Skip to main content
. 2021 Jun 12;33(33):2007285. doi: 10.1002/adma.202007285

Table 3.

Photocurrents of doped CuO, and CuO composites photoelectrodes prepared by different synthesis procedures for PEC water splitting

Sn. Type and morphology of photocathode Fabrication process Photocurrent density Ref.
1 2 at% Li doped CuO Flame spray pyrolysis 1.69 mA cm−2 at −0.55V versus Ag/AgCl [ 227 ]
2 Ni/CuO fibers Electrospinning 2.6 mA cm−2 at −0.5V versus Ag/AgCl [ 228 ]
3 Al‐incorporated CuO (CuO:Al) Radio frequency 3.7 mA cm−2 at 0V versus RHE [ 229 ]
4 P(CuO/CuO:Al)/nZnO:Al/TiO2/Au–Pd Radio frequency 5.4 mA cm−2 at 0V versus RHE [ 229 ]
5 Cu2O/CuO nanorods Physical vapor deposition 0.24 mA cm−2 at −0.5 V versus Ag/AgCl [ 230 ]
6 Ni‐doped CuO nanorods Chemical bath deposition 1.75 mA cm−2 at −0.55V versus SCE [ 231 ]
7 Cu/Cu2O/CuO nanowires Thermal oxidation 1.8 mA cm−2 at 0V versus RHE [ 118 ]
8 CuO/Cu2O Electrodeposition + annealing 0.451 mA cm−2 at −0.3V versus Ag/AgCl [ 232 ]
9 CuO/Cu2O grass appendage‐like Electrodeposition 1.44 mA cm−2 at −0.7 V versus Ag/AgCl [ 233 ]
10 CuO/SrTiO3 nanostructure Sol–gel spin‐coating 1.85 mA cm−2 at −0.9 V versus SCE [ 234 ]
11 Cu2O/CuO/WO3 Electrodeposition and annealing 1.9 mA cm−2 at 0 V versus RHE [ 235 ]
12 CuO/CuWO4 Electrodeposition and annealing 2.8 mA cm−2 at 0 V versus RHE [ 235 ]
13 Cu2O/CuO composite Electrodeposition followed by anodization 1.54 mA cm−2 at 0 V versus RHE [ 220 ]
14 Cu2O/CuO bilayered composites Electrodeposition and a subsequent thermal oxidation 3.15 mA cm−2 at 0.4 V versus RHE [ 35 ]
15

ZnO/CuO branched

nanowires

Thermal oxidation and hydrothermal growth methods 1.3 mA cm−2 at 0 V versus RHE [ 206 ]
16 CuO/ZnO nanorod nano branch Direct thermal oxidation of Cu nanorods 0.9 mA cm−2 at 0.5 V versus RHE [ 65 ]
17 CuO/ZnO core/shell heterostructure NWs Oxidation method followed by thermal decomposition 1.54 mA cm−2 at 1 V versus RHE [ 47 ]
18 p‐CuO/n‐ZnO heterojunction nanoarrays Water bath reaction process together with the atomic layer deposition (ALD) technology 0.9 mA cm−2 at 0.2 V versus RHE [ 222 ]
19 CuO/ZnO nanowire Electro‐deposition of Cu Film followed by a subsequent chemical oxidation and dip‐coating methods 8.1 mA cm−2 at 0 V versus RHE [ 223 ]
20 CuO/CdS thin film Chemical bath deposition followed by ALD‐TiO2 onto the CuO thin film 1.68 mA cm−2 at 0 V versus RHE [ 224 ]
21 CuO nanorod/Al2O3 Modified‐chemical bath deposition followed by thermal evaporation 2.26 mA cm−2 at 0.55 V versus, SCE [ 226 ]
22 CuO nanofibers Electrospinning 0.16 mA cm−2 at 0.4 V versus RHE [ 200 ]
23 Ti‐alloyed CuO RF magnetron co‐sputtering 0.2 mA cm−2 at −0.3 V versus RHE [ 216 ]
24 CuO/Pd nanoparticles Solution synthesis, spin‐coating, and thermal treatment processes 0.8 mA cm−2 at 0.44 V versus RHE [ 54 ]
25 WO3/CuO heterojunction Electrodeposition 0.18 mA cm−2 at −0.7 V versus RHE [ 221 ]
26 Cu2O/CuO decorated with nickel Electrolysis deposition, thermal annealing in air and spin‐coating processes 4.3 mA cm−2 at 0 V versus RHE [ 208 ]
27 CuO photoelectrode with Ni‐doped seed layer M‐CBD process 1.33 mA cm−2 at 0 V versus RHE [ 58 ]
28 CuO/Cu2O shell/core heterostructure Electrochemical anodization + annealing 1.9 mA cm−2 at 0.3 V versus Ag/AgCl [ 218 ]
29 Cu2O/CuO Electrolysis+ annealing 2.1 mA cm−2 at 0 V versus RHE [ 208 ]
30 Ni decorated Cu2O/CuO Electrolysis + hydrothermal + spin‐coating 4.3 mA cm−2 at 0 V versus RHE [ 208 ]
31 TiO2 in Cu2O–CuO heterojunction Anodising Cu foil: TiO2/CuO 2.4 mA cm−2 at 0 V versus RHE [ 236 ]
32 Cu2O/CuO nanowires Calcination of the anodized Cu2O 1.3 mA cm−2 at 0 V versus RHE [ 236 ]