Skip to main content
. 2021 May 26;10(12):2002254. doi: 10.1002/adhm.202002254

Table 5.

Literature overview of the effects of silicon on ECs

Silicon
Tested material Effective conc./ion release Si4+ In vitro cell line/In vivo species Assays—Direct (D)/indirect (I) Incubation time Other material properties Results Ref
Ti‐Si‐N coating on Ti6Al4V SC: 20 at%; No IRP EA.hy926 CCK proliferation (D); cell morphology and spreading (D); NO release (D) 1, 5 d; 5 d; 5 d Decreasing nanoroughness with increasing Si content may affect the attachment properties. Better morphology and greater spreading, increased proliferation and endothelialisation. [ 92 ]
Si‐micro/nano‐structured titanium SC: 0.86 at%; IRP: 23 mg L−1; (after 7 d) EA.hy926 Cell adhesion (D); actin assay (D); cell morphology (D); live/dead viability (D); MTT proliferation (D); ELISA (D); tube formation in EC Matrix (I); RT‐qPCR (D) 0.5, 1, 4 h; 1, 4, 24 h; 1 d; 1, 3, 5 d; 1, 4, 7 d 24 h; 4, 8, 15 h; 3 d Micro‐ and nanostructures from MAO and HT treatment respectively influenced the cell adhesion and the Si release profile. Nanostructures secured a more constant Si release profile and improved the angiogenic behavior of HUVECs. [ 111 ]
Ti‐Si‐N coating on Ti6Al4V SC: 12 at%; No IRP EA.hy926 NO release (D); cell morphology and spreading (D) 3 d; 24 h Decreasing nanoroughness with increasing Si content. Enhanced adhesion of endothelial cells on the coating. [ 112 ]
Silk fiber w. Zn + Si‐BrC brushite MC: 0.5 wt%; No IRP Porcine ECs; New Zealand white rabbits Tube formation in collagen (D); Alamar Blue proliferation (D); viability assay with PI (D); NO release (D); femur defect N/A; 1, 3, 7 d; 7 d; 1, 7 d; 1, 3 month Positive effect of Si (and synergistic effect of Si/Zn) on angiogenesis. [ 68 ]
Bioactive glass nanoporous structure MC: 40 mol% (85 mol% SiO2); IRP: 21 mg L−1 (after 7 d) HUVECs; SD rats Scratch migration (I); tube formation in Matrigel (I); subcutaneous implantation 24 h; 3, 6 h; 2, 4 w Nanofibrous structure enhances neo‐blood vessel formation. Stable delivery of Ca and Si and their synergistic effect with the nano‐sites of improved angiogenesis. [ 120 ]
Si‐DLC coating on Ti6Al7Nb SC: 14–22 at%; No IRP EA.hy926 Live/dead viability (D); XTT viability (I,D) 48 h; 48 h Increasing wettability with higher Si content. Si is tolerated by cells up to the limit between 14 and 22 at%. [ 113 ]
Si‐TiO2 nanotubes SC: 2.8 at%; IRP: 7 mg L−1 (after 1 d) EA.hy926 Live/dead viability (D); tube formation in ECMatrix (I); NO release (I); ELISA (I) 1, 3, 5 d; 4, 7, 17 h; 24 h; 24 h Increase of Si content increases the hydrophilicity. The incorporation of Si into the material boosted the angiogenic capacity of ECs. [ 65 ]
Strontium‐HT‐Gahnite 1.6–6.6 mg L−1 (diluted extracts) HUVECs MTT proliferation (I); transwell migration (I); RT‐qPCR (I); calvarial defect 1, 4, 7 d; 18 h (7 d preculture); 4 d; 4–6 w Increased metabolic activity at day 7, migration capacity, and mRNA expression of HUVECs with the dissolution products. [ 77 ]
Ti‐Si‐N coating on titanium SC: ≈11–13 at%; No IRP EA.hy926 Cell morphology and spreading (D); CCK‐8 proliferation (D); NO release (D); RT‐qPCR (D); Western blotting (D) 24 h; 1, 6 d; 6 d; 6 d; N/A Si promoted endothelial proliferation and upregulates VEGF in ECs. [ 114 ]
Si‐TiO2 SC: 1.8 wt%; IRP: 3.5 mg L−1 (after 7 d) HUVECs Alamar Blue proliferation (D); cell morphology, live/dead viability (D); scratch migration (D); tube formation in Matrigel (I); ELISA (D); RT‐qPCR (D) 1, 4, 7 d; 7 d; 8 h (1 d preculture); 12 h; 1, 3, 5, 7 d; 4, 7, 14 d The coating with 1.8 wt% of Si improved the proliferation, migration, and VEGF, tube formation of HUVECs. [ 115 ]
Mesoporous silica microspheres IRP: ≈22 mg L−1 (after 7 d) HUVECs; domestic chicken embryos CCK‐8 proliferation (I); RT‐qPCR (I); Western blotting (I); immunohistochemistry (I); tube formation in Matrigel (I); scratch migration (I); transwell migration (I); angiogenesis in chick chorioallantoic membrane (CAM) 1, 3, 7 d; 24 h; 24 h; 24 h; 0, 4, 6, 12 h; 12, 24 h; 12 h; 11 d The presence of Si promoted angiogenic capacity of HUVECs through stimulating expression of HIF1‐alpha, especially in combination with the delivery of VEGF. [ 119 ]
Si‐oxynitro‐phosphide coating SC: 53–62 at%; No IRP HUVECs Cell attachment (D); MTS viability (D); MTS growth (D); proliferation with Calcein‐AM (I); transwell migration (I); matrix deposition (D); tube formation in Matrigel (D); RT‐qPCR (D) 4 h; 24 h; 1, 3, 7 d; 24, 48 h; 24 h; 5 d; 6 h; 24, 72 h Surface wettability correlated with the number of attached cells. The silica‐based coatings enhanced proliferation, migration, matrix deposition, and tube formation VEGF expression of HUVECs. [ 137 ]
Cu/Si‐TiO2 SC: 16 at%; IRP: ≈27 mg L−1 (after 7 d) EA.hy926 Live/dead viability (D); MTT proliferation (D); cell morphology (D); ELISA (D); tube formation in ECMatrix (I); RT‐qPCR (I) 1, 3, 5 d; 1, 4, 7 d; 1 d; 24 h; 4, 8, 18 h; 3 d The implant with 16 at% of Si showed the best proangiogenic property by stimulating the proliferation, favorable morphology, and gene expression of ECs. [ 73 ]
Ca–Mg–Si bioceramics 1.18–4.44 mg L−1 (diluted extracts) HAECs WST‐1 proliferation assay (I); NO release (I); tube formation in ECMatrix (I); RT‐qPCR (I) 4 d; 24 h; 2.5, 5.5, 17 h; 4 d Ceramics releasing higher amount of Si had greater stimulatory effect on angiogenic behavior of ECs. [ 116 ]
Ca–Mg–Si bioceramics 0.6–2.1 mg L−1 (diluted extracts) HAECs; New Zealand rabbits WST‐1 proliferation (I); tube formation in ECMatrix (I); RT‐qPCR (I) NO release (I); scaffold implantation near distal femur 4 d; 2.5, 5.5, 17 h; 4 d 24 h; 8, 16 w Presence of Si stimulated angiogenic behavior of ECs in vitro and neovascularization in vivo. [ 117 ]
Si‐HA SC: 6.15 at%; IRP: 17 mg L−1 (after 7 d) HUVECs; white leghorn chicken eggs; Wistar rats Viability with Calcein AM (D); cell adhesion (D); proliferation with PicoGreen (D); NO release (D); ELISA (D); chicken chorioallantoic membrane assay; subcutaneous implantation 24 h; 24 h; 1, 7 d; 1, 7 d; 1, 7 d; 4 d; 2 w Scaffold with Si had stimulatory effects on functionality and viability of ECs. [ 118 ]
(Si‐)Mg‐Ca alloy SC: 10 at%; IRP: 2.0 mg L−1 (after 5 d) C166‐GFP EC line Cell morphology (D); Alamar Blue cytocompatibility (I) 30 min; 5 d The samples differed in surface roughness (0.7–4.3 µm), thickness, and porosity. The Si topography promoted the cellular organization. [ 75 ]