
UNSUPERVISED DOMAIN ADAPTION WITH ADVERSARIAL 
LEARNING (UDAA) FOR EMPHYSEMA SUBTYPING ON 
CARDIAC CT SCANS: THE MESA STUDY

Jie Yang1, Thomas Vetterli1, Pallavi P. Balte2, R. Graham Barr2,3, Andrew F. Laine1, Elsa D. 
Angelini1,4

1Department of Biomedical Engineering, Columbia University, NY, USA

2Department of Medicine, Columbia University Medical Center, New York, NY, USA

3Department of Epidemiology, Columbia University Medical Center, New York, NY, USA

4NIHR Imperial BRC, ITMAT Data Science Group, Imperial College, London, UK

Abstract

Emphysema quantification and sub-typing is actively studied on cohorts of full-lung high-

resolution CT (HRCT) scans, with promising results. Transfer of quantification and classification 

tools to cardiac CT scans, which involve 70% of the lungs, is challenging due to lower image 

resolution and degradation of textural patterns. In this study, we propose an original deep-learning 

domain-adaptation framework to use a pre-existing dictionary of lung texture patterns (LTP), 

learned on gold-standard full-lung HRCT scans, to label emphysema regions on cardiac CT scans. 

The method exploits convolutional neural networks (CNNs) trained for: 1) supervised lung texture 

classification on synthetic cardiac images, and 2) adversarial learning to discriminate between real 

and synthetic cardiac images. Combination of the classification and adversarial tasks enables to 

label real cardiac CT scans, and is evaluated on the MESA cohort (N = 15,357 scans). Our results 

show that image features derived from the adversarial training preserve the labeling accuracy on 

synthetic scans. LTP histogram signatures generated on 4,315 longitudinal pairs of cardiac CT 

scans, show high level of consistency over time and scanner generations. The ability to robustly 

label emphysema texture patterns on cardiac CT scans will enable large-scale longitudinal studies 

over 10 years of follow-up, for better understanding of the disease progression.

Keywords

Lung CT; emphysema; texture analysis; CNN; domain adaptation; adversarial learning

1. INTRODUCTION

Pulmonary emphysema can be characterized by specific texture patterns on full-lung CT 

images. Supervised [1, 2] and unsupervised [3, 4, 5] learning of these texture patterns 

is an active research field. In our previous study [5] we have established a set of robust 

emphysema-specific spatially-localized lung texture patterns (sLTPs) on full-lung high-

resolution CT (HRCT) scans, using a dedicated parcellation of the lung shape to introduce 

location information in lung texture learning. So far, largely due to the limited availability 
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of high-quality longitudinal full-lung CT data, emphysema texture patterns have not been 

studied in longitudinal setting, while this is crucial for understanding disease progression.

The Multi-Ethnic Study of Atherosclerosis (MESA) [6] study consists of 6,814 subjects 

screened with cardiac CT scans at baseline (Exam 1, 2000-2002) and follow-ups (Exams 

2-4, 2002-2008). Among these subjects, 3,965 were enrolled in the MESA Lung study, and 

underwent cardiac CT and gold-standard full-lung HRCT scanning in Exam 5 (2010-2012). 

This large dataset provides an invaluable opportunity for population-level longitudinal study 

of emphysema texture patterns. Emphysema quantification on cardiac CT scans was shown 

in [7] to have high reproducibility, high correlation with full-lung HRCT-based measures, 

and significant associations with risk factors of lung disease in population studies [8, 9]. 

But a straightforward application of either unsupervised learning or labeling of cardiac scans 

with the predefined sLTPs is hindered by the following factors. 1) MESA is a general 

population study thus contains insufficient COPD cases to apply the sLTP learning directly; 

2) CT image quality in MESA is heterogeneous: cardiac scans in Exam 1-4 are axial CT 

scans collected using one EBT scanner and six types of MDCT scanners; while scans in 

Exam 5 were collected with helical CT scanners; 3) Cardiac scanning protocols differ from 

full-lung HRCT scans; The average slice thickness is 2.82 mm vs. 0.65 mm for cardiac vs. 

full-lung HRCT scans, which leads to downgraded lung texture details in cardiac scans; 4) 

The field of view (FOV) in cardiac scans only includes the bottom 70% of the lungs, which 

prevents generating precise location information of lung textures.

To label sLTPs in cardiac scans, one option could be to register cardiac and full-lung scans, 

and learn a discriminative model, such as a convolutional neural network (CNN) model, to 

classify the cardiac regions of interest (ROIs) using the sLTP labels in registered full-lung 

scans as ground truth. However, such registration is challenging given the differences in 

FOVs. Moreover, cardiac CT scans in earlier MESA exams do not have paired full-lung 

HRCT scans, thus generalization to heterogeneous scanner types cannot be guaranteed with 

such approach. To solve this problem, we propose the following original pipeline: we first 

synthesize cardiac CT scans from full-lung HRCT scans with ground truth sLTP labels and 

learn a CNN model for sLTP labeling on these synthetic cardiac scans. The synthetic scans 

inevitably present domain differences from real cardiac CT scans. For robust sLTP labeling 

on real cardiac scans, we further propose a CNN-based unsupervised domain adaptation 

with adversarial learning (UDAA). The UDAA module aims to fool an auxiliary domain 

discriminator at differentiating synthetic and real cardiac scans, thus enabling to learn 

domain-invariant feature representations. We apply our proposed UDAA framework to label 

4,315 pairs of longitudinal cardiac CT scans, and test its robustness with respect to image 

domain differences.

2. METHOD

2.1. Data Cohort and Preprocessing

We exploit ten sLTPs identified by applying the method in [5] to the SPIROMICS 

[10] full-lung HRCT dataset. SPIROMICS involves 3,200 subjects that are mostly heavy 

smokers with COPD. In this work, we aim to label the MESA cohort, with N = 15,357 

longitudinal cardiac scans as detailed in Table 1. sLTP labeling requires a pre-segmentation 
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of emphysema regions. We use the hidden Markov measure field (HMMF) model [11], 

which was shown to be able to handle scanner and subject variability in the HRCT and 

cardiac CT scans [12]. ROIs are extracted from cardiac scans, with a size of 25×25×25 

mm3 (36×36×8 voxels) and with percent emphysema larger than the upper limit of normal 

(ULN) of emphysema. The ULN values were defined by the reference equation derived 

from healthy never-smokers to account for known demographical differences in percent 

emphysema [13].

From the full-lung HRCT scans, we generate synthetic cardiac CT data by down-sampling 

images along the superior-inferior axis with a factor of 5 (the ratio of average full-lung vs. 

cardiac scan slice thickness), and keeping the bottom 2/3 of the lung. The superior FOV 

cutting planes of intra-subject longitudinal cardiac and synthetic cardiac scans are aligned, 

by segmenting the main bronchi in each scan as the physiological landmark, finding the 

superior axial slice levels that best match, and cutting all FOVs to the matched levels. 

Coronal views of a full-lung HRCT scan, a cardiac CT scan, and a synthetic cardiac CT scan 

are displayed in Fig. 1 (A).

2.2. CNN to Label Synthetic Cardiac ROIs

We first train a sLTP classifier on ROIs from synthetic cardiac scans, which are 

associated with ground-truth labels without requiring registration. Our CNN model used 

for sLTP labeling is illustrated in Figure 1 (B), which consists of interleaved convolutional 

(Conv) layers and max-pooling layers, and finally fully-connected (FC) layers. In our 

implementation, we choose small-sized kernels (3×3×3) in Conv and maxpooling layers 

to integrate information in small 3D neighborhood, following the size of textons as in [5]. 

A stride of 2 is used in max-pooling layers. Rectified linear units (ReLU) are used for the 

non-linear activation functions. We use a relatively shallow architecture, consisting of two 

3D Conv layers and two FC layers, which proved sufficient in our experiments to achieve 

stable and high-accuracy sLTP labeling without introducing too much variance. The number 

of kernels in each layer is indicated in Figure 1 (B), which were selected via grid search. 

We carry over this CNN model to the UDAA module in Figure 1 (C), and split it into the 

fully-convolutional component NNf, as the feature extractor, and the FC component NNc, as 

the sLTP classifier.

2.3. UDAA Module

2.3.1. Adversarial Domain Discriminator—We propose to use unsupervised and 

adversarial domain adaptation introduced in [14] for the labeling of ROIs from real 

cardiac CT scans. Unsupervised domain adaptation is a method that learns from samples 

and associated labels in a source domain DS (here, ROIs from synthetic cardiac scans):

S = {(xi, yi)}i = 1
nS ∼ DS, and applies the learned model to unannotated samples from a 

different target domain DT (here, ROIs from real cardiac cardiac scans): T = {xi}i = 1
nT ∼ DT. 

The goal of the learning task is to build a classifier α with a low target risk 

R(η) = Pr(x, y) ∼ DT(η(x) ≠ y).

The proposed adversarial training module is illustrated in Figure 1 (C). The CNN feature 

extractor NNf is used to generate feature representations h(·) for both synthetic and real 
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cardiac ROIs. Only features from synthetic ROIs are used to train the sLTP classifier NNc. 

The NNf and NNc form together a standard feed-forward network architecture. Then, a 

third neural network component, called the domain discriminator (noted NNd), is added 

into the framework, which takes all h(·) as input and tries to determine whether it comes 

from DS or DT. Such discrimination serves as an indicator of how much source-specific the 

representation h(·) is. The domain discriminator NNd is connected to the feature extractor 

NNf via a gradient reversal layer [14], which multiplies the gradient by a negative constant 

during the backpropagation to NNf. Gradient reversal ensures that feature distributions over 

the two domains DS and DT are forced to be similar, thus resulting in domain-invariant 

features.

NNc is optimized using a categorical cross-entropy loss function Lclass, whereas NNd is 

optimized using a binary cross-entropy loss function Ldomain. The adversarial training 

process minimizes the total loss function Ltotal which simultaneously maximizes domain 

discrimination loss and minimizes sLTP classification loss, as:

Ltotal = Lclass − αLdomain

(1)

where α is a positive weight that defines the relative importance of the domain-adaptation 

task for the sLTP classifier. During training, α is initiated at 0 and is gradually increased up 

to αmax using the following schedule [14]:

α = 2 ⋅ αmax
1 + exp( − γ ⋅ p) − 1

(2)

where γ was set to 10, and p is the training progress, linearly increasing from 0 to 1. This 

strategy allows the NNd to be less sensitive to noisy signal at the early training stages. 

The weight αmax is determined by maximizing the ACCtotal = ACCclass − ACCdomain metric in the 

validation set, where ACCclass is the sLTP classification accuracy and ACCdomain is the 

domain classification accuracy.

2.3.2. Domain Discrimination in Longitudinal Setting—While the domain 

discriminator does not require registered inputs in DS and DT, there is a risk that the 

learning process is being driven by population-differences rather than domain-differences if 

the sampling is not regulated. We therefore enforce sampling of ROIs per training batch to 

come from the same subjects and similar locations, matching the relative distance vectors di 

between the center voxels of ROIs xi to the lung mask bounding box (hence not using fine 

registration). In our longitudinal setting, NNd needs to discriminate synthetic cardiac ROIs 

in MESA Exam 5 from real cardiac ROIs in earlier exams. We further constrain the ROIs 

sampling for training NNd, such that the percent emphysema difference is less than 5% for 

two ROIs xi ∈ S and xj ∈ T, if xi and xj come from same subjects longitudinal scans with |di 

− dj| < 0.1. This excludes pairing ROIs with drastic changes in inflation level or emphysema 

progression, which may introduce some bias when training NNd.
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3. RESULTS

3.1. Experimental Setting

We use all full-lung HRCT scans and cardiac CT scans in MESA that have ULN values of 

percent emphysema [13]. This resulted in N = 2,837 subjects in full-lung Exam 5, which we 

randomly divide into training Strain, validation Sval and test Stest sets with a ratio of 3:1:1. 

In longitudinal cardiac exams, subjects belonging to Strain and Sval are used to optimize 

the UDAA framework, while subjects belonging to Stest and subjects not having HRCT 

full-lung Exam 5 (i.e. unseen during training and validation) are used as longitudinal test 

sets to evaluate the sLTP labeling performance. The final number of cardiac scans evaluated 

in this study is reported in Table 1. To measure the influence of the domain-adaptation task 

in the UDAA module, we also test a source-only CNN training (i.e. training only NNf and 

NNc using the source synthetic scans, and applying the trained model to real cardiac scans). 

In validation steps, we measure ACCdomain for the source-only CNN model by adding a 

domain classifier similar to NNd, but setting its gradient to zero when backpropagating to 

NNf, so that the domain classifier does not impose any effect on the feature extractor.

3.2. Training and Validation

We trained the UDAA domain adaptation module between synthetic cardiac scans and three 

target real cardiac scanning conditions (i.e. domains): 1) helical CT scans in Exam 5; 2) 

MDCT scans in Exam 1-4; and 3) EBT scans in Exam 1-4. We report in Table 2 the overall 

average values for ACCclass, ACCdomain and the associated αmax for our best model in Sval. 

From Table 2, we can see that the UDAA module is able to generate CNN features that are 

less distinguishable by the domain discriminator (lower ACCdomain values), while resulting 

in only minor sacrifice in the accuracy of sLTP classification task on the source synthetic 
domain.

3.3. sLTP labeling on Longitudinal Cardiac Scans

We labeled all the test cardiac scans in MESA Exam 1-5. Longitudinal consistency of sLTP 

labeling is evaluated on intrasubject pairs of scans (cardiac vs. synthetic or cardiac vs. 

cardiac) acquired within a maximum time lapse of 48 months.

3.3.1 Reproducibility of sLTP histograms—We compare sLTP histograms between: 

1) Synthetic cardiac scans in Exam 5 (ground truth) vs. real cardiac scans in Exam 5; 2) 

Synthetic cardiac scans in Exam 5 vs. longitudinal cardiac scans in Exam 4; 3) Longitudinal 

pairs of real cardiac scans from Exams 1-4 (denoted as ExB for baseline vs. ExF for 

follow-up), with a time lapse shorter than 48 months. In MESA Exams 1-4, we report 

separate measures for MDCT and EBT scanners, to evaluate the robustness of our proposed 

framework versus scanner types. Longitudinal scan pairs with overall non-emphysema 

proportion changing by more than 20% were excluded from our evaluation. The following 

metrics are used to compare the sLTP histograms between pairs of scans: 1) χ2 distance, 

2) sLTP-level intra-class correlations with respect to the scan in Exam 5, and 3) sLTP-level 

Pearson correlations for longitudinal scans.
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Results are reported in Table 3, with correlation coefficients computed only on the Nk sLTPs 

that were present in at least twenty pairs of scans (out of Np pairs of scans being tested), 

for the sake of statistical power. Reported sLTP-level values consist of mean, minimum 

and maximum among the Nk sLTPs. Statistical differences between the source-only CNN 

model and the UDAA model were tested using t-test. Significant differences are observed 

between the two models generally when there is scanner-type change between longitudinal 

CT exams, and the proposed UDAA model always achieves better reproducibility. If there is 

no scanner-type change (same domain), reproducibility is similar for both models, which is 

expected.

3.3.2 Spatial consistency of sLTP labels—we divide each left and right lung 

bounding boxes into 8 lung zones (superior/inferior, anterior/posterior, medial/lateral), and 

construct a histogram of 8 bins for each sLTP per lung. Then we compute the χ2 distances 

between the longitudinal pairs of cardiac scans in Exam 1-4 studied in Table 3. We again 

compare separately ExB-MDCT vs. ExF-MDCT, ExB-EBT vs. ExF-EBT and ExB-EBT vs. 

ExF-MDCT scans. We found that χ2 distances are significantly smaller (i.e. better) with the 

proposed UDAA model for respectively 3, 4, 3 sLTPs, while the other sLTPs do not show 

significant difference between UDAA and the source-only CNN model.

4. DISCUSSION

In this work, we proposed an unsupervised domain adaptation with adversarial learning 

(UDAA) framework to label cardiac CT scans with emphysema-specific lung texture 

patterns (sLTPs) previously learned on full-lung HRCT scans. Translation to cardiac scans 

relies on synthetic cardiac scans generated from MESA HRCT scans previously labeled with 

sLTPs. These labels are used as our ground-truth for the supervised training component. 

Domain adaptation is exploited in an unsupervised context to transition from synthetic to 

real cardiac scans. Comparison of sLTP labeling on intra-subject pairs of (cardiac, full-lung 

HRCT) scans from the same scanning session, and on longitudinal cardiac scans acquired 

within a maximum time lapse of 48 months, show significantly better consistency with 

the UDAA framework than naively training a CNN model with synthetic-only data. To 

our knowledge, this is the first study on longitudinal subtyping of emphysema patterns 

on cardiac CT scans. Such tool can enable large-scale multi-sites longitudinal studies 

of emphysema subtypes and could potentially advance the understanding of emphysema 

progression and COPD. Future work will focus on the association of sLTP longitudinal 

progression patterns with clinical measures and genomic data.
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Fig. 1: 
Illustration of the UDAA framework: (A) Generation of synthetic cardiac CT scans; (B) 

CNN architecture for sLTP labeling on synthetic cardiac CT scans; (C) Domain adaptation 

component to learn discriminative image features between synthetic and real cardiac scans.
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Table 2:

Validation accuracy.

ACCclass ACCdomain

Domain CNN UDAA CNN UDAA (αmax)

Helical

0.898

0.888 0.655 0.560 (4.5)

MDCT 0.875 0.764 0.639 (7.0)

EBT 0.867 0.829 0.603 (7.5)

ACCclass = sLTP classification accuracy on synthetic ROIs; ACCdomain = domain classification accuracy (real vs. synthetic ROIs).
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Table 3:

Evaluation of reproducibility of sLTP histograms on longitudinal scan pairs acquired within a time lapse <= 48 

months.

Np Nk χ2 Distance Correlation: Mean [Min, Max]

CNN UDAA CNN UDAA

Ex5-Syn.
Ex5-Helical 369 8 2.81 2.41 0.73 [0.46, 0.90] 0.79 [0.52, 0.90]

Ex5-Syn.
Ex4-MDCT 51 6 4.61 3.33 0.50 [0.19, 0.79] 0.60 [0.28, 0.81]

Ex5-Syn.
Ex4-EBT 73 6 5.10 4.60 0.57 [0.14, 0.81] 0.59 [0.17, 0.82]

ExB-MDCT
ExF-MDCT 1,812 7 1.81 1.76 0.80 [0.67, 0.86] 0.82 [0.68, 0.90]

ExB-EBT
ExF-EBT 1,839 10 2.15 2.10 0.76 [0.55, 0.90] 0.77 [0.59, 0.92]

ExB-EBT
ExF-MDCT 171 8 4.69 3.12 0.53 [0.15, 0.84] 0.67 [0.42, 0.85]

Bold = significantly better performance (p < 0.05).
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