Table 3.
Sn. | Type and morphology of photocathode | Fabrication process | Photocurrent density | Ref. |
---|---|---|---|---|
1 | 2 at% Li doped CuO | Flame spray pyrolysis | 1.69 mA cm−2 at −0.55V versus Ag/AgCl | [ 227 ] |
2 | Ni/CuO fibers | Electrospinning | 2.6 mA cm−2 at −0.5V versus Ag/AgCl | [ 228 ] |
3 | Al‐incorporated CuO (CuO:Al) | Radio frequency | 3.7 mA cm−2 at 0V versus RHE | [ 229 ] |
4 | P(CuO/CuO:Al)/nZnO:Al/TiO2/Au–Pd | Radio frequency | 5.4 mA cm−2 at 0V versus RHE | [ 229 ] |
5 | Cu2O/CuO nanorods | Physical vapor deposition | 0.24 mA cm−2 at −0.5 V versus Ag/AgCl | [ 230 ] |
6 | Ni‐doped CuO nanorods | Chemical bath deposition | 1.75 mA cm−2 at −0.55V versus SCE | [ 231 ] |
7 | Cu/Cu2O/CuO nanowires | Thermal oxidation | 1.8 mA cm−2 at 0V versus RHE | [ 118 ] |
8 | CuO/Cu2O | Electrodeposition + annealing | 0.451 mA cm−2 at −0.3V versus Ag/AgCl | [ 232 ] |
9 | CuO/Cu2O grass appendage‐like | Electrodeposition | 1.44 mA cm−2 at −0.7 V versus Ag/AgCl | [ 233 ] |
10 | CuO/SrTiO3 nanostructure | Sol–gel spin‐coating | 1.85 mA cm−2 at −0.9 V versus SCE | [ 234 ] |
11 | Cu2O/CuO/WO3 | Electrodeposition and annealing | 1.9 mA cm−2 at 0 V versus RHE | [ 235 ] |
12 | CuO/CuWO4 | Electrodeposition and annealing | 2.8 mA cm−2 at 0 V versus RHE | [ 235 ] |
13 | Cu2O/CuO composite | Electrodeposition followed by anodization | 1.54 mA cm−2 at 0 V versus RHE | [ 220 ] |
14 | Cu2O/CuO bilayered composites | Electrodeposition and a subsequent thermal oxidation | 3.15 mA cm−2 at 0.4 V versus RHE | [ 35 ] |
15 |
ZnO/CuO branched nanowires |
Thermal oxidation and hydrothermal growth methods | 1.3 mA cm−2 at 0 V versus RHE | [ 206 ] |
16 | CuO/ZnO nanorod nano branch | Direct thermal oxidation of Cu nanorods | 0.9 mA cm−2 at 0.5 V versus RHE | [ 65 ] |
17 | CuO/ZnO core/shell heterostructure NWs | Oxidation method followed by thermal decomposition | 1.54 mA cm−2 at 1 V versus RHE | [ 47 ] |
18 | p‐CuO/n‐ZnO heterojunction nanoarrays | Water bath reaction process together with the atomic layer deposition (ALD) technology | 0.9 mA cm−2 at 0.2 V versus RHE | [ 222 ] |
19 | CuO/ZnO nanowire | Electro‐deposition of Cu Film followed by a subsequent chemical oxidation and dip‐coating methods | 8.1 mA cm−2 at 0 V versus RHE | [ 223 ] |
20 | CuO/CdS thin film | Chemical bath deposition followed by ALD‐TiO2 onto the CuO thin film | 1.68 mA cm−2 at 0 V versus RHE | [ 224 ] |
21 | CuO nanorod/Al2O3 | Modified‐chemical bath deposition followed by thermal evaporation | 2.26 mA cm−2 at 0.55 V versus, SCE | [ 226 ] |
22 | CuO nanofibers | Electrospinning | 0.16 mA cm−2 at 0.4 V versus RHE | [ 200 ] |
23 | Ti‐alloyed CuO | RF magnetron co‐sputtering | 0.2 mA cm−2 at −0.3 V versus RHE | [ 216 ] |
24 | CuO/Pd nanoparticles | Solution synthesis, spin‐coating, and thermal treatment processes | 0.8 mA cm−2 at 0.44 V versus RHE | [ 54 ] |
25 | WO3/CuO heterojunction | Electrodeposition | 0.18 mA cm−2 at −0.7 V versus RHE | [ 221 ] |
26 | Cu2O/CuO decorated with nickel | Electrolysis deposition, thermal annealing in air and spin‐coating processes | 4.3 mA cm−2 at 0 V versus RHE | [ 208 ] |
27 | CuO photoelectrode with Ni‐doped seed layer | M‐CBD process | 1.33 mA cm−2 at 0 V versus RHE | [ 58 ] |
28 | CuO/Cu2O shell/core heterostructure | Electrochemical anodization + annealing | 1.9 mA cm−2 at 0.3 V versus Ag/AgCl | [ 218 ] |
29 | Cu2O/CuO | Electrolysis+ annealing | 2.1 mA cm−2 at 0 V versus RHE | [ 208 ] |
30 | Ni decorated Cu2O/CuO | Electrolysis + hydrothermal + spin‐coating | 4.3 mA cm−2 at 0 V versus RHE | [ 208 ] |
31 | TiO2 in Cu2O–CuO heterojunction | Anodising Cu foil: TiO2/CuO | 2.4 mA cm−2 at 0 V versus RHE | [ 236 ] |
32 | Cu2O/CuO nanowires | Calcination of the anodized Cu2O | 1.3 mA cm−2 at 0 V versus RHE | [ 236 ] |