines including IL-6, tumor necrosis factor-α, IL-1β, IL-18, 
caspase-1, NLRP3, and XAF1, microglia activation and ultimately RGC loss, 
possibly through binding to microglial scavenger receptor CD36, TLR4, and 
NF-κB signaling pathways (Liu et al., 2013; Chen et al., 2016; Lei et al., 2017; 
Simons et al., 2021).  
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Shared pathological events between AD and neurodegenerative diseases 
of the eye such as AMD and glaucoma, also warrant investigating the 
involvement of tau proteins, however, there is limited research on the role of 
tau deposition in AMD and glaucoma. 

Tau protein is expressed in RGCs, however, a higher level of this protein 
can be found in the axons of developing RGCs. Tau protein also plays a key 
role in proper axon development and the survival of RGCs (Ho et al., 2012). 
Abnormal tau deposition and the presence of p-tau were observed in the 
retina of patients with uncontrolled primary and secondary open-angle 
glaucoma compared to healthy controls, while normal tau was found in the 
retina of healthy controls but not glaucoma patients (Gupta et al., 2008; Chan 
et al., 2021). An elevated level of p-tau also has been observed in the lateral 
geniculate nucleus of the monkey model of glaucoma following increased 
intraocular pressure (Yan et al., 2017). Interestingly, an in vivo study on a 
rat model of glaucoma showed both hyper and hypo-phosphorylation of 
tau protein and also mislocalization of tau protein in the somatodendritic 
compartment of RGCs, but not in axons. Subsequent down-regulation of 
tau by short interfering RNA resulted in an increased survival rate of RGCs, 
confirming the toxicity of tau protein (Chiasseu et al., 2016). Further results 
suggested the potential role of tauopathy in impaired autophagy and death 
of RGCs after optic nerve crush which can be ameliorated by silencing the 
tau gene via short interfering RNA (Oku et al., 2019). In rat RGCs, aggregation 
of tau protein impaired the anterograde axonal transport and transportation 
of mitochondria by kinesin-like motors toward the cell periphery leading to 
deficient energy production and accumulation of ROS (Stamer et al., 2002; 
Ho et al., 2012). Tau protein also interacts with the C-terminus of the P150 
subunit of the dynactin complex. Moreover, the tau protein enhanced the 
binding of the dynactin complex to microtubules and co-localized with 
dynactin. Therefore the abnormal distribution of tau in RGCs can result in the 
mislocalization of dynactin in axons, which can lead to neurodegeneration 
(Magnani et al., 2007; Ho et al., 2012). 

Collectively abnormal accumulation of both Aβ and tau protein appear 
to contribute to retinal disease pathogenesis, with aggregation of these 
factors inducing several down-stream events, including activation of retinal 
astrocytes and microglia and secretion of inflammatory cytokines such as IL-
1β, IL-6, and tumor necrosis factor-α, leading to inflammation (Ashok et al., 
2020; Baudouin et al., 2020; Tan et al., 2020; Abyadeh et al., 2023b). 

Parkinson’s Disease  
PD is the second most common brain neurodegenerative disease after AD. 
In 2016 about 6.1 million individuals had PD globally (Dorsey et al., 2018). It 
is pathologically characterized by progressive loss of dopaminergic neurons 
in the substantia nigra pars compacta and the formation of Lewy bodies 
(LBs). LBs contain the protein α-Syn (Surmeier, 2018; Pan et al., 2021); 
however, it constitutes only about 9% of the LB (Mccormack et al., 2016). 
α-Syn is a neuronal protein that is considered a major contributor to several 
neurodegenerative disorders known as synucleinopathies, including PD, 
dementia with LBs, and multiple system atrophy (Gonçalves and Outeiro, 
2017). Recently a study reported using CSF α-Syn seeded assay as a novel 
biomarker for PD together with an olfactory test, producing a sensitivity of  
98.6% (Siderowf et al., 2023). 

There are multiple lines of evidence linking α-Syn and tau to Parkinson’s 
disease.  MAPT gene (tau protein) and  SNCA (alpha-synuclein) have been 
identified as risk genes for PD in several genome-wide association studies 
(Wray and Lewis, 2010; Davis et al., 2016). Mutations in tau can result in FTD 
and Parkinsonism in a mouse model (Dawson et al., 2007). Consistent with 
the idea that the two proteins interact, mutations in SNCA A53T in humans 
exhibited exacerbated tau pathology (Markopoulou et al., 2008).

Interestingly α-Syn deposition is also observed in AD patients and increased 
deposition of insoluble of α-Syn has been linked to cognitive dysfunction in 
a transgenic AD mouse (Clinton et al., 2010; Vasili et al., 2019). Coincident 
with this, elevated aggregation of Aβ and tau have been reported in PD 
patients, although the association of AD pathological hallmarks with PD is not 
consistently reported (Jendroska et al., 1996; Siderowf et al., 2010; Bäckström 
et al., 2015; Liu et al., 2015b; Winer et al., 2018; Melzer et al., 2019). 
Experimental studies have linked α-Syn mainly to tau hyperphosphorylation, 
however, some studies have indicated the role of Aβ in inducing aggregation 
of α-Syn and tau protein in synucleinopathies (Twohig and Nielsen, 2019; 
Bassil et al., 2020). 

Aβ plaques have been found in PD patients along with the typical LB 
deposition and a direct association has been reported between these two 
pathological proteins (Lashley et al., 2008). Analysis of post-mortem brain 
from PD patients with dementia identified three pathologic types of PD, 
including (1) Predominant synucleinopathy; (2) Predominant synucleinopathy 
with Aβ plaques and minimal or no cortical tauopathy; (3) Synucleinopathy 
and Aβ plaques and at least moderate neocortical tau aggregations. This 
study also indicated Aβ deposition and synucleinopathy but not tauopathy as 
the main contributors to PD development and Aβ accumulation was shown to 
be associated with poor survival rate in PD patients with dementia (Kotzbauer 
et al., 2012). Early experimental studies indicated that α-Syn and Aβ have 
distinct and convergent pathogenic effects on brain function in a transgenic 
mouse model of AD with LBs. Further in vitro studies showed that Aβ, 
particularly Aβ42 even at low concentration, may promote the intraneuronal 
accumulation of α-Syn, but α-Syn did not affect overall Aβ level or plaque 
formation (Hamilton, 2000; Masliah et al., 2001; Köppen et al., 2020). These 

results were confirmed in post-mortem analysis of PD brain, which showed 
the higher presence of LBs and increased level of insoluble α-Syn in brains 
with Aβ deposits compared to those without Aβ deposits, and suggested the 
Aβ enhanced development of α-Syn lesions in PD patients (Pletnikova et al., 
2005). In addition, further studies indicated that Aβ, α-Syn, and tau proteins 
may interact synergistically to promote their mutual accumulation (Clinton et 
al., 2010). In this regard, in vivo, results showed that Aβ plaques promote α-Syn 
seeding and spread throughout the brain, and subsequently, α-Syn enhances 
tau aggregation (Bassil et al., 2020). 

In summary, studies have reported a significant association between Aβ, tau, 
and α-Syn proteins that synergistically contribute to PD and AD pathogenesis. 
Interestingly, a meta-analysis in 2017 shows reduced CSF levels of Aβ42 in PD 
with cognitive impairment (Hu et al., 2017b). This is in agreement with more 
recent studies and suggested to occur because the Aβ42 may be sequestered 
away from CSF due to increased intracellular Aβ42 accumulation (Lewczuk et 
al., 2021; Nabizadeh et al., 2023). 

Genetic studies have indicated the association of several gene polymorphisms 
with the risk of PD, including SNCA (synuclein alpha, encoding α-Syn), GBA 
(glucosylceramidase beta, encoding GBA protein), LRRK2 (leucine-rich repeat 
kinase 2, encoding LRRK2 protein), and MAPT (Bras and Singleton, 2009; Pan 
et al., 2021). MAPT that encodes tau protein has two haplotypes namely H1 
and H2 and genome-wide association studies have repeatedly shown the 
association of H1 with increased risk of PD and AD, although results from 
different populations are not consistent. H1 is debated as a risk factor for PD 
and this inconsistency is possibly due to the effects of genetic background 
and environmental factors (epigenetic) (Sánchez-Juan et al., 2019; Pan et al., 
2021). Meta-analyses of total tau (t-tau) and p-tau in CSF show increased 
levels in PD dementia cohorts (Liu et al., 2015b; Hu et al., 2017a). 

Cell transplantation has emerged as a potential treatment for PD, interestingly 
p-tau and NFTs have been observed in transplanted cells 18 months to 
21 years after transplantation (Cisbani et al., 2017; Ornelas et al., 2020). 
The presence of toxic tau in healthy transplanted cells is possibly through 
prion-like propagation (Clavaguera et al., 2017; Mudher et al., 2017). α-Syn 
accumulates and forms fibrillary assemblies in PD that play a key role in the 
pathogenesis of PD. Of interest is that tau is colocalized with α-Syn in LBs (Hu 
et al., 2010; Pan et al., 2021), and in vivo studies showed impairment and 
subsequent cognitive decline in a mouse model of familial PD (A53T mutant 
α-synuclein) shown to be mediated by tau protein (Teravskis et al., 2018; 
Singh et al., 2019). 

Experimental studies have shown that tau monomers interact with the 
c-terminal region of α-Syn and promote its aggregation. In addition, 
α-Syn monomers and aggregates also increase tau aggregation (Dasari et 
al., 2019). Further studies showed that extracellular α-Syn increases the 
phosphorylation of GSK-3β at Tyr216 and decreases its phosphorylation at 
Ser9. This enhances its activity and in turn, increases tau phosphorylation 
at Ser396 leading to microtubular destabilization (Giasson et al., 2003; 
Gąssowska et al., 2014; Credle et al., 2015). Conversely, GSK-3β dysregulation 
contributes to Parkinson’s-like pathophysiology with associated region-
specific phosphorylation and accumulation of tau and alpha-synuclein (Credle 
et al., 2015). Another study indicated that aberrant expression of human 
P301L mutant tau increased phosphorylation and aggregation of α-Syn via 
GSK-3β in rTg4510 mice (Takaichi et al., 2020). Overall, these studies highlight 
the intricate relationship between Aβ, tau, and α-Syn proteins in PD and AD. 
Understanding these interactions is essential to unravel the mechanisms 
underlying these neurodegenerative diseases and develop effective 
therapeutic strategies.

Traumatic Brain Injury 
TBI, the “silent epidemic” is an increasingly recognized global health problem 
that is estimated to affect about 69 million people worldwide each year 
(Dewan et al., 2018). TBI is divided into two types: focal TBI, which affects 
only a specific area such as epidural or subdural hematoma and parenchymal 
contusions, and diffuse TBI which affects more widespread areas with 
traumatic axonal injury and diffuse cerebral edema (Andriessen et al., 2010). 
TBI is not isolated to a single event and has long-term consequences. Multiple 
concussions or even a single moderate to severe TBI increases the risk of 
developing several neurodegenerative diseases including CTE, AD, and PD 
at an early age (Katsumoto et al., 2019). Currently, no effective treatments 
are available for TBI or TBI-related dementia. Although the underlying 
mechanisms of the association of TBI with neurodegenerative disease 
remained unclear, the presence of hp-tau, tau aggregates, and Aβ have been 
reported in the brain months after TBI (Roberts et al., 1994; Smith et al., 
2003; Katsumoto et al., 2019). 

Increased levels of Aβ and its aggregation have been reported as 
a consequence of  TBI  and suggested as  a  major  contr ibutor  to 
neurodegeneration and cognitive decline (Johnson et al., 2010; Acosta et al., 
2017). In addition, increased level of BACE1 and γ-secretase following TBI has 
been reported in animal studies and suggested as two therapeutic targets 
for the treatment of TBI (Blasko et al., 2004; Loane et al., 2009). It has been 
reported that about 30% of individuals after a severe TBI with a survival time 
of between four hours and 2.5 years shows Aβ deposition and that presence 
of Aβ accumulation following TBI increased with age (Roberts et al., 1994). 
These findings also have been observed in another study that showed the 
presence of NFTs and Aβ plaques in the brain of single moderate to severe TBI 
cases after 1–47 years (Johnson et al., 2012). However, in contrast to these 
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results, the presence of Aβ plaques in short-term post-TBI cases but not long-
term survivors (up to 3 years) was reported, suggesting that increased level 
of neprilysin after TBI may be the reason for the reduced level of Aβ plaques 
(Chen et al., 2009). Decreased level of Aβ plaque was also observed in aged 
plaque-forming APP transgenic mice 16 weeks after TBI, which indicated that 
plaque pathology may be reversible (Nakagawa et al., 2000). Although most 
of the animal studies have indicated that Aβ level was initially increased after 
TBI as a short-term effect but was resolved over time, and is not a long-term 
effect (Tsitsopoulos and Marklund, 2013; Bird et al., 2016), there are some 
reports indicating increased Aβ accumulation as a long-term sequela after TBI. 
For example, the presence of Aβ plaques in injured axons without increased 
gene expression of APP was observed in a non-transgenic rat model of TBI 
even after 1 year (Iwata et al., 2002), and also increased levels of Aβ, BACE, 
presenilin-1 and caspase-3 in swollen axons of a non-transgenic pig model of 
TBI after 6 months (Chen et al., 2004). The discrepancy in these results may 
be attributed due to the studies being carried out in different TBI models. 

The association of TBI with tauopathies has been suggested in several studies. 
A single incidence of severe brain trauma was shown to induce widespread 
hyperphosphorylated tau pathology in individuals surviving more than a year 
after injury (Zanier et al., 2018). Similar results were also observed in mice 
with a single severe TBI-induced tau pathology that reflected late post-TBI 
tau pathology in humans. Further analyses showed that induced tau toxicity 
can spread from the site of injury to other brain regions and also injection 
of toxic tau from TBI mice to wild-type mice can induce tau pathology, 
memory deficits, and synaptic alterations, which indicate prion-like behavior 
of tau protein (Woerman et al., 2016; Zanier et al., 2018). A proteome 
comparison between the frontal cortex of diffuse and focal TBI cases revealed 
a significantly higher level of proteins involved in neurodegeneration such 
as tau protein in diffuse TBI cases compared to focal TBI cases, however, 
no differences were found in the level of Aβ40 and Aβ42 between two types 
of TBI (Hamdeh et al., 2018). The results of this study indicated that even a 
single TBI can induce long-term progressive tau pathology and subsequent 
neurodegeneration, especially in the presence of diffused axonal injury. 
Further, repeated mild TBI also has been shown to be associated with NFT 
formation, neurodegeneration, and cognitive decline. In this regard, studies 
on American football players, boxers, and wrestlers that are repeatedly 
exposed to mild TBI, showed an increased level of hp-tau, NFTs, and cognitive 
impairment and developed CTE (Omalu et al., 2011; Katsumoto et al., 
2019). Moreover, serum levels of tau protein were shown to be positively 
associated with the severity of the injury in a rat model of diffuse axonal 
injury, suggesting it as a potential diagnostic biomarker to assess the severity 
of diffuse axonal injury in the early phase (Tomita et al., 2020). 

There are two conformational forms of phosphorylated tau at Thr231 reported, 
including trans p-tau which is a physiological conformation, and cis p-tau as 
the toxic form which is more physiological, but is converted to trans p-tau 
by Pin1 (Figure 5; Nakamura et al., 2013; Kondo et al., 2015). In TBI reduced 
activity of Pin1 results in an increased level of cis p-tau which appears prior to 
tau oligomerization and aggregation, resulting in impaired axonal microtubule 
networks and mitochondrial transport. This toxic form can spread to other 
neurons and induce apoptosis leading to neurodegeneration and cognitive 
impairment, but this could be relatively ameliorated upon using a cis p-tau 
antibody (Kondo et al., 2015; Albayram et al., 2017). Thus, the results of these 
studies indicated that cis p-tau contributes to both short-term and long-term 
consequences of TBI that can be effectively neutralized by cis p-tau antibody 
treatment.

These findings support the notion that TBI can initiate neurodegenerative 
processes resembling those seen in AD and CTE. The accumulation of Aβ 
and tau proteins, along with their pathological consequences, suggests a 
complex interplay between TBI, protein aggregation, and neurodegeneration. 
Further research is needed to unravel the intricate mechanisms underlying 
these processes, which can pave the way for the development of targeted 
interventions and improved management strategies for individuals with 
TBI, reducing the risk of long-term cognitive decline and neurodegenerative 
diseases.

Down Syndrome
Down syndrome (DS) is the leading genetic cause of intellectual disability 
with an incidence rate of about 14 in 10,000 live births in the United States 
(Dierssen, 2012). The disorder is caused by trisomy of chromosome 21 and is 
therefore known as trisomy 21. Individuals with DS have common phenotypes 
such as short stature, muscle hypotonia, mental retardation, small head, short 
neck, protruding tongue, and flat faces; moreover, they are more prone to 
develop certain health conditions, such as AD, CVDs, and diabetes (Van Goor 
et al., 1997; Sobey et al., 2015; Antonarakis et al., 2020). 

Individuals with DS also showed higher blood levels of Aβ and tau protein 
and its phosphorylation forms compared to healthy individuals at young ages. 
Plasma level of Aβ showed a progressive age-dependent manner that almost 
all individuals with DS show sufficient neuropathology for a diagnosis of AD by 
the age of 40 (Head and Lott, 2004; Lee et al., 2017). As described above, the 
APP gene is located on chromosome 21 and thus triplicated in DS, resulting 
in an increased level of APP. In addition, increased activity of β-secretase 
and decreased activity of α-secretase especially after 40 years of age have 
been reported in individuals with DS. It is reported that Aβ42/43 is initially 
deposited in the brain with Aβ40 appearing about a decade later (Iwatsubo et 
al., 1995; Mori et al., 2002; Head et al., 2018). Interestingly intracellular Aβ 
accumulation has been reported in DS that appeared prior to extracellular 
Aβ aggregation and NFTs and was shown to be accumulated in endosomes 
causing endocytic pathway abnormalities. These could be prevented in a 
mouse model of DS by partial inhabitation of BACE1(Cataldo et al., 2000; Jiang 
et al., 2016). However, it is important to note that BACE1 inhibition reduced 
the level of APP-β c terminal fragment but did not alter Aβ40 and Aβ42 peptide 
levels. Therefore, endocytic abnormalities may be due to a higher level of 
APP-βCTF but not Aβ levels (Jiang et al., 2016). Although the exact mechanism 
of intracellular Aβ aggregation is not still clear, it has been suggested that 
AβPP overexpression in DS may disrupt mitochondrial function, which in 
turn triggers intracellular Aβ aggregation that can further contribute to 
mitochondrial dysfunction (Busciglio et al., 2002; Abyadeh et al., 2021). Both 
intracellular and extracellular Aβ may contribute to NFTs formation and trigger 
caspase activation and accumulation of caspase cleavage products resulting 
in apoptotic pathways activation and neuronal loss in the DS brain. These 
observations were found in the brain of DS individuals aged over 40 years 
(Head et al., 2002; Head et al., 2018). In addition, age-dependent deposition 
of phosphorylated Aβ at serine residue 8 has been observed in extracellular 
plaques and within the vasculature of the brain of DS (Kumar et al., 2020).

The presence of an insoluble and phosphorylated form of tau protein and 
also NFTs have been reported in the brain of individuals with DS, even in the 
presence of low Aβ burden (Hanger et al., 1991; Zammit et al., 2021). Similar 
to Aβ, the plasma level of tau protein is higher in DS patients and showed 
a progressive age-dependent manner (Kasai et al., 2017; Lee et al., 2017). 
Although like AD, deposition of tau protein is observed in the DS brain, it may 
occur in different brain regions of adult DS compared to AD (Lemoine et al., 
2020).   

The balance between 3R-tau and 4R-tau levels is critical for proper neuronal 
function and increased expression of either 3R-tau or 4R-tau was shown 
to be correlated with several tauopathies such as Pick’s disease (3R-tau), 
corticobasal degeneration and progressive supranuclear palsy (4R-tau) 
(Barron et al., 2020). Expression of 3R-tau is increased in the DS brain and 
shown to be related to increased expression of dual-specificity tyrosine-
phosphorylated and regulated kinase 1A (Dyrk1A), located on the chr21 and 
triplicated in DS. In this regard, inhibition of Dyrk1A expression resulted in 
decreased expression of 3R-tau and improved impaired general behaviors 
in mice models of DS (Shi et al., 2008; Yin et al., 2017). Further studies have 
indicated that PI3K/Akt/mTOR axis is hyper-activated in DS, resulting in 
decreased autophagy, IRS1, and GSK3β activity. However, tau was found to be 
hyperphosphorylated and associated with elevated expression of Dyrk1A, also 
enhanced expression of regulator of calcineurin 1 (RCAN1), which is linked to 
tau hyper-phosphorylation (Perluigi et al., 2014; Di Domenico et al., 2018). 
Collectively these results suggested the key role mTOR pathway and RCAN1 
in the hyper-phosphorylation of tau protein in DS (Figure 6). Consistent with 
the hypothesis of prion-like behavior of tau protein, injection of plasma-
derived neuron-derived small extracellular vesicles of DS-AD cases into the 
dorsal hippocampus of wild-type mice resulted in an increased level of hp-
tau even in the corpus callosum and the mediolateral axis (Ledreux et al., 
2021). Therefore, these results indicated prion-like behavior of tau protein 
that can spread within the brain. These findings collectively shed light on the 
complex neuropathological mechanisms underlying DS and its association 
with AD. Understanding these mechanisms may help in the development 
of targeted therapeutic approaches for DS-related cognitive decline and 
neurodegeneration. 

Figure 5 ｜ Conformational changes of tau protein between trans and cis-
conformations are mediated by Pin1; trans p-tau is considered as the physiological 
form of tau protein but cis p-tau is the toxic form that is increased in pathological 
condition due to impaired Pin 1 activity. 
Created with BioRender.com. AD: Alzheimer’s disease; Pin1: peptidyl-prolyl cis-trans 
isomerase NIMA-interacting 1; TBI: traumatic brain injury.    
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Motor Neuron Disease 
Motor neuron disease including amyotrophic lateral sclerosis (ALS), the 
eponymous Lou Gehrig’s disease, is a fatal progressive neurodegenerative 
disorder characterized by the degeneration of both the upper motor neurons 
of the motor cortex, and the lower motor neurons of the brainstem and 
spinal cord (Shadfar et al., 2022). The most distinguishing symptoms of ALS 
are muscle atrophy and weakness, and progressive paralysis (Masrori and Van 
Damme, 2020). The pathogenic mechanisms leading to neurodegeneration 
in ALS are not fully defined. Hence, at present, there is no effective cure for 
the disease, and patients have an average lifespan of three years following 
diagnosis, with death occurring due to respiratory failure (Masrori and Van 
Damme, 2020). The only currently approved Food and Drug Administration 
(FDA) therapeutics for ALS are relyvrio (AMX0035), riluzole, and edaravone, 
although these drugs only extend the life span of patients by two to three 
months. Furthermore, they do not halt the neurodegenerative process 
in ALS (Mora, 2017). Therefore, there is an urgent need to develop novel 
therapeutics for the treatment of ALS, which target the underlying disease 
mechanisms.

A growing body of evidence indicates the role of Aβ and tau in ALS pathology. 
Increased levels of APP have been observed in ALS patients’ spinal cord 
anterior horn neurons even with moderate motor neuronal loss (Calingasan 
et al., 2005). Similarly, compared to controls, increased levels of Aβ in the 
skin of ALS patients were demonstrated using enzyme-linked immunosorbent 
assays (Tamaoka et al., 2000). 

The Caspase family is known to mediate alternative proteolysis of APP 
(Salvesen and Dixit, 1999). Among the members of the Caspase family, 
Caspase-3 predominantly participates in APP cleavage (François et al., 
1999). Caspase-3 can directly cleave APP through apoptosis, leading to 
increased formation of Aβ (François et al., 1999; Salvesen and Dixit, 1999). 
Accumulating evidence suggests that caspase-3 plays a significant role in 
initiating neurodegenerative processes in transgenic mouse models of ALS 
(Salvesen and Dixit, 1999; Pasinelli et al., 2000), which may contribute to the 
elevated levels of Aβ formation.

Higher Aβ42 immunoreactivity was observed in motor neurons in the anterior 
horn in the postmortem lumbar spinal cord of ALS patients (Calingasan et 
al., 2005). There was colocalization of the Aβ42 with the oxidative damage 
markers including heme oxygenase-1, 8-hydroxydeoxyguanosine, and 
nitrotyrosine in these tissues (Calingasan et al., 2005). Remarkably, enhanced 
cleaved caspase-3 immunoreactivity was observed within the neurons with 
intracellular Aβ42 accumulation (Calingasan et al., 2005).

Approximately 4% of fALS and approximately 1% of sALS cases worldwide 
are caused by mutations in TARDBP, the majority of which are missense 
and autosomal dominant mutations (Sreedharan et al., 2008; Renton et al., 
2014). Importantly, however, almost all cases of ALS (97%) and FTD cases 
(50%) are characterized by the presence of TDP-43 pathology (Chou et al., 
2018). TDP-43 pathology is one of the primary features of ALS and FTLD-TDP, 
and is characterized by loss of TDP-43 function in the nucleus and enhanced 
deposition into cytoplasmic inclusion bodies in the brain and spinal cord 
neurons (Arai et al., 2006; Konopka et al., 2020). Redistribution of TDP-43 
from the nucleus to the cytoplasm is recognized as a key characteristic of ALS 
patient motor neurons (Chou et al., 2018). Significantly higher levels (200%) 
of TDP-43 were observed in cortical autopsies of late-stage AD patients 
(Herman et al., 2011). Additionally, TDP-43 inclusions have been found in 
up to 57% of AD cases (Josephs et al., 2014; James et al., 2016). Elevated 

TDP-43 pathology was detected in the rat motor cortex, following lentiviral 
expression of Aβ1–42 (Herman et al., 2011). In addition, there was a correlation 
between Aβ1–42 expression and increased phosphorylation of TDP-43 and its 
accumulation in the cytosol (Herman et al., 2011). Compared to wild-type 
mice, TDP-43 modifications were detected in 3xTransgenic AD (3×Tg-AD); 
however, these modifications were reduced in parkin-injected hippocampi, 
despite the presence of Tau pathology. This indicated that Aβ triggers TDP-43 
pathology, even in the absence of Tau (Herman et al., 2011).

Modifications in tau metabolism have been also reported in ALS (Strong et al., 
2020), the most conspicuous tau alteration is its pathological phosphorylation 
at Thr175 (pThr175tau) (Strong et al., 2020). pThr175tau has also been identified 
in CTE with ALS and in both in vivo and in vitro experimental paradigms, 
emphasizing the key role of tau phosphorylation in the pathobiology of ALS 
(Strong et al., 2020). Experimental rodent models suggest the presence of 
phosphorylated tau and alterations in the metabolism of TDP-43 and tau act 
synergistically to deteriorate the pathology of either (Chornenkyy et al., 2019; 
Strong et al., 2020).

Furthermore, in extracts of both the brain and ventral spinal cord of sporadic 
ALS patients, neurotoxic tau fragment (tau45–230) has been identified (Lang 
et al., 2014; Vintilescu et al., 2016). Pathological forms of phosphorylated 
tau, together with tau immunoreactive inclusions have been detected in 
ALS patients (Yang et al., 2003; Yang et al., 2005; Yang and Strong, 2012). 
Prominent tau deposition (pThr175tau) was observed in motor neurons 
following TDP-43 pathology (Yang and Strong, 2012). 

Alterations in tau metabolism were also detected in cortical and spinal motor 
neurons in sporadic ALS patients in antemortem or postmortem obtained 
tissues (McKee et al., 2009; McKee et al., 2016; Mez et al., 2017). pThr231tau, 
pThr175tau, and oligomeric tau (T22) were predominantly observed in the 
samples of sporadic ALS patients (Moszczynski et al., 2018). A recent study 
showed the increased levels of phosphorylated tau (p-tau) in CSF of ALS 
patients with or without cognitive impairment (Gong et al., 2022). Although 
the CSF p-tau level and p-tau:t-tau ratio were lower in patients with ALS 
than in ALS patients with cognition impairment, CSF p-tau could be used as a 
reliable index of cognition impairment in patients with ALS (Gong et al., 2022).

Amyloid-β and Tau Protein Signatures in Other 
Diseases
Autism 
Autism spectrum disorders (ASD), are a diverse group of conditions 
characterized by challenges with social skills, communication, and repetitive 
behaviors. The prevalence of autism has increased in recent decades and 
according to the Centers for Disease Control and Prevention 2016 data, about 
1 in 54 children in the USA are diagnosed with autism. Males have a higher 
risk of autism and related disorders than females (Palmer et al., 2017). The 
exact mechanism underlying autism is not clear, however, environmental and 
genetic factors are supposed to play a causative role (Palmer et al., 2017; 
Emberti Gialloreti et al., 2019). Children with autism commonly showed 
brain overgrowth, which is coincidental with the onset of symptoms. Initial 
studies in patients with severe autism observed an increased level of APP 
and AβPPɑ but decreased levels of AβPPβ, Aβ40, Aβ42 and also lack of cerebral 
plaques, therefore indicating the aberrant hyperactivity of non-amyloidogenic 
pathway (Bauman, 1994; Sokol et al., 2006; Ray et al., 2011). Data regarding 
the serum level of tau protein and its phosphorylation are inconsistent and 
both increased and decreased levels of this protein have been reported in 
both autistic humans and mice (Kadak et al., 2015; Barón-Mendoza et al., 
2018; Ayaydın et al., 2020; Grigg et al., 2020). However recently it has been 
shown that genetically decreasing tau protein level prevents behavioral 
signs of autism in mice models possibly through the increasing levels of 
phosphatase and tensin homolog deleted on chromosome 10 (PTEN). This 
then suppresses the PI3K/Akt/mTOR signaling pathway that is overactivated 
in autism and is described as a shared altered mechanism between autism 
and AD (Tai et al., 2020; Mencer et al., 2021). The understanding of autism’s 
underlying mechanisms is still evolving, and further research is necessary 
to uncover the complex interactions between genetic and environmental 
factors. Investigating the roles of amyloid metabolism, tau protein, and shared 
pathways with AD may provide further insights. The heterogeneity of ASD 
requires a personalized approach to diagnosis, treatment, and support, taking 
into account the individual’s unique needs and characteristics.

Multiple sclerosis 
MS is an autoimmune inflammatory disease of the central nervous system, 
that is the leading cause of acquired neurological disability in young adults 
worldwide and currently affects about 300,000 to 400,000 individuals in the 
US and over 2.5 million people worldwide (Van Schependom et al., 2019; 
Wallin et al., 2019). MS is pathologically characterized by the formation of 
demyelinating lesions in the brain and spinal cord, which induce inflammation 
and subsequently neurodegeneration (Filippi et al., 2018; Mirzaei et al., 
2022). Myelin dysfunction also has been shown to drive the Aβ deposition in 
AD mouse models (Depp et al., 2023). Brain atrophy is extensively observed 
in MS patients and is recognized as an imaging marker of neurodegeneration 
in MS patients; however, early neurodegeneration may appear in the absence 
of brain atrophy (Van Schependom et al., 2019). The presence of amyloid 
plaques has been reported in MS patients; moreover, CSF levels of soluble 
Aβ1–42 were shown to be decreased and associated with cognitive decline in 
MS patients. It was suggested as a potential biomarker of neurodegeneration 

Figure 6 ｜ Interplay between mTOR, Aβ, and Tau.
Created with BioRender.com. Aβ: Amyloid beta; AKT: protein kinase B (Akt); BACE-1: beta-
secretase 1; BCAN: brevican; Dyrk1: dual-specificity tyrosine-phosphorylation-regulated 
kinase 1; GSK3β: glycogen synthase kinase 3 beta; HIF-1α: hypoxia-inducible factor 1 
alpha; IRS: insulin receptors substrate; mTOR: mechanistic target of rapamycin; PDK1: 
phosphoinositide-dependent kinase-1; PI3K: phosphoinositide 3-kinase; Pin-1: peptidyl-
prolyl cis-trans isomerase NIMA-interacting 1; p-tau: phosphorylated Tau protein; PTEN: 
phosphatase and tensin homolog deleted on chromosome 10; S6K1: ribosomal protein 
S6 kinase 1.    
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that may predict clinical outcomes (Mai et al., 2011; Mori et al., 2011; Augutis 
et al., 2013; Pietroboni et al., 2017). In contrast to Aβ, the level of tau protein 
and its abnormal phosphorylation was found to be increased in MS patients 
in the neurodegenerative phase of tissue injury, which was associated with 
neuronal and axonal loss and suggested as an early marker of axonal damage 
in MS patients (Brettschneider et al., 2005; Terzi et al., 2007; Anderson et al., 
2008).  The presence of both amyloid plaques and abnormal tau protein levels 
in MS highlights the complex nature of the disease and suggests overlapping 
mechanisms with other neurodegenerative disorders such as AD. Further 
research is needed to fully understand the role of these biomarkers in the 
progression of MS and their potential implications for diagnosis, monitoring, 
and treatment of the disease. 

Huntington’s disease 
HD is a rare genetic neurodegenerative disorder with a prevalence of 2.71 
in 100,000 live birth globally (Pringsheim et al., 2012; Bates et al., 2015).  
HD patients commonly experience uncontrolled body movement, cognitive 
decline, and psychiatric disturbances (Li and Li, 2004; Żukiewicz-Sobczak et 
al., 2014). Patients with HD showed amyloid-like inclusions in their brain and 
heart that may cause neurodegeneration and cardiomyopathy (Melkani et 
al., 2013). Currently, available data about the level of Aβ in HD patients are 
inconsistent, while some researchers indicated a higher level of Aβ in HD 
patients, others failed to find significant differences with healthy controls 
(Jellinger, 1998; McGowan et al., 2000; Mollenhauer et al., 2006; Gratuze et 
al., 2016). However, high levels of hyperphosphorylated and truncated tau 
and NFTs have been observed in the brain of HD patients (Masnata et al., 
2020). Moreover, tau haplotype was shown to affect the cognitive function 
of HD patients, whereas patients with the H2 haplotype showed more severe 
cognitive decline than patients with H1 haplotype (Vuono et al., 2015; Gratuze 
et al., 2016). In addition, mutant huntingtin, the HD protein, triggers tau 
protein hyperphosphorylation and alters its subcellular distribution (Blum et 
al., 2015). The level of caspase-2 is increased in HD patients and its inhibition 
improved cognitive and motor deficits in mice model of HD, interestingly a 
recent study suggested that caspase-2-mediated tau cleavage results in a 
soluble truncated tau that adversely affects synaptic function and cognitive 
performance in HD patients (Liu et al., 2019). Understanding the mechanisms 
underlying their interactions and contributions to disease progression is 
crucial for developing targeted therapies for HD. 

Creutzfeldt-Jakob disease 
CJD is a rare and fatal neurodegenerative disorder and the most common 
human prion disease with a prevalence of one individual per million per year 
worldwide (Iwasaki, 2017; Sitammagari and Masood, 2022). Prion diseases, 
previously known as transmissible spongiform encephalopathy are a group of 
neurodegenerative diseases that affect almost all mammals. In prion diseases, 
the pathological form of prion protein is able to transmit the disease (Gough 
and Maddison, 2010). A significantly increased CSF tau protein has been 
reported in CJD patients (58-fold) compared to healthy controls, while CSF 
Aβ42 level was decreased in CJD patients (Kapaki et al., 2001). Moreover, 
abundant Aβ and marginal prion deposits (an inverse association) also have 
been reported in some CJD patients; in addition, CSF tau level showed a 
negative association with cognitive performance and a positive correlation 
with disease severity in CJD patients, indicating the potential use of CSF 
tau as a biomarker of neuronal damage (Debatin et al., 2008; Cohen et al., 
2016). These findings indicate that while CJD shares some pathological 
features with other neurodegenerative diseases, such as the presence of tau 
pathology, it also exhibits unique characteristics, including decreased levels 
of Aβ42. The abnormal accumulation of prion proteins and the associated 
neurodegeneration are the key hallmarks of CJD. Moreover, further research 
is needed to better understand the mechanisms of CJD and to explore the 
potential of CSF tau and other biomarkers as diagnostic and prognostic tools.

Wilson’s disease 
WD is a rare genetic disorder with a prevalence of 1 in 30,000 (based on 
limited available data) (Sandahl et al., 2020). WD is characterized by abnormal 
accumulation of copper (Cu) in the liver, brain, and other vital organs and with 
several symptoms ranging from fatigue to difficulty with speech, controlling 
movements, or muscle stiffness. Disordered Cu metabolism is also associated 
with other neurodegenerative diseases such as AD and PD (Bandmann et 
al., 2015). Studies reported that Cu binds to Aβ and decreases its clearance 
from blood-brain barrier, therefore leading to Aβ deposition; moreover, Cu 
also increases Aβ production and inflammation (Syme et al., 2004; Singh et 
al., 2013). Cu also can bind to tau protein and may induce its aggregation, 
moreover, serum levels of tau protein also have been found to be increased 
in patients with WD, and are believed to be a promising biomarker of axonal 
impairment and possible neuronal damage in patients with WD (Soragni 
et al., 2008; Lekomtseva et al., 2019). These findings highlight the complex 
interactions between copper metabolism and the accumulation of Aβ and 
tau proteins in WD. Further research is needed to better understand the 
underlying mechanisms linking copper dysregulation to Aβ and tau pathology 
in WD, as well as its implications for disease progression and potential 
therapeutic interventions that may involve targeting copper homeostasis.

Conclusion
Aβ and tau protein are well-established pathogenic factors in several 
neurodegenerative diseases, particularly in AD; however, a growing body 
of evidence has indicated the presence of these factors in other diseases 
and provided molecular mechanisms underlying their aggregation and 

pathogenesis. However, research about the role of these pathological 
factors in other diseases is limited. The reasons for the alteration of protein 
expression and modification in these diseases are multifactorial and may 
vary depending on the specific condition. One possible explanation is that 
Aβ and tau proteins are involved in various cellular processes beyond their 
roles in neurodegeneration. They participate in signaling pathways, synaptic 
function, and neuronal plasticity, and their dysregulation can contribute to 
pathological processes in different diseases. For example, in cardiovascular 
diseases, Aβ and tau may be involved in vascular dysfunction and contribute 
to cerebrovascular pathology. In diabetes, these proteins may contribute to 
neuronal damage and cognitive impairment associated with the disease. The 
presence of Aβ and tau protein alterations in these diseases may indicate 
the potential involvement of neurodegenerative mechanisms, but their 
presence alone does not appear to be specific. However, these proteins may 
play a critical role in cellular dysfunction and contribute to the progression of 
pathology specific to each condition.

Most studies are focused on altered levels of Aβ and tau protein and also 
phosphorylation of tau protein in disease; however, other PTMs such as 
acetylation and truncation also play a critical role. Moreover, conformational 
changes including trans and cis conformation may induce different levels 
of toxicity, which is not well investigated in these diseases. Regarding their 
potential as diagnostic and therapeutic biomarkers, further research is 
needed. While Aβ and tau have been extensively studied in the context 
of AD, their use as biomarkers in other diseases is still being explored. It is 
important to consider the specificity and sensitivity of these biomarkers in 
different conditions, as well as their correlation with disease progression and 
response to treatment. Utilizing Aβ and tau as diagnostic and therapeutic 
markers in non-neurodegenerative diseases may require tailored approaches 
and comprehensive evaluation to establish their clinical utility. Along with 
Aβ and tau protein, upstream regulators of these factors such as mTOR 
signaling and Pin1 have been suggested as other potential therapeutic targets 
to slow or prevent disease progression and ameliorate disease symptoms. 
Overall, the presence of Aβ and tau protein alterations in diseases beyond AD 
suggests shared mechanisms and potential contributions to pathogenesis. 
Further research is necessary to unravel the specific roles of these proteins in 
different conditions, assess their diagnostic value, and explore their potential 
as therapeutic targets. 
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