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years later, Tsai and his colleagues dis-
covered a series of stable quasicrystals in 
systems including Al–Cu–Fe, Al–Ni–Co, 
Al–Pd–Mn, Yb–Cd, and Yb–Cd–Mg.[2–6] 
Since then, 100 or so new stable qua-
sicrystals have been discovered. In the 
history of quasicrystal research, the dis-
covery of new quasicrystals has unearthed 
new and interesting phenomena such as 
anomalous electronic properties,[7,8] insu-
lating behaviors,[9] valence fluctuation,[10] 
quantum criticality,[11] superconductivity,[12] 
and so on. However, the pace of the dis-
covery of new quasicrystals has slowed sig-
nificantly in recent years. Figure 1a shows 
the annual trend of new stable quasicrys-
tals found in aluminum alloy systems. 
From 1986 to 1999, new stable quasic-
rystals were discovered at a rate of about 
two per year. On the other hand, in recent 
years, the frequency of new discoveries 
has dramatically decreased. This recent 
trend is mainly due to the fact that no 
clear guiding principles have been estab-
lished for the synthesis of new stable qua-

sicrystals. In terms of the stability mechanism of quasicrystals, 
the Hume-Rothery rules,[13] that is, itinerant valence electron 
concentration, e/a, and atomic size factor, have been consid-
ered.[14,15] However, these are only necessary conditions and 
are insufficient on their own. Thus, we aimed to accelerate the 
discovery of new stable quasicrystals by introducing machine 
learning to the field.

Quasicrystals have emerged as the third class of solid-state materials, 
distinguished from periodic crystals and amorphous solids, which have 
long-range order without periodicity exhibiting rotational symmetries that 
are disallowed for periodic crystals in most cases. To date, more than one 
hundred stable quasicrystals have been reported, leading to the discovery 
of many new and exciting phenomena. However, the pace of the discovery 
of new quasicrystals has lowered in recent years, largely owing to the lack 
of clear guiding principles for the synthesis of new quasicrystals. Here, it 
is shown that the discovery of new quasicrystals can be accelerated with a 
simple machine-learning workflow. With a list of the chemical compositions 
of known stable quasicrystals, approximant crystals, and ordinary crystals, 
a prediction model is trained to solve the three-class classification task 
and its predictability compared to the observed phase diagrams of ternary 
aluminum systems is evaluated. The validation experiments strongly support 
the superior predictive power of machine learning, with the overall prediction 
accuracy of the phase prediction task reaching ≈0.728. Furthermore, analyzing 
the input–output relationships black-boxed into the model, nontrivial 
empirical equations interpretable by humans that describe conditions 
necessary for stable quasicrystal formation are identified.

1. Introduction

This study demonstrates the potential of machine learning to 
predict stable quasicrystal compositions. Quasicrystals do not 
have the translational symmetry of ordinary crystals but have 
a high degree of order in their atomic arrangement. The first 
quasicrystal was discovered by Shechtman in 1984.[1] A few 
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Recently, a wide variety of machine-learning technologies  
has been rapidly introduced to materials science. In particular, 
high-throughput screening (HTS) across extensive libraries of 
candidate materials, which typically contain millions or even 
billions of virtually created candidates, is a promising machine-
learning application. HTS relies on the fast computation of a sta-
tistical model that describes physical, chemical, electronic, ther-
modynamic, and mechanical properties and unobserved struc-
tural features as a function of the material. Nowadays, many 
successful case studies of HTS have been reported. The range 
of applications is broad, including small organic molecules,[16–18] 
polymeric materials,[19] inorganic solid-state materials,[20–23] 
high-entropy alloys,[24,25] and bulk metallic glasses.[26,27] Can 
HTS based on machine learning also contribute to the discovery 
of quasicrystals? We seek to answer this question.

The analytical workflow of this study consists of simple 
supervised learning. The input variable of the model is a chem-
ical composition, which is characterized by a descriptor vector 
of length 232. As detailed later, the compositional descriptor 
expresses the content of elements, which is conventionally 
operated with a predefined set of element features, such as 
electronegativity and atomic weight.[28,29] The output variable 
is a class label corresponding to one of three structural cat-
egories: stable quasicrystal (QC), approximant crystal (AC), 
and “others,” which includes ordinary periodic crystals. ACs 
are periodic crystals composed of the similar local structural 
unit, such as an icosahedral cluster, as the corresponding QCs. 
Importantly, ACs are formed in nearby compositions of QCs, 
which means that their stabilization mechanisms are very sim-
ilar to each other. Hence, for clarification of their common sta-

bilization mechanism, it will be of great advantage to separate 
ACs from all the other periodic crystals that are termed “others” 
here. A list of the chemical compositions of known stable qua-
sicrystals, approximants, and ordinary crystals was used as the 
training data. We systematically evaluated the potential predict-
ability of the proposed machine-learning model for the three-
class classification problem. Furthermore, virtual screening of 
all ternary alloy systems containing aluminum and transition 
elements was conducted for the entire search space. The phase 
prediction results were compared with 30 experimental phase 
diagrams extracted from the literature, and the predictability 
was investigated in detail. The overall  accuracy of the phase 
prediction task reached approximately 0.728. Furthermore, by 
revealing the input–output landscape inherently encoded in 
the black-box model, we identified the law of compositional 
features relevant to the formation of stable quasicrystalline and 
approximant crystalline phases. This rule of thumb could be 
expressed by simple mathematical equations describing a set 
of compositional features such as the distribution of van der 
Waals radii of atoms and valence electron concentration. With 
this study, we take the first step toward enabling the data-driven 
discovery of innovative quasicrystals.

2. Results

2.1. Machine-Learning Workflow

We used a set of chemical compositions and their class labels 
for model training. The class labels were QC, AC, and “others” 
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Figure 1. Stable quasicrystals (QC) and approximants (AC) that have been discovered so far. a) Annual trend in the discovery of new thermodynami-
cally stable quasicrystals (blue) and approximant crystals (orange) in aluminum alloys. b) Distribution of the compositional dataset that was visualized 
onto a 2D space obtained by the UMAP algorithm[30] (see the Experimental Section). Stable quasicrystals, approximants, and ordinary crystals are 
color-coded by blue, orange, and green, respectively.
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representing types other than the first two. We compiled a list 
of 80 stable quasicrystals and 78 approximants from the Crys-
tallography of Quasicrystals handbook[31] (see Table S1, Sup-
porting Information and Supplementary Data (supporting file 
2) for digital data). In addition, the compositions of 10 000 
ordinary crystals were randomly extracted from the Materials 
Project database, which recorded a total of 126 335 crystals.[32] 
We also used 90 crystals from our laboratory data on failed 
quasicrystal syntheses. These instances form the class “others”. 
The detailed data preparation procedure is given in the Experi-
mental Section.

The machine-learning workflow is summarized in Figure 2. 
The features of a given composition were encoded into a 
descriptor vector of length 232. The details of the composi-
tional descriptor are described later. The model describes the 
class label as a function of the descriptor vector of a given com-
position. We built various models with random forests and 
neural networks, but since there was no significant difference 
in prediction performance, this paper presents only the former 
results. The model training procedure is detailed in the Experi-
mental Section.

For each class, approximately 80% of the total data was 
randomly selected for training (66, 60, and 8 072 for QC, AC, 
and “others”, respectively), and the remaining were used as a 
test set to measure the prediction performance (14, 18, and 2 
018 for QC, AC, and “others”, respectively). The configuration 
of hyperparameters was selected so as to optimize the overall 
prediction accuracy in the cross-validation that was looped 
within the training set (for the list of hyperparameters and 
their search range, see the Experimental Section). To mitigate 
the effect of sampling bias on the assessment of predictive per-
formance, we performed 100 random splits of the training and 
test sets and calculated the mean and variance of the resulting 
performance metrics.

2.2. Representation of Compositional Features

Here, we describe the compositional descriptor. The chemical 
formula is denoted by S S S Sc c c

K
K= 

1 2
1 2 . Each element of the 

descriptor vector of length 232 takes the form 

S f c c S Sf
K Kφ η η= … …η( ) ( , , , ( ), , ( )),

1 1  (1)

The notation Skη( ) on the right-hand side denotes a fea-
ture quantity of element Sk, such as the atomic weight, 
electronegativity, or polarizability. With the function f , the K 
element features η( )1S , …, η( )Sk  with fraction c1, …, cK were 
converted into the compositional feature. For f , we operated 
with the weighted average, weighted variance, max-pooling, 
and min-pooling as given by
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Table S2, Supporting Information provides a list of the 
58 element features that were implemented in XenonPy, a 
Python open-source platform for materials informatics that 
we developed.[33] The element feature set includes the atomic 
number, bond radius, van der Waals radius, electronegativity, 
thermal conductivity, bandgap, polarizability, boiling point, 
melting point, number of valence electrons in each orbital, 
and so on.
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Figure 2. Machine-learning workflow. The compositional features were encoded into a 232-dimensional descriptor vector, and a prediction model was 
created using a random forest classifier. The trained model predicts the class label of a given chemical composition as quasicrystal (QC), approximant 
(AC), or "others". Model training and testing were performed on the compositional features of 80 known quasicrystals, 78 approximants, and 10 090 
ordinary crystals. Finally, we performed HTS across all Al–TM–TM (TM: transition metal) alloys to generate their predicted phase diagrams. The results 
were compared with experimental phase diagrams obtained from the literature.
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2.3. Generalization Ability of the Model

We predicted the class labels of 2050 test compositions with the 100 
trained models. The confusion matrix shown in Table 1 and resulting 
performance metrics suggest that the machine-learning models 
were successful in gaining predictive capability. In this analysis, we 
examined the prediction performance based on three metrics: recall, 
precision, and F-value. These metrics quantified the predictive per-
formance for each class c of QC, AC, and “others” according to

c
c

c c

c
c

c c
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c c

c c
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+
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TP(c) denotes the number of true positives when label c is 
treated as positive and the other two classes as negative, and 
FN(c) and FP(c) represent a false negative and false positive, 
respectively. Thus, the recall rate represents the fraction of 
compositions with true class label c that could be predicted as c,  
whereas the precision represents the fraction of compositions 
predicted as label c that were actually label c. There is a tradeoff 
between the recall and precision rates. F1(c) is the harmonic 
mean of the recall and precision.

The precision and recall for the prediction of the class 
“others” reached 0.997 and 0.999, respectively. This means that 
almost perfect predictions were achieved for the binary classifi-
cation of QC/AC as a merged class versus “others”. On the other 
hand, the precision and recall were 0.722 and 0.602 for QC and 
0.731 and 0.608 for AC, respectively. Although the classification 
performance was slightly lower than that in the prediction of 
the class “others”, the trained models exhibit the generalized 
ability to identify chemical compositions that could potentially 
generate stable quasicrystals and approximant crystals.

2.4. Phase Prediction of Ternary Alloy Systems

Of the 100 models shown above, the model that achieved the 
highest prediction accuracy was selected, and high-throughput 
virtual screening of all composition spaces was performed on 
a total of 1 080 systems of Al–TM[4,5]–TM[4,5] (TM: transition 
metal) and Al–TM[4,5]–TM[6], where the numbers in square 
brackets denote the periods of the transition elements. In addi-

tion, we added a set of non-transition-metal elements {Mg, Si, 
Ga, Ge, In, Sn, Sb} in place of TM[4,5] and {Tl, Pb, Bi} in place 
of TM[6]. With a given model, the class probability of QC, AC, 
or “others” was calculated for a given chemical composition. 
For each composition, we standardized its fractions into relative 
proportions. A ternary phase diagram was gridded with 20 301 
points by dividing the interval of the composition ratio from 0 to 1  
by 200 equally spaced grid points. A label exhibiting the max-
imum probability was assigned to each grid point in the dia-
gram. In this way, stable quasicrystalline and approximant 
phases were predicted. Using this screening process, quasic-
rystalline phases were predicted to exist in 185 systems, which 
would be an overestimate. Notably, in 136 of the 185 systems, the 
predicted quasicrystalline and approximant phases coexisted in 
neighboring regions of the same diagram. This result is highly 
consistent with experimental observations, which we give exam-
ples of later.

We verified the validity of the predicted phase diagrams 
based on the experimental stable quasicrystal and approximant  
phase regions of the 30 systems that were extracted from the lit-
erature.[34–58] We found 198 papers published by Prof. Grushko’s 
group, which include ternary phase diagrams of Al–transition 
elements encompassing 64 unique alloy systems. Excluding the 
systems containing the 80 stable quasicrystal and 78 approxi-
mant compositions used for training, the remaining 30 systems 
were used for performance evaluation. Figure S2, Supporting 
Information displays all the predicted and experimental phase 
diagrams, and Figure 3 shows an example. With a given clas-
sifier, the class probability of forming quasicrystals, approxi-
mants, or others was drawn on the phase diagram of Al–Cu–
Mn.[52] To evaluate the prediction performance, the agreement 
between the three class probabilities and the experimental qua-
sicrystalline and approximant phase regions was investigated. 
For each ternary system, cG exp

 denotes the set of all grid points 
in experimental phase {QC,AC,others}exp ∈c  in a diagram. 
Using the trained model, we calculated the mean probability 
( )exp=p Y c cG  for each cexp and {QC,AC,others}∈c  by

( )
1
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exp

exp exp

G
G

G
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 (4)

p Y c Si i( )=  denotes the predicted probability that class label 
Yi of composition Si with exp∈i cG  is equal to c. The probability 
values were averaged over a given phase with grid points expt∈i cG .  
If ( )

expt
=p Y c cG  reaches a maximum at c c= exp, the prediction is 

correct. The prediction performance across the 30 alloy systems 
is summarized in Table  2. In addition, the mean probability 
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Table 1. Prediction performance for the three-class classification problem of stable quasicrystals (QC), approximants (AC), and “others”. The left 
table is the confusion matrix, and the right table reports the per-class recall, precision, and F1 metrics. The performance metrics were averaged over 
100 different bootstrap sets, and the numbers in parentheses represent the standard deviations. In Table S3, Supporting Information, we also show 
the performance evaluation results after eliminating the aluminum-containing compositions from the test instances.

Predicted class

QC AC Others Recall Precision F1

True class QC 9.63 (1.641) 3.24 (1.342) 3.13 (1.189) QC 0.602 (0.103) 0.722 (0.090) 0.650 (0.076)

AC 3.11 (1.555) 9.73 (1.805) 3.16 (1.573) AC 0.608 (0.113) 0.731 (0.089) 0.658 (0.088)

Others 0.76 (0.896) 0.42 (0.619) 2016.82 (1.024) Others 0.999 (0.001) 0.997 (0.001) 0.998 (0.001)
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Figure 3. Phase prediction of the Al–Mn–Cu system. a) Predicted phase diagram (left) and experimental phase diagram (right) of the Al–Mn–Cu 
system. The three colors denote the stable quasicrystalline phase (QC), approximant phase (AC), and “others”. Despite the lack of training instances 
for Al–Mn–Cu, the model successfully predicts the unseen stable quasicrystalline and approximant crystalline phases. b) Heatmap display of the pre-
dicted class probability of QC, AC, and “others” for the Al–Mn–Cu system. c) In order to observe the training instances relevant to the model decision 
making, we examined the distribution of training instances in the four ternary systems closest to Al–Mn–Cu.

Table 2. Phase prediction performance for the 30 Al–TM–TM (TM: transition metal) alloy systems.

Predicted class

QC AC Others Recall Precision F1

True class QC 3 1 0 QC 0.750 0.333 0.462

AC 5 13 7 AC 0.520 0.813 0.634

Others 1 2 27 Others 0.900 0.794 0.844
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of each class with respect to the three different phases in the  
30 systems is displayed in Figure 4.

The results showed a similar trend to the performance met-
rics from the previously discussed composition-level evalu-
ation (Table  1). The precision and recall were 0.333 and 0.750 
for quasicrystals, 0.813 and 0.520 for approximants, and 0.794 
and 0.900 for others, respectively. The overall prediction accu-
racy reached 0.728. As shown in Figure 4, the number of cases 
in which a quasicrystalline phase region was misclassified as 
an approximant was 1/4, and the number of cases in which 
an approximant phase was misclassified as a quasicrystal was 
5/25. On the other hand, the other regions, including the ordi-
nary crystalline phases, were almost completely predictable. 
Although the misclassification rate for quasicrystalline and 
approximant phases increased slightly, the trained model was 
found to have sufficient predictive power to be useful.

Although the misclassification rate between quasicrystalline 
and approximant phases was slightly high, we concluded that 
the model is more or less capable of identifying compositional 
regions of quasicrystals and approximant crystals. As illustrated 
in Figure 3 showing the Al–Mn–Cu phase diagram and its pre-
diction results, in many cases, the model adequately captured 
not only the positional features of the quasicrystalline and 
approximant phases but also their contour shapes (see also 
Figure S1, Supporting Information for all results). Interestingly, 
despite the lack of any training instances from the Al–Mn–Cu 
system, the model successfully predicted the two true phase 
regions. In order to identify the instances in the dataset on 
which the model relied in the training process, four other sys-
tems with the closest compositional patterns to Al–Mn–Cu were 
selected, and the distribution of the training data was examined 
(Figure  3c). The compositional closeness was evaluated based 
on the Euclidean distance of the normalized 232-dimensional 
compositional descriptor. Simple pattern matching based on 

the similarity of the input and output to the training data never 
predicted the positional and geometric features of the quasic-
rystalline and approximant phases in the Al–Mn–Cu phase 
diagram. Thus, the model involves a higher-order recognition 
mechanism than simple nearest-neighbor matching.

2.5. Hume-Rothery’s Law Autonomously Learned  
by Machine Learning

Notably, it was found that the trained models learned Hume-
Rothery’s electron concentration law,[13] which is one of the most 
widely applied empirical rules regarding the formation of stable 
quasicrystalline alloys. In 1990, Tsai et al. discovered a series of 
thermally stable quasicrystals in the Al–Cu–TM and Al–Pd–TM 
systems.[2–4] In a subsequent study, the discovered stable quasic-
rystals were found to obey Hume-Rothery’s electron concentra-
tion law on the average itinerant valence electron number e/a.[14]

Figure  5 shows the predicted and experimental phase dia-
grams for four of the 30 evaluated alloy systems as discussed 
above. In each diagram, the line where the average itinerant 
valence electron number follows e/a = 1.8 is overlaid (see ref. [59]  
for details on the calculation of e/a). Surprisingly, in all the 
systems, the straight lines overlap with the predicted and true 
regions of quasicrystals and approximant crystals. In the 30 ter-
nary alloy systems discussed above, the straight line completely 
overlapped with the predicted regions in 26 systems (Figure S1, 
Supporting Information). Note that our compositional descrip-
tors do not include e/a values; this widely known empirical rule 
occurred via the nonlinear mapping of our descriptors. If we 
can comprehensively extract such implicit rules inherent to 
the trained machine-learning model, we could obtain hypo-
thetical insights on the formation rules or mechanisms of 
quasicrystalline phases.

Adv. Mater. 2021, 33, 2102507

Figure 4. Prediction performance for the 30 different Al–TM–TM systems. The mean class probability was calculated in each of the experimental phase 
regions (top: QC, middle: AC, and bottom: “others”) using our trained random forest classifier. The bar plots shown in a transparent color represent 
phases where class label prediction based on maximum probability failed.



www.advmat.dewww.advancedsciencenews.com

2102507 (7 of 12) © 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH

2.6. Why Can the Model Predict Quasicrystals?

To determine on what basis the model determines struc-
tural classes, we analyzed the predicted class labels 
Y i Ni = …{ | 1, } in relation to the 21 925 080 hypothetical com-

positions S i Ni = …{ | 1, , } (N = 21 925 080) that were used 
in the HTS of the entire composition space of the 30 alu-
minum alloys. The model determined mathematical map 
Y f S( )=  between predicted label Y  and descriptor vector 

S S Sφ φ φ= … ∈R( ) ( ( ), , ( ))1 232
232. First, we examined the degree 

of relevance of each descriptor element Shφ ( ) (h = 1,...,232)  
with respect to predicted Y . As a quantitative measure of 
relevance, we applied the maximal information coefficient 
(MIC), a widely used measure of statistical independence 
(linear and nonlinear correlation) between two variables.[60] 
Using the dataset Y S i Ni h iφ = …{( , ( )) | 1, , }, which was produced 
from the black-box machine-learning model, we estimated 
the joint distribution P Y Shφ( )( ),  and marginal distribution 
Q Y S P Y P Sh hφ φ( ) ( )( ) ( ) ( )=, , where the latter assumes inde-
pendence between Y  and Shφ ( ). The MIC evaluates the statis-
tical independence of the hth descriptor Shφ ( ) and output Y  by 
measuring the discrepancy between P Y Shφ( )( ),  and Q Y Shφ( )( ), .  
The Kullback–Leibler divergence, which is equivalent to the 
mutual information between Shφ ( ) and Y , was employed for 
the MIC evaluation, and an adaptive binning algorithm was 
applied to approximate the two probability distributions by 
generating histograms.
Table 3 shows the top 20 most relevant descriptors as exam-

ples, which suggest that the weighted averages of the van der 
Waals radius, electronegativity, and first ionization energy are 
highly relevant to the basis of the model decision making pro-
cess. The most relevant descriptor, that is, the weighted average 
of the van der Waals radius, is consistent with the Hume-
Rothery rules, where the atomic size factor is considered to con-

tribute to the stability mechanism of icosahedral quasicrystals. 
In addition, Table  3 shows the within-class mean and within-
class variance of the subset of S i Nh iφ = …{ ( ) | 1, , } belonging to 
each {QC, AC, others}. Descriptors with larger discrepancies 
in the within-class means and smaller within-class variances 
are interpreted as having a high degree of separation between 
classes and thus a high degree of relevance to the output class 
label. Most of the listed relevant descriptors exhibited sig-
nificantly large between-class separations in terms of QC/AC 
versus “others” or QC versus AC.

Only listing highly relevant descriptors is not enough to 
clarify the basis of the model decision making process. Instead, 
we want to derive an explicit empirical equation, such as the rule 
of e/a = 1.8 for itinerant valence electron concentration. In this 
study, we focused on the binary classification task of discrimi-
nating between merged QC/AC and “others”. We calculated  
the within-class mean mh for the QC/AC group from the 
observed S i Nh iφ = …{ ( ) | 1, , } with their predicted = QC or ACY .  
It is expected that the model places a high classification prob-
ability p Y S∈( {QC, AC} | ) on any composition ratio S that sat-
isfies exactly or approximately S mh hφ ( ) = . For example, in the 
case where S is a ternary system S S Sc c cˆ

1
ˆ
2

ˆ
3

1 2 3 and the descriptor 
Shφ ( ) is of the weighted average type, we could identify the 

composition ratio c c c( ˆ , ˆ , ˆ )1 2 3  that approximately satisfies the fol-
lowing condition:

c c c c S m c c ih
i

i i
h

i

i iC ( ˆ , ˆ , ˆ ) ˆ ( ) , ˆ 1, ˆ 0( )1 2 3

1

3

1

3

η= ∑ = ∑ = ≥ ∀





= =

 (5)

where ciˆ  denotes the normalized fraction and Siη( ) is the fea-
ture value of element Si. Without any loss of generality, hC  can 
be defined for any system or other descriptor type such as the 
weighted variance. Here, we focused on the weighted average 
descriptors of the van der Waals radius (“ave:dw_radius_uff”), 

Adv. Mater. 2021, 33, 2102507

Figure 5. Predicted and experimental phase diagrams of four ternary alloy systems. The orange lines indicate the Hume-Rothery rule of valence electron 
concentration with e/a = 1.8.
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Ghosh’s scale of electronegativity (“ave:en_ghosh”), first ioni-
zation energy (“ave:first_ion_en”), number of filled p valence 
orbitals (“ave:num_p_valence”), and energy per atom in the 
T  = 0K ground state calculated by density functional theory 

(“ave:gs_energy”) among the highly relevant descriptors listed 
in Table 3. Then, we overwrote each hC  on the predicted phase 
diagrams for the 30 alloy systems. Figure  6 illustrates eight 
selected phase diagrams (see also Figure S2, Supporting 

Adv. Mater. 2021, 33, 2102507

Table 3. The 20 most relevant descriptors in the classification task for the 30 Al–TM–TM alloy systems. The first column shows the descriptor ID 
(upper) and name (lower) in XenonPy. The prefixes “ave” and “var” in the descriptor ID represent weighted average and weighted variance types, 
respectively. The last four columns show the within-class means of the QC, AC, “others”, and QC/AC-merged groups. The within-class variances 
(converted to standard deviations) are reported in parentheses.

Descriptor information MIC QC AC Others QC/AC

ave:vdw_radius_uff

Van der Waals radius from the UFF [pm] 0.43 409.05 (3.37) 406.49 (6.81) 382.30 (40.66) 406.59 (6.73)

ave:en_ghosh

Ghosh’s scale of electronegativity 0.42 0.15 (0.00) 0.15 (0.01) 0.16 (0.02) 0.15 (0.01)

ave:first_ion_en

First ionization energy [eV] 0.41 6.49 (0.09) 6.53 (0.17) 6.84 (0.58) 6.53 (0.17)

ave:mendeleev_number

Mendeleev’s number 0.41 75.94 (0.36) 75.86 (1.47) 73.32 (4.33) 75.87 (1.45)

ave:specific_heat

Specific heat at 20 °C [J g−1 mol−1] 0.40 0.74 (0.02) 0.73 (0.04) 0.66 (0.15) 0.73 (0.04)

ave:num_p_valence

Number of filled p valence orbitals 0.40 0.71 (0.06) 0.73 (0.05) 0.57 (0.25) 0.73 (0.05)

ave:num_p_unfilled

Number of unfilled p valence orbitals 0.40 3.53 (0.30) 3.63 (0.24) 2.85 (1.24) 3.63 (0.24)

ave:heat_capacity_mass

Specific heat capacity at STP [J K−1 mol−1] 0.40 0.74 (0.02) 0.73 (0.04) 0.66 (0.15) 0.73 (0.04)

ave:covalent_radius_cordero

Covalent radius by Cerdero et al. [pm] 0.39 126.06 (1.19) 126.38 (2.13) 129.51 (6.31) 126.37 (2.10)

ave:vdw_radius

Van der Waals radius [pm] 0.37 189.51 (0.55) 190.67 (1.81) 193.80 (6.33) 190.63 (1.79)

ave:gs_energy

Ground state energy at T = 0 K [eV atom−1] 0.37 −4.57 (0.18) −4.69 (0.28) −5.19 (1.12) −4.68 (0.28)

ave:thermal_conductivity

Thermal conductivity at 25 °C [W m−1 K−1] 0.36 221.35 (21.74) 201.23 (13.96) 170.72 (60.68) 201.99 (14.83)

ave:covalent_radius_slater

Covalent radius by Slater [pm] 0.35 127.92 (1.19) 128.08 (0.93) 130.40 (3.38) 128.08 (0.94)

ave:period

Period in periodic table 0.35 3.40 (0.06) 3.52 (0.19) 3.73 (0.55) 3.52 (0.19)

var:num_p_valence

Number of filled p valence orbitals [pm] 0.34 0.20 (0.02) 0.20 (0.02) 0.18 (0.07) 0.20 (0.02)

ave:num_d_valence

Number of filled d valence orbitals [pm] 0.34 2.30 (0.60) 2.08 (0.52) 3.15 (1.90) 2.09 (0.52)

ave:heat_capacity_molar

Molar heat capacity at STP [J K−1 mol−1] 0.34 24.44 (0.10) 24.47 (0.14) 24.81 (0.58) 24.47 (0.14)

ave:density

Density at 295 K [g cm−3] 0.34 4.94 (0.32) 5.55 (1.24) 6.70 (3.35) 5.53 (1.23)

var:num_p_unfilled

Number of unfilled p valence orbitals 0.34 5.09 (0.60) 4.91 (0.48) 4.60 (1.77) 4.91 (0.49)

ave:hhi_p

Herfindahl–Hirschman index (HHI) production values 0.33 1810.99 (242.60) 2106.51 (274.67) 2196.88 (706.35) 2095.30 (279.22)
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Information for the results of all 30 systems). In almost all 
systems, the straight lines hC  conditioned by the five relevant 
descriptors passed through the predicted QC and AC phase 
regions. Note that each hC  is one of the necessary conditions 
for the formation of QC and AC phases. The intersection 
of these conditions defines a set of empirical equations for 
determining the compositional ratio that forms a quasicrystal 
or approximant.

In this way, the implicit rules extracted by the machine-
learning algorithm can be encoded in a simple mathematical 
form interpretable by humans. By accumulating such empir-
ical rules, performing verifications, and pursuing theoretical 
explanations, we can gain new scientific knowledge. It is 
important to note that the empirical equations described here 
are subject to various restrictions in terms of their applicable 
domains. Specifically, they may be local rules obtained from 
the input–output of the trained model for ternary alloys of  
Al–TM–TM and thus would not be generally applicable to other 
systems. There must be many other implicit rules to discover 
from the trained model, and thus it is important to exhaustively 
extract these implicitly encoded rules and clarify their range of 
application at the same time.

3. Discussion

This study demonstrated the predictive power of machine 
learning for the identification of candidate compositions to 
form quasicrystalline and approximant alloys. The problem 
was formulated rather simply as a supervised learning task of 
classifying any given composition into one of three kinds of 
material structures: quasicrystals, approximants, and others 

representing types other than the first two. Although supervised 
learning was conducted with a conventional random forest clas-
sifier, the model trained only on a list of known compositions 
reached a high prediction accuracy. In a binary classification 
task of predicting a combined quasicrystal/approximant class 
versus others, the precision and recall reached 0.997 and 0.999, 
respectively. In addition, it was confirmed that the model can 
discriminate between quasicrystals and approximants, although 
the accuracy is slightly lower. If this approach can be used to 
narrow candidate compositions for forming quasicrystals and 
approximants, the efficiency of related materials searches 
would be greatly improved.

The predictability of machine learning for this task has been 
proven. However, before putting the approach into practice, 
some remaining questions need to be answered. The first is 
why the machine-learning models can predict the compositions 
of quasicrystals. In the present study, we evaluated the relevance 
of the descriptors based on the MIC metric and narrowed the 
total to five descriptors that are strongly involved in the model 
decision making process. According to the identified descrip-
tors, we derived five empirical equations with high interpret-
ability that are presumed to be necessary conditions for the 
formation and hence the stability of quasicrystals and approxi-
mants. Importantly, these newly identified conditions will lead 
to the long-sought and heretofore unclear guiding principles 
for the synthesis of new quasicrystals, thereby opening the door 
to a deeper understanding of quasicrystal stability as a central 
issue in condensed matter physics. Many other implicit rules 
are still embedded in the learned model. By identifying the 
comprehensive set of rules encoded in the black-box machine-
learning model, we will piece together the puzzle and record 
statements as rules of thumb for materials science.

Adv. Mater. 2021, 33, 2102507

Figure 6. Five rules for the formation of QC/AC phases proposed by machine learning. The rules are represented by straight lines on the predicted 
phase diagrams of the eight systems. Each line represents a condition set Ch describing the weighted average of the van der Waals radius, electronega-
tivity, first ionization energy, number of filled p valence orbitals, or energy per atom in the T = 0K ground state that is imposed on the compositional 
formula.
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The other remaining question concerns the applicable 
domains of these machine-learning models. Most of the  
quasicrystals found thus far are binary or ternary systems. In 
fact, there are only 12 quasicrystals of quaternaries or more in 
our training dataset. It is expected that stable quasicrystals will 
be more likely to form from systems consisting of a greater 
number of elements since, for instance, the number of ter-
nary quasicrystals is much larger than the number of binary 
quasicrystals. On the other hand, predictions based on data 
science technologies are interpolative by nature, and thus it is 
now of particular interest to determine to what extent models 
trained primarily from binary and ternary systems can be gen-
eralized for multidimensional systems where less or no data 
are available.

With this study, we have taken the first step in the practical 
application of data science toward the accelerated discovery 
of new quasicrystals. However, there are still some technical 
improvements to be made. To facilitate subsequent research, we 
have published all datasets that were used for machine learning 
and benchmarking. With these datasets, all results shown in 
this paper can be reproduced on our platform, XenonPy. This is 
expected to promote comprehensive experimental validation in 
the quasicrystal research community.

4. Experimental Section
Data Preparation: The list of 80 stable quasicrystals and 78 

approximants was compiled from the Crystallography of Quasicrystals 
handbook. In addition, 10 090 compositions of ordinary crystals were 
extracted from the Materials Project database and laboratory data on 
failed quasicrystal syntheses. One of the difficulties in model building 
arose from the bias in the number of samples in different classes: 80 
and 78 compositions for quasicrystals and approximants, respectively, 
as opposed to 126 335 crystals from the Materials Project database 
(V2020.08.20). Therefore, to manage the highly unbalanced class 
labels, the crystal data were downsampled by randomly extracting  
10 000 instances from the overall data taken from the Materials Project 
database. After determining the hyperparameters based on the cross-
validation as described below and training the random forest classifier, 
the sensitivity of the prediction accuracy was examined by varying 
the sample size of periodic crystals from 500 to 30 000. The result 
has been shown in Table S4, Supporting Information. No significant 
change was observed in the range from 5000 to 20 000. It should also 
be remarked that, instead of using the Materials Project database, 
other databases such as ICSD,[61] AFLOW,[62] and NOMAD[63] that 
provide more comprehensive lists of periodic crystals can be used.

To evaluate the validity of the predicted phase diagrams,  
30 experimental phase diagrams of Al–TM–TM alloy systems were 
gathered from 25 papers. To facilitate the collection, an in-house 
software was developed to accelerate data extraction from published 
phase diagram images. The difference and overlap between the extracted 
phase regions were quantified and quasicrystalline and approximant 
phase regions were predicted to evaluate the true positive and false 
positive rates as detailed in the Results Section.

Compositional Pattern of Datasets: Figure 1b shows a low-dimensional 
representation of the compositional distribution of the data belonging 
to the three classes, which was used to determine the between-class 
difference and overlap. The compiled list of stable quasicrystals and 
approximants consisted of 26 binary, 120 ternary, and 12 quaternary 
compounds spanning 50 different elements. On the other hand, the 
ordinary crystal dataset consisted of unary to octonary systems with 
constituents spanning a broader range of elements. To more clearly 
visualize the difference and overlap in the class-specific distributions, 

only binary to quaternary crystals were shown on the plot. Furthermore, 
crystals containing elements other than the constituents of the stable 
quasicrystals and approximants were excluded. Each composition was 
translated into a 50-dimensional binary vector with each entry encoding 
the presence or absence of an element as one or zero, respectively. 
The feature vectors of the 19 191 compositions were projected onto 
a 2D subspace using a dimensionality reduction technique called 
UMAP.[30] There was no significant bias in the distribution of the three 
classes at the level of their constituent elements, implying that no 
particular combination of elements was favorable for the formation 
of stable quasicrystals. The visualized data pattern also suggested 
that previous studies on stable quasicrystals have explored a wide 
range of compositional spaces without bias toward any particular 
compositional combination.

Random Forest Classifier: A random forest classifier was built on an 
ensemble of decision tree models. The overall dataset was randomly 
divided into training and test sets as described in the Results Section. 
Cross-validation was performed in the training dataset and the 
hyperparameters that minimized the prediction error were selected. The 
hyperparameters and search candidates are summarized in Table 4. The 
number of combinations of search candidates was 96. As mentioned 
in the Results Section, the training dataset consisted of 66 stable 
quasicrystals and 60 approximant crystals. This dataset contained 69 
unique ternary systems. In the cross-validation, the compositional data 
belonging to each ternary system were lumped together, and the training 
and validation datasets were divided based on the ternary systems; that 
is, one of the 69 systems was used as the validation set, and all the 
remaining data, including the data outside the 69 systems, were used 
for training. To quantify the prediction uncertainty, models from 100 
randomly selected datasets with the selected hyperparameters were also 
trained. Using these models, the mean and standard deviation of the 
performance metrics with respect to the test dataset were calculated. 
The learning algorithm implemented in scikit-learn[64] v0.23.1 (https://
github.com/scikit-learn/scikit-learn/releases/tag/0.23.1) was employed 
to train the models.
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