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ABSTRACT
Background:  Glioblastoma (GBM) is an aggressive primary brain tumor with a high recurrence 
rate and poor prognosis. Necroptosis, a pathological hallmark of GBM, is poorly understood in 
terms of its role in prognosis, tumor microenvironment (TME) alteration, and immunotherapy.
Methods & Results:  We assessed the expression of 55 necroptosis-related genes in GBM and 
normal brain tissues. We identified necroptosis-stratified clusters using Uni-Cox and Least Absolute 
Shrinkage and Selection Operator (LASSO) regression to establish the 10-gene Glioblastoma 
Necroptosis Index (GNI). GNI demonstrated significant prognostic efficacy in the TCGA dataset 
(n = 160) and internal validation dataset (n = 345) and in external validation cohorts (n = 591). The 
GNI-high subgroup displayed a mesenchymal phenotype, lacking the IDH1 mutation, and MGMT 
methylation. This subgroup was characterized by significant enrichment in inflammatory and 
humoral immune pathways with prominent cell adhesion molecules (CD44 and ICAM1), 
inflammatory cytokines (TGFB1, IL1B, and IL10), and chemokines (CX3CL1, CXCL9, and CCL5). The 
TME in this subgroup showed elevated infiltration of M0 macrophages, neutrophils, mast cells, 
and regulatory T cells. GNI-related genes appeared to limit macrophage polarization, as confirmed 
by immunohistochemistry and flow cytometry. The top 30% high-risk score subset exhibited 
increased CD8 T cell infiltration and enhanced cytolytic activity. GNI showed promise in predicting 
responses to immunotherapy and targeted treatment.
Conclusions:  Our study highlights the role of necroptosis-related genes in glioblastoma (GBM) 
and their effects on the tumor microenvironment and patient prognosis. TheGNI demonstrates 
potential as a prognostic marker and provides insights into immune characteristics and treatment 
responsiveness.

1.  Introduction

Glioblastoma (GBM), classified as a grade IV astrocy-
toma, is a highly aggressive and frequently recurring 
brain tumor with a grim prognosis [1]. GBM is the 
most common primary malignant brain tumor, with a 
prevalence of 54% among gliomas and 16% among all 
primary brain tumors [2]. Primary GBM, which accounts 
for approximately 80% of GBM cases, refers to de novo 
development of glioblastoma. In contrast, the transfor-
mation from a lower to high-grade IV astrocytoma is 

characterized as secondary GBM [3]. The current main-
stay of treatment involves feasible surgical resection 
with subsequent radiotherapy combined with concom-
itant and adjuvant temozolomide (TMZ) chemotherapy 
[4]. Untreated GBM patients typically experience a 
median survival of only 3 months, whereas those 
undergoing conventional treatment may survive for 
12–15 months [5,6]. Overall, only 5% of diagnosed 
patients are expected to survive for five years  
or more [6].

© 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group

CONTACT Jie Lin  linjie@gzhmu.edu.cn; Yawei Yuan  yuanyawei@gzhmu.edu.cn  Department of Radiation Oncology, Affiliated Cancer Hospital & 
Institute of Guangzhou Medical University, No. 78, Hengzhigang Road, Yuexiu District, Guangzhou 510095, Guangdong, People’s Republic of China.

 Supplemental data for this article can be accessed online at https://doi.org/10.1080/07853890.2024.2405079.
*Muhammad Khan, Xiuting Huang, and  Xiaoxin Ye contributed equally to this work.

https://doi.org/10.1080/07853890.2024.2405079

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which 
permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been 
published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

ARTICLE HISTORY
Received 9 May 2024
Revised 14 August 2024
Accepted 28 August 2024

KEYWORDS
Brain tumor; single-cell 
analysis; immunotherapy; 
glioma; central nervous 
system; inflammation

mailto:linjie@gzhmu.edu.cn
mailto:yuanyawei@gzhmu.edu.cn
https://doi.org/10.1080/07853890.2024.2405079
https://doi.org/10.1080/07853890.2024.2405079
http://creativecommons.org/licenses/by-nc/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1080/07853890.2024.2405079&domain=pdf&date_stamp=2024-9-25


2 M. KHAN ET AL.

The tumor microenvironment (TME) plays a crucial 
role in cancer development, therapeutic response, and 
prognosis [7]. In glioblastoma (GBM), an immunosup-
pressive microenvironment is evident both within the 
tumor and in peripheral blood, contributing to rapid 
disease progression and poor outcomes [8]. Various 
strategies such as immune checkpoint inhibitors, vac-
cine therapies, oncolytic viruses, and gene therapy are 
being explored to disrupt the immunosuppressive TME 
and enhance treatment specificity [9]. However, 
immunosuppressive stromal factors, majorly the tumor- 
associated macrophages (TAMs), have shown to restrict 
tumor penetration affecting the efficiency of ICBs and 
oncolytic viruses [10,11]. Hence, further research into 
factors that modulate the GBM TME is needed to 
enhance the efficacy of current treatments or inde-
pendently improve patient outcomes.

There is an increasing interest in the investigations 
of the role of programmed cell death, such as ferro-
ptosis, pyroptosis, and necroptosis, in the modulation 
of TME and therapeutic response [12,13]. The process 
of cell death plays a crucial role in the development 
and homeostasis of the body, and the ability to resist 
cell death has been identified as a key factor in the 
formation of tumors and resistance to treatment [14]. 
Apoptosis, a form of programmed cell death, is defec-
tive in GBM; however, numerous intratumoral necrosis 
foci have been identified [15,16]. Necrosis, a form of 
non-programmed cell death, is considered a patholog-
ical and radiological hallmark of GBM [17,18]. 
Historically, necrosis has been viewed as an uninten-
tional, unregulated, passive mechanism of cell death. 
Nevertheless, contemporary findings have uncovered a 
controlled variant of necrosis known as necroptosis 
[19–26]. In contrast to apoptosis, which is character-
ized by nuclear compaction, preserved organelle integ-
rity, cytoplasmic reduction, and membrane retention, 
necroptosis is characterized by the rupture of the cell 
membrane, leading to the efflux of cellular constitu-
ents [20]. The initiation of necroptosis can be prompted 
by the activation of diverse death receptors, primarily 
tumor necrosis factor (TNF) receptors, such as TNFR1 
and FAS, and toll-like receptors, such as TLR3 and TLR4 
[27–30]. Ligation of TNFR1 results in the formation of 
death-inducing signaling complex (DISC), a cytosolic 
complex that includes RIPK1 (receptor-interacting ser-
ine/threonine protein kinase 1), Fas-associated death 
domain (FADD), RIPK3, and caspase-8. If caspase-8 is 
inactivated, the interactions between RIPK1 and RIPK3 
lead to the formation of the necrosome and oligomer-
ization of mixed lineage kinase domain-like (MLKL) 
[27,28,31]. Activation of TLR4 by lipopolysaccharide 
(LPS) or damage-associated molecular patterns (DAMPs) 

and TLR3 by intra-endosomal double-stranded RNA 
(dsRNA) results in RIPK3 activation via RHIM (RIP 
homotypic interaction motif ) engagement of TRIF 
(TIR-domain-containing adapter-inducing interferon-β) 
[29,30]. Moreover, in specific cell types, such as macro-
phages, necroptosis can be initiated by IFNAR1 (inter-
feron alpha receptor 1) and IFNGR1 (interferon gamma 
receptor 1), primarily resulting from the prolonged 
activation of transcription factors, including signal 
transducer and activator of transcription 1 and 2 
(STAT1 and STAT2), as well as interferon regulatory fac-
tor 9 (IRF9) [32–34]. ZBP1 (Z-DNA binding protein 1), 
an exogenous DNA sensor in the cytosol that stimu-
lates the synthesis of type-I interferon and triggers 
nuclear factor kappa B (NF-κB), can independently 
activate RIPK3 by physically interacting with it through 
RHIM , irrespective of RIPK1 [35]. Membrane pores are 
formed by oligomerized MLKL after translocation to 
the cytoplasm, resulting in the release of intracellular 
contents, a characteristic shared by both necrosis and 
necroptosis, with consequences for the tumor micro-
environment [20–26].

The objective of this study was to investigate the 
role of necroptosis in glioblastoma (GBM) by under-
standing how necroptosis impacts GBM prognosis and 
contributes to TME remodeling. We sought to identify 
and analyze key necroptosis-related genes and their 
functional implications in GBM, and to evaluate the 
potential of these biomarkers for predicting treatment 
responses and guiding therapeutic strategies. To 
achieve these objectives, we conducted a comprehen-
sive literature review to identify relevant necroptosis- 
related genes and employed machine learning models 
on GBM transcriptional data to elucidate their roles in 
disease progression and treatment response. An over-
view of the workflow is shown in Figure S1.

2.  Materials and methods

2.1.  Public databases and retrieved datasets

For the training set, transcriptome sequencing data 
(human genome reference: GRCh38 [hg38]; alignment: 
Illumina HiSeq 2000/2500; quantification: RNA-Seq 
FPKM values) and clinical information for glioblastoma 
(GBM) samples (n = 170) and normal adjacent tissue 
samples (n = 5) were obtained from the TCGA Data 
Portal (https://portal.gdc.cancer.gov/). For the internal 
validation cohort, datasets for GBM patients (n = 358) 
were sourced from two RNA-Seq FPKM value datasets 
(mRNAseq_325 and mRNAseq_693; alignment: Illumina 
HiSeq 2,000/2,500/4,000; human genome reference: 
GRCh37 [hg19]) available on the Chinese Glioma 
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Genome Atlas (CGGA) website (http://www.cgga.org.
cn/). Detailed participant characteristics of both cohorts 
are summarized in Supplementary Table S1.

To compare tumor samples to normal brain tis-
sues, mRNA sequencing data from 1152 normal brain 
tissue samples and TCGA GBM tumor samples, acces-
sible through the University of California, Santa Cruz 
(UCSC) Xena website (https://xenabrowser.net/), were 
used. In this instance, the initial log-transformation 
was reversed for both the datasets. The TCGA GBM 
samples were log2-transformed with an offset of 1, 
whereas the GTEx normal brain samples were 
log2-transformed with an offset of 0.001. This reversal 
was accomplished using the following codes: 2^data 
and log2(data-0.001 + 1).

Furthermore, we included seven additional GBM 
microarray datasets for external validation: CGGA array_301 
(n = 124), GSE108474 (REMBRANDT; n = 210), GSE122586 
(n = 88), GSE83300 (n = 50), GSE43378 (n = 32), GSE13041 
(n = 27), and GSE74187 (n = 60) (https://www.ncbi.nlm.nih.
gov/geo/). The datasets GSE108474, GSE43378, and 
GSE13041 utilized the Affymetrix GeneChip Human 
Genome U133 Plus 2.0 Array platform, known as GPL570. 
On the other hand, the CGGA array_301, GSE122586, 
GSE83300, and GSE74187 datasets are based on the 
Agilent-014850 Whole Human Genome Microarray 4 × 44 K 
G4112F platform, labeled as GPL6480.

CNV (copy number variations) data was retrieved 
from the Xena browser (https://xenabrowser.net/) in 
order to evaluate the location and frequency of aber-
rations in NRGs.

Additionally, we acquired the stemness score for 
TCGA GBM dataset from the Xena browser (https://
xenabrowser.net/). The oncoplot illustrating the GBM 
variant classification and mutation frequency in 
necroptosis-related genes (NRGs) was obtained from 
the Gene Set Cancer Analysis database (http://bioinfo.
life.hust.edu.cn/GSCA/) using the mutation module. 
STRING (Search Tool for the Retrieval of Interacting 
Genes), version 11.0 (https://string-db.org/), a protein- 
protein interaction (PPI) network was constructed to 
investigate the interaction patterns among differen-
tially expressed genes (DEGs).

2.2.  Normalization, batch effect removal, and 
visualization

Normalization was conducted using the limma R pack-
age, while batch effects were addressed using the 
Combat function from the sva package. To visualize 
the effects of batch correction, Principal Component 
Analysis (PCA) was performed. The prcomp function 
from the stats package was utilized to compute PCA, 

and scatter plots were generated using the ggscatter 
function from the ggpubr package.

2.3.  Identification of necroptosis-related genes

A literature review was conducted to identify genes 
related to necroptosis utilizing databases such as 
PubMed, Scopus, and Web of Science to find relevant 
publications up to September 2023. The search strat-
egy included keywords like ‘necroptosis’, ‘necroptosis- 
related genes’, ‘necroptosis pathway’, ‘RIPK1’, ‘RIPK3’, 
‘MLKL’, and ‘necroptotic cell death’. Each publication 
was independently reviewed by two researchers (M.K. 
and X.H.) to ensure objectivity and minimize bias. 
Duplicate entries were identified and removed using 
reference management software (EndNote), followed 
by a manual check for accuracy and originality. Genes 
with direct role in necroptosis were identified in three 
categories as initiators, key mediators, and regulators. 
In cases of conflicting results or discrepancies between 
reviewers, a third senior researcher (J.L.) was consulted. 
Discussions were held until a consensus was reached 
among all authors. Cross-validation was performed by 
referring to well-known literature reviews on necropto-
sis and The Molecular Signatures Database (MSigDB), 
which revealed a total of 55 genes associated with 
necroptosis (referred to as necroptosis-related genes or 
NRGs) (Supplementary Table S2) [19–70].

2.4.  Consensus clustering

Consensus clustering analysis, a precise unsupervised 
clustering technique, was employed to classify the 
patients according to the expression profiles of NRGs. 
This involved systematic exploration of the cluster 
matrices across a range of clustering variable values (k) 
from k = 2 to k = 11. The goal was to determine the 
optimal cluster number (k) and assess consensus sta-
bility by analyzing cumulative distribution function 
(CDF) plots. To perform consensus clustering, we lever-
aged the R package ‘ConsensuClusterPlus’ with 1000 
repetitions [71]. To assess survival disparities among 
the identified clusters, Kaplan-Meier survival analysis 
was performed utilizing the R package ‘survival’.

2.5.  Identification of necroptosis-related 
prognostic signature

To identify differentially expressed genes (DEGs) 
between clusters, we utilized the ‘limma’ package with 
criteria set at a log2 fold change (log2FC) ≥ 1 and a 
false discovery rate (FDR) < 0.01. The resulting DEGs 
were then extracted from the training dataset (TCGA) 

http://www.cgga.org.cn/
http://www.cgga.org.cn/
https://doi.org/10.1080/07853890.2024.2405079
https://xenabrowser.net/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://xenabrowser.net/
https://xenabrowser.net/
https://xenabrowser.net/
http://bioinfo.life.hust.edu.cn/GSCA/
http://bioinfo.life.hust.edu.cn/GSCA/
https://string-db.org/
https://doi.org/10.1080/07853890.2024.2405079


4 M. KHAN ET AL.

and the validation dataset (CGGA) after intersection for 
common genes expression that involved normalization 
and batch correction using the ‘limma’ and ‘sva’ pack-
ages. Following this, we conducted univariate Cox 
regression analysis in TCGA GBM samples to identify 
DEGs with prognostic significance (p < 0.05). For further 
refinement and construction of the prognostic signa-
ture, we employed LASSO (Least Absolute Shrinkage 
and Selection Operator) regression analysis through 
the R package ‘glmnet’ with TCGA GBM as training set 
and CGGA as validation set. This approach facilitates 
effective reduction of candidate genes [72]. The indi-
vidual risk scores for each patient were computed by 
considering their specific gene expression levels and 
the corresponding coefficients using the following for-

mula: Risk Score = exp i i
i

n

×
=∑ β
1

 (exp = gene expres-

sion, β = coefficient).

2.6.  Risk model assessment

GBM samples were categorized into high- and 
low-glioblastoma necroptosis index (GNI) groups using 
the median risk score. To explore the spatial distribution 
and integration of risk within these groups, we utilized 
Principal Component Analysis (PCA) by employing the 
‘prcomp’ function from the ‘stats’ R package. The prog-
nostic and predictive significance of the risk groups were 
evaluated through KM (Kaplan-Meier) and Receiver 
Operating Characteristic (ROC) curves. These assessments 
used R packages, including ‘survival’, ‘survminer’, and 
‘time-ROC’. Moreover, we assessed the predictive perfor-
mance of the GNI  by estimating the Concordance Index 
through the ‘concordance.index’ R package [73,74]. To 
ascertain the independent prognostic significance of the 
risk subgroups, we performed both uni- and multi-variate 
Cox-regression analyses. This process was repeated for 
validation of the CGGA cohort. Subsequently, a nomo-
gram was developed involving the GNI  and common 
clinicopathological characteristics identified through 
regression analysis to predict the GBM survival probabil-
ity. Calibration curves were generated to assess the effec-
tiveness of the nomogram. Additionally, we employed 
Decision Curve Analysis (DCA), a statistical approach that 
accounts for clinical implications, to evaluate the diag-
nostic and prognostic efficacy of the nomogram. This 
analysis was performed using the ‘ggDCA’ package [75].

2.7.  Functional enrichment analysis

Differential expression analysis was conducted to iden-
tify DEGs between risk subgroups (logFC = 1 and fdr 
< 0.05). The resulting DEGs were then subjected to 

Gene Ontology (GO) enrichment analysis using the 
‘clusterProfiler’ package. Gene set enrichment analysis 
(GSEA) was performed using hallmark gene sets (h.all.
v2022.1) to detect signaling pathways operating within 
each subgroup (http://gsea-msigdb.org/gsea/msigdb/). 
The ‘gsva’ package of R was utilized to estimate the 
activity of the KEGG pathways in the clusters as 
described by Hänzelmann et  al. [76].

2.8.  Annotation of the tumor immune 
microenvironment (TIME)

Infiltration of stromal (stromal score) and immune cells 
(immune score), collectively termed the ESTIMATE 
score, and tumor purity were evaluated by running the 
ESTIMATE algorithm (https://sourceforge.net/projects/
estimateproject/) [77]. The enrichment of immune cells 
and immune-related pathways was estimated via 
single-sample GSEA (ssGSEA) using the ‘gsva’ R pack-
age. The CIBERSORT algorithm was employed to assess 
the proportion of immune cells, including diverse sub-
types, resulting in 22 categories (https://cibersortx.
stanford.edu/) [78]. Seven types of immune checkpoint 
molecules and signaling pathways were classified 
based on previously published studies [79,80]. We 
employed the tracking tumor immunophenotype (TIP) 
website to assess the seven-step antitumor response 
(http://biocc.hrbmu.edu.cn/TIP/) [81]. This evaluation 
was based on enrichment of a carefully curated set of 
178 genes using ssGSEA.

2.9.  Immune response prediction and validation

The total mutation burden (TMB) data were retrieved 
from the Xena website (https://xenabrowser.net/) to 
assess the mutational load. The TIDE, which rep-
resents Tumor Immune Dysfunction and Exclusion, 
was used to estimate the anti-tumor and immune- 
evasive abilities of the risk subgroups [82]. 
Immunophenoscore (IPS) and ICB (immune check-
point blockade (ICB) responses were obtained from 
the TCIA (https://tcia.at/home) [83]. Finally, the 
response to anti-PD1 and anti-CTLA4 blockade ther-
apy was assessed using the submap algorithm [84]. 
Response to immunotherapy was validated by inves-
tigating GNI activity in IMvigor210 (urothelial carci-
noma; n = 348; ICI = anti-PD-L1), GSE176307 (metastatic 
urothelial carcinoma; n = 88; anti-PD-1/PD-L1), GSE91061 
(melanoma; n = 51), GSE78220 (metastatic melanoma; 
n = 27; ICI = anti-PD-1), and E-MTAB-3218 (array express) 
(clear cell renal cell carcinoma [ccRCC]; n = 58). The 
E-MTAB-3218 dataset utilized the GPL13070 platform, 
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featuring the Affymetrix Human Genome U219 Array. 
In contrast, the RNA-sequencing datasets employed 
four distinct platforms: GPL24014 (Ion Torrent S5 XL; 
human genome reference: GRCh37 [hg19]; TPM val-
ues) for GSE176307, GPL11154 (Illumina HiSeq 2000; 
human genome reference: GRCh37 [hg19]; FPKM val-
ues) for GSE78220, GPL9052 (Illumina Genome 
Analyzer; human genome reference: GRCh37 [hg19]; 
FPKM values) for GSE91061, and GPL11154 (Illumina 
HiSeq 2500; human genome reference: GRCh38 
[hg38]; TPM values) for IMvigor210. The ‘oncoPredict’ 
R package was utilized for predicting drug sensitivi-
ties [85].

2.10.  Single cell data analysis

The single-cell expression matrix of the GBM dataset 
(GSE148842) along with the meta-information files were 
downloaded from the TISCH database (http://tisch.
comp-genomics.org/) [86]. The count matrices from 
each dataset were preprocessed following the standard 
pipeline in MAESTRO [87]. The RunUMAP ‘RunUMAP’ 
function of the ‘Seurat’ R package was used for dimen-
sionality reduction, and the results were visualized using 
umap (uniform manifold approximation and projection) 
plots. Furthermore, the ‘AddModuleScore’ function was 
employed to depict the average expression of various 
genes (including Necroptosis mediators such as RIPK1, 
RIPK3, and MLKL, as well as GNI genes) within each 
cell type.

2.11.  Cell lines and cell culture

Human glioblastoma multiforme (GBM) cellular mod-
els (U251 and LN229) were obtained from the 
Chinese Academy of Sciences Committee of Type 
Culture Collection in Shanghai, China. These cells 
were cultivated in a culture medium comprising 
DMEM supplemented with 10% fetal bovine serum 
(FBS) and 100 U/ml each of penicillin and streptomy-
cin. The cells were cultured in a humidified incuba-
tor at 37 °C in a 5% CO2 atmosphere. We regularly 
performed authentication checks on all cell lines uti-
lized in this investigation by assessing their mor-
phology and conducted tests to ensure the absence 
of Mycoplasma contamination.

2.12.  Necroptosis induction

To induce necroptosis, cells were exposed to a mixture 
of recombinant human TNF-α (tumor necrosis 
factor-alpha; 10 ng/ml) (obtained from Peprotech, New 
Jersey, USA), a second mitochondrial-derived activator 

of caspases (SMAC) mimetic BV6 (1 nM) (sourced from 
Selleck Chemicals, Houston, USA), and a pan-caspase 
inhibitor known as zVAD-FMK (40 mM) (acquired from 
ENZO Life Science, New York, USA). Necrostatin-1 (pro-
cured from Enzo) was introduced one hour prior to 
administration of the aforementioned agents to sup-
press necroptosis. Before collecting the culture media, 
the cells were rinsed twice with phosphate buffered 
saline (PBS), and fresh media were replaced following 
a 3-hour treatment with the aforementioned agents. 
Subsequently, cells were incubated for an additional 
12 h at 37 °C. The culture media were collected and fil-
tered using a syringe filter (22-mm) from Merck 
(Darmstadt, Germany). After centrifugation at 1500 rpm 
for 5 min, the supernatants were collected and stored 
at 4 °C.

2.13.  Quantitative real-time PCR

Trizol Reagent (Takara, Otsu, Japan) was used to iso-
late and purify the complete RNA. Complementary 
DNA (cDNA) libraries were generated by reverse tran-
scription of purified RNA. SYBR Green PCR Kit (Takara) 
was used for quantitative real-time polymerase chain 
reaction (qRT-PCR). mRNA expression levels were nor-
malized against beta activity (internal control), and the 
relative mRNA levels were compared between the 
treated and control groups. The primer sequences are 
listed in Supplementary Table S3.

2.14.  Immunohistochemistry

Sections of formalin-fixed, paraffin-embedded tumor 
tissues, each measuring 4 mm in thickness, were depa-
raffinized through sequential treatment with xylene 
and ethanol. Antigen retrieval was performed by 
microwave boiling in citrate buffer (pH 6.0), and hydro-
gen peroxide (0.3%) was subsequently used to block 
the endogenous activity of horseradish peroxidase. 
The sections were then washed with 10% 
phosphate-buffered saline (PBS) and blocked with 
bovine serum albumin (5%). The sections were then 
incubated with primary antibodies targeting specific 
proteins: MLKL (Proteintech, #21066-1-AP, rabbit, 1:50), 
Stanniocalcin-1 (STC1) (Proteintech, #20621-1-AP, rab-
bit, 1:200), Lysyl oxidase homolog 1(LOXL1) (Affinity, 
#DF14089, rabbit, 1:35), COL22A1 (Affinity, #DF14266, 
rabbit, 1:50), CD68 (Abcam, #ab955, rabbit, 1:1000), 
and CD163 (Cell Signaling Technology, #25121, Rabbit, 
1:100). Incubation was carried out overnight at 4 °C. 
The sections were then 20-minute incubation with 
biotinylated secondary antibody (goat anti-rabbit IgG) 
at room temperature. Visualization was achieved using 
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a 3,5-diaminobenzidine (DAB) Substrate Kit and the 
sections were counterstained with hematoxylin. Staining 
intensity was assessed using a semiquantitative scale: 0, 
negative; 1, weak; 2, moderate; and 3, strong. The pres-
ence of positive cells was categorized as follows: 0, < 
5%; 1 5–25%, 2 26–50%, 3 51–75%, and 4, > 75%. The 
Immunohistochemistry (IHC) scores were obtained by 
multiplying the staining intensity by the frequency of 
positive cells. In cases of heterogeneous tissue staining, 
each distinct area was individually scored and these 
scores were aggregated to determine the final result. 
Prior to conducting the study, informed consent was 
obtained from the patients, and approval was granted 
by the internal review and ethics boards of the Affiliated 
Cancer Hospital and the Institute of Guangzhou Medical 
University.

2.15.  Construction of overexpressed glioma  
cell lines

Overexpression vectors (pcDNA3.1-STC1-3xFlag-C, plvx-CMV- 
LOXL1(human)-EGFP-Puro, pCDH-CMV-COL22A1(human)
(repeat-opt)-3 × FLAG-CopGFP-Puro, pCDNA3.1-EGFP-P2A- 
hMLKL-3xflag) and negative control vectors (pcDNA3.1- 
3xflag, pLVX-CMV-Puro, pCDH-CMV-mcs-3 × FLAG-Cop 
GFP-Puro, PcDNA3.1(+)-EGFP) were obtained from Hanyi 
Biosciences (China). Then these vectors were transfected 
into LN229 and U251 cells with liposome 3000 transfec-
tion reagent (Thermofisher, USA), and 48 h later, qPCR 
was performed three times, and western blot analysis 
was performed to detect the upregulation of STC1, 
LOXL1, COL22A1 and MLKL.

2.16.  Coculture assay

THP-1 monocytes were induced in RPMI-1640 medium 
containing 10% fetal bovine serum (FBS). M0 macro-
phages were differentiated from 100 ng/ml PMA 
(Phorbol 12-myristate 13-acetate, Sigma, Cat# P1585) 
for 24 h. Once differentiated (M0 macrophages), they 
were incubated respectively with cell supernatant of 
glioblastoma cell lines (LN229 or U251) transfected 
with over-expressive vectors (MLKL-OE, STC1-OE, LOXL1- 
OE, COL22A1-OE) for 48 h.

2.17.  Flow cytometry

The expression of CD206 in macrophages was detected 
by flow cytometry. Cells were isolated with trypsin, 
washed and blocked with PBS + 1% BSA solution, and 
then incubated with CD206 (321105, BioLegend, California, 
USA). Then the cells were analyzed with BD FACSCantoTM 
II flow cytometry analyzer and FlowJo software.

2.18.  Western blot analysis

Cells were first washed twice with PBS and then lysed 
using RIPA buffer (CST, USA) containing protease and 
phosphatase inhibitors (CWBIO, China). The lysate was 
centrifuged at 12,000 × g for 15 min at 4 °C. Protein con-
centration was measured using the BCA Protein Assay Kit 
(CWBIO, China). An aliquot of 30 µg of total protein was 
separated by SDS-PAGE and transferred to a polyvi-
nylidene fluoride (PVDF) membrane (Bio-Rad, Minneapolis, 
MN). The membrane was blocked with 5% BSA in 
Tris-buffered saline with Tween-20 (TBST) and incubated 
with primary antibodies overnight at 4 °C. Following this, 
the membrane was washed with TBST and incubated 
with the appropriate HRP-conjugated secondary antibody 
for 1 h at room temperature. Protein bands were visual-
ized using an enhanced chemiluminescence method 
(Pierce Biotechnology). The primary antibodies include: 
Anti-MLKL (Proteintech, #21066-1-AP, rabbit, 1:3000), 
anti-STC1 (Proteintech, #20621-1-AP, rabbit, 1:1000), 
anti-LOXL1 (Affinity, #DF14089, rabbit, 1:1000), and 
anti-COL22A1 (Affinity, #DF14266, rabbit, 1:1000)

2.19.  Statistical analysis

Non-parametric Wilcoxon Rank-Sum Test (Mann-Whitney 
U Test) was used to compare gene expression/enrich-
ment scores between the groups. Non-parametric 
Kruskal-Wallis test was used to compare three groups. 
qPCR results were compared using Two-tailed unpaired 
T-test. Categorical variables were compared using the 
chi-squared test. Correlations were estimated using the 
Spearman/Pearson’s correlation test. The Kaplan-Meier 
method was used to estimate survival differences. 
Statistical significance was determined using the 
log-rank test. Cox regression hazard models were used 
to perform the univariate and multivariate factor anal-
yses. Statistical analysis was performed using the sta-
tistical software R v4.0.3 (http://www.r-project.org).

3.  Results

3.1.  Genomic aberrations & differential expression 
of necroptosis-related genes (NRGs)

A comprehensive review of existing studies identified 
55 necroptosis-related genes (NRGs) [19–70]. Pathway 
enrichment and protein-protein interaction analyses 
demonstrated their participation in the necroptosis 
pathway and their association with a shared regulatory 
mechanism (Figure 2A and B and Supplementary Table 
S4). The chromosomal locations and copy number vari-
ations (CNVs) of these NRGs are depicted in Figure 
S2A, with CNV frequencies remaining low, peaking at 

http://www.r-project.org
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4% (Figure S2B). Mutation frequencies (SNVs) in the 
TCGA GBM cohort were similarly low (Figure S2C), with 
EZH2, CYLD, AXL, DIABLO, ITPK1, and TYRO3 showing 
consistent mutation rates of 7%, primarily featuring 
missense mutations. RIPK3, a key necroptosis mediator, 
exhibited a deletion frequency of 6%. Notably, certain 
negative regulators of necroptosis, including MIB2 
(11%), PRKN (10%), and NDRG2 (6%), displayed higher 
deletion frequencies. However, genetic alterations did 
not significantly impact prognosis (Figure S2D), sug-
gesting infrequent genetic aberrations in NRGs among 
GBM patients.

Next, we examined the NRGs transcriptional variation 
between GBM patients and normal brain tissues. Due to 
the limited number of normal samples in the TCGA GBM 
dataset (only five), we integrated GTEx-derived normal 
brain samples (n = 1152) with TCGA GBM primary tumor 
samples after correcting for batch effects (Figure S3A and 

B). Differential expression analysis revealed significant 
upregulation of necroptosis core mediators (RIPK1 and 
RIPK3), necroptosis-inducing receptors (TNFRSF1A, FAS, 
TLR3, TLR4), TAM kinases (AXL, MEERTK), and chemokine 
ligands (CXCL1, CXCL8) in TCGA GBM primary tumor 
samples (n = 155) compared to an equal number of ran-
domly selected GTEx normal brain samples (n = 155) 
(Figure 1C). Conversely, a subset of NRGs, mainly nega-
tive regulators, showed downregulation. These findings 
were consistent when comparing TCGA tumor samples 
(n = 160) to normal tissues (n = 5) (Figure S3C), as well as 
in comparisons with five randomly selected GBM tumor 
samples, demonstrating a similar dysregulation pattern to 
that of overall TCGA GBM dataset (Figure 1D). Moreover, 
a significant interaction at mRNA level was also observed 
for the majority of the NRGs in TCGA GBM patients, as 
illustrated in Figure 1E. These outcomes suggest a poten-
tial dysregulation of the necroptosis pathway in GBM.

Figure 1.  Analysis of 55 necroptosis-related genes. (A) Bar graph of enriched terms (pathway or process) across 55 NRGs, colored 
by p-values. (B) Protein-protein interaction (PPI) network (interaction score = 0.4). (C) Heatmap illustrating the expression contrast 
of NRGs between TCGA GBM tumor (n = 155) and GTEx random normal brain samples (n = 155). Upregulation is represented in 
red, whereas downregulation is indicated in blue. Differential expression was assessed using the Wilcoxon rank-sum test with a 
p-value threshold of 0.05. Significance levels are denoted as follows: *p < 0.05, **p < 0.01, and ***p < 0.001. (D) Heatmap depicting 
the expression patterns of NRGs in TCGA GBM, comparing normal (n = 5) and randomly selected tumor samples (n = 5). Upregulation 
is indicated in red, whereas downregulation is shown in blue. Wilcoxon rank-sum test; *p < 0.05, **p < 0.01, and ***p < 0.001. (E) 
Network depicting the mRNA-level correlations among NRGs in the TCGA GBM cohort. The color intensity corresponds to the 
correlation strength. Pearson’s correlation test, Pearson correlation coefficient (r) cutoff of 0.2.

https://doi.org/10.1080/07853890.2024.2405079
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3.2.  Necroptosis-stratified clusters correlate with 
immune cell migration and poor prognosis

Two distinct necroptosis-related clusters, denoted as 
Cluster 1 (C1) comprising 106 samples and Cluster 2 
(C2) consisting of 53 samples, were identified by ana-
lyzing the expression patterns of 55 Necroptosis-Related 
Genes (NRGs) within the TCGA cohort (Figure 2A). PCA 
showed noticeably separated necroptosis-stratified 
clusters, and a lower survival probability curve was 
demonstrated for cluster 2 (p = 0.010) (Figure 2B and 
C). The core necroptosis mediators (RIPK1, RIPK3, and 
MLKL), showed elevated expression in C2, indicating a 

high necroptosis index (Figure 2D). The defined clus-
ters also showed statistically significant variation in 
clinical traits such as MGMT promoter methylation, 
methylation class, and molecular expression subtypes 
(Figure 2D). Cluster 2 predominantly accounted for the 
more malignant mesenchymal subtype and lacked the 
IDH1 mutation and MGMT methylation (Figure 2D and 
Supplementary Table S5). Moreover, the pathways 
associated with immune response and immune cell 
migration were enriched in this necroptosis-high clus-
ter (Figure 2E and Supplementary Table S6). These out-
comes suggest the association of necroptosis to immune 
activity and poor prognosis.

Figure 2. N ecroptosis-stratified clusters. (A) Consensus clustering of TCGA GBM samples based on expression of NRGs. (B) PCA 
(Principal Component analysis) plots of necroptosis-stratified clusters for TCGA cohort. (C) Overall survival difference between the 
clusters. (D) Heatmap illustrating association between the clusters and their clinicopathological features, and expression level of 
each NRG in the necroptosis-stratified clusters. Chi-square test; *p < 0.05; **p < 0.01; ***p < 0.001. (E) Top 10 Kyoto encyclopedia of 
genes and genomes (KEGG) enriched pathways operating between the clusters.

https://doi.org/10.1080/07853890.2024.2405079
https://doi.org/10.1080/07853890.2024.2405079
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3.3.  Generation of glioblastoma necroptosis index

Before developing the prognostic index, the TCGA train-
ing dataset and CGGA validation dataset were inter-
sected for common gene expression. This involved 
normalization and batch correction using the ‘limma’ 
and ‘sva’ packages (Figure S3D and E). This integration 
was crucial to prevent overfitting in the TCGA cohort 
and enhance the model’s generalizability. To develop 
necroptosis-related prognostic index, we first identified 

818 DEGs between the two clusters by performing dif-
ferential expression analysis in TCGA cohort (log2FC ≥ 1; 
FDR < 0.01) (Figure 3A and Supplementary Table S7). Of 
the 818 DEGs, 636 were shared by both cohorts. 
Univariate Cox regression analysis indicated prognostic 
relevance of 111 DEGs (p < 0.05) (Supplementary Table 
S8). Of the 111 survival-related genes, 102 were associ-
ated with poor prognosis, as indicated by a Hazard 
Ratio (HR) greater than 1. A 10-gene prognostic risk sig-
nature, referred to as the GNI, was derived using least 

Figure 3.  Analysis of GNI signature genes’ expression, distribution, and correlation with clinical characteristics. (A) Volcano plot 
depicting the differentially expressed genes (DEGs) between the necroptosis-based clusters. Wilcoxon rank-sum test; DEGs were 
defined according to the following criteria: log 2 fold change (log2FC) = 1, and the false discover rate (FDR) < 0.01. (B) LASSO 
regression of the 111 OS-related genes identified via uni-cox regression analysis and cross-validation for tuning the parameter 
selection in the LASSO regression. (C) Bar plot depicting lasso regression coefficients. (D) Principal component analysis (PCA) plot 
of GNI in TCGA GBM cohort. (E) Risk plot, survival plot and heatmap displaying the expression of 10 GNI risk genes (upregulation 
is represented in red, while downregulation is indicated in blue) within the GNI subgroups (red: GNI-high; blue: GNI-low) and 
association with clinical and pathological characteristics. Chi-square test; significance: *p < 0.05; **p < 0.01; ***p < 0.001. (F) 
HALLMARK pathways enrichment analysis. (G) Gene Ontology (GO) terms enrichment analysis.

https://doi.org/10.1080/07853890.2024.2405079
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absolute shrinkage and selection operator (LASSO) Cox 
regression analysis (Figure 3B and C). GBM samples 
were stratified into two subgroups, namely GNI-high 
(high-risk subgroup) and GNI-low (low-risk subgroup), 
based on their respective median risk scores. Principal 
component analysis (PCA) showed spatially separated 
GNI subgroups with PC1 capturing about 40% of the 
variation in both cohorts (Figure 3D and S3F). The dis-
tribution of patients into GNI-high and GNI-low sub-
groups was evenly represented, as illustrated by the 
plot of the risk scores (Figure 3E and S3G). Notably, 
patients in the GNI-high subgroup exhibited a higher 
frequency of deaths and shorter survival time, indicat-
ing a negative correlation compared to those in the 
GNI-low subgroup.

3.4.  Characterization of GNI subgroups

The expression patterns of the ten risk genes and their 
association with clinical attributes for both cohorts are 
illustrated in heatmaps (Figure 3E and S3G). Except for 
MSTN, the rest of the nine risk genes were upregulated 
in the GNI-high subgroup. Individually, necroptosis medi-
ators were positively correlated with GNI in the TCGA 
cohort (Figure. S3H–J). Major differences in clinical traits 
included methylation and expression classes and IDH1 
mutations (Figure 3E and Supplementary Table S9). The 
GNI-low subgroup had a higher incidence of IDH1 muta-
tions. The mesenchymal subtype was the predominant 
subtype in the GNI-high subgroup. Investigation of the 
CGGA cohort, which comprised a younger group (mostly 
<65 years), showed that MGMT methylation was signifi-
cantly superior in the GNI-low subgroup (Figure S3G).  
In this cohort, the frequency of IDH1 mutation, 1p19q 
co-deletion, and female participants were prevalent in 
the GNI-low subgroup. Overall, similar characteristics were 
apparent in the GNI subgroups to that of necroptosis-stratified 
clusters.

Functional enrichment analysis indicated the enrich-
ment of oncogenic and immune-related gene sets in the 
GNI-high subgroup, as illustrated in Figure 3F. The 
GNI-high subgroup is characterized by hyperactivation of 
IL6_JAK_STAT3 signaling, epithelial-to-mesenchymal tran-
sition (EMT), hypoxia, and angiogenesis [88,89]. Immune- 
related gene sets included activation of complement, 
coagulation, acute inflammatory response, and signaling 
pathways, such as TNFA and IL2_STAT5. IL2_STAT5 signal-
ing pathway plays a dynamic role in effector and regula-
tory T cells (Tregs) [90]. Conversely, the GNI-low subgroup 
exhibited enrichment in gene sets associated with DNA 
repair and cell cycle, along with metabolic pathways, 
including oxidative phosphorylation and fatty acid 

metabolism. Differentially expressed genes between the 
GNI subgroups also endorsed the implication of inflam-
matory and immune-associated pathways, such as wound 
healing, acute inflammatory response, leukocyte migra-
tion, and humoral immune response (Figure 3G and 
Supplementary Tables S10, S11).

3.5.  Validation of GNI genes induction during 
necroptosis

Subsequently, we proceeded to empirically verify the 
initiation of GNI gene activation during necroptosis 
induction in GBM cancer cell lines (U251 and LN229). 
This validation process involved utilizing the TNF-α, 
SMAC mimetic, and zVAD-FMK (TSZ) combination, in 
accordance with previous recommendations [91,92]. 
The validation of necroptosis induction was substanti-
ated by the observed increase in the mRNA expression 
levels of necroptosis mediators such as RIPK1, RIPK3, 
and MLKL (Figure 4). Conversely, the introduction of 
the necroptosis inhibitor, necrostatin-1, led to the sup-
pression of these genes. Furthermore, a comparable 
expression pattern was observed for all the GNI 
oncogenes.

3.6.  GNI effectively predicts GBM prognosis

GNI could effectively identify GBM patients with the 
worst prognosis in both cohorts, as depicted in Figure 
5A and B. The predictive performance of the prognos-
tic model was assessed using time-dependent receiver 
operating characteristic (ROC) analysis. In TCGA cohort, 
the area under the curve (AUCs) was 0.750, 0.811, and 
0.945 at 1, 3, and 5 years, respectively. Similarly, in the 
CGGA cohort, the AUCs were 0.564, 0.604, and 0.634 at 
1, 3, and 5 years, respectively (Figure 5C and D). The 
concordance index identified GNI as the best-ranked 
model of survival in TCGA cohort (Figure 5E). In the 
CGGA cohort, recurrence was the best, followed by the 
GNI, as the CGGA cohort included patients with recur-
rent glioblastoma (Figure 5F). GNI could also effectively 
predicted the progression-free and disease-specific 
survival in of TCGA GBM patients (Figure S3K and L). 
We separately evaluated the GNI efficiency in the pri-
mary and recurrent GBM samples from the CGGA 
cohort, which also indicated that GNI could predict 
prognosis regardless of recurrence status (Figure 5G). 
Moreover, the ability of GNI to stratify GBM patient 
survival probabilities was also demonstrated in seven 
external datasets comprising 591 GBM patients (Figure 
5G). Overall, a significant prognostic value of the GNI was 
evident in diverse GBM patients.

https://doi.org/10.1080/07853890.2024.2405079
https://doi.org/10.1080/07853890.2024.2405079
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3.7.  Construction of a GNI-based prognostic 
nomogram

Further exploration of the prognostic and predictive 
efficiency of GNI was conducted using uni- and 
multi-variate cox regression. GNI was identified as a 
hazardous factor in TCGA cohort at both uni- and mul-
tivariate levels (Figure 6A). However, in the CGGA 
cohort, recurrence was more hazardous than GNI, as 
previously mentioned (Figure 6B). A nomogram was 
developed involving the common prognostic factors 
between the two datasets, including age, gender, 
MGMT methylation, IDH1 status, type of primary dis-
ease (primary or recurrent), and GNI (Figure 6C). There 
was a good correspondence between the predicted 
probabilities based on the nomogram and the actual 
1-, 3-, and 5-year OS rates of GBM patients (Figure 6D). 

Effective discrimination in the survival probabilities of 
subgroups stratified by the nomogram was demon-
strated by the Kaplan-Meier survival curve (p < 0.0001) 
(Figure 6E). The DCA and ROC graphs illustrate the dis-
criminative capability of the nomogram in the com-
bined cohort and each cohort separately (Figure 6F–H).

3.8.  GNI-driven immune landscape and its effects 
on macrophage polarization in GBM

Consistent with pathway enrichment analysis, the 
GNI-high subgroup exhibited a significantly higher 
immune score compared to the GNI-low subgroup 
(Figure 7A). In the TCGA cohort, various immune cells, 
including myeloid cells and lymphocytes, were more 
abundant in the GNI-high subgroup. This included 

Figure 4.  A) The relative mRNA level of necroptosis core mediators (RIPK1, RIPK3, MLKL) and GNI genes (LOXL1, COL22A1, MSTN, 
POM121L9P, STEAP2, GZMB, OSMR, STEAP3, IGFBP6 and STC1) in glioblastoma cells (U251 and LN229) following treatment  with 
TNF-a, SMAC mimetic, and zVAD-FMK (TSZ) to induce necroptosis or the addition of the necroptosis inhibitor (necrostatin-1) to 
inhibit necroptosis. The data represent the mean ± SEM (standard error of mean) of n = 3 independent experiments (independent 
biological replicas) for each condition. Two-tailed unpaired T-test; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns, not 
significant.
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macrophages, neutrophils, regulatory T cells (Tregs), den-
dritic cells (DCs), activated dendritic cells (aDCs), and T 
helper cells such as Th1 and Th2 cells (Figure 7A). Notably, 

all 13 immune-related pathways were enriched in the 
GNI-high subgroup, except for the MHC class I and Type 
I interferon pathways (Figure 7A). Histopathological 

Figure 5.  GNI Predict survival probability. (A) Overall survival difference between risk subgroups in the TCGA cohort and B) CGGA 
cohort. (C) Receiver operating characteristic (ROC) curves and corresponding area under the curve (AUC) analyses over time, illus-
trating the predictive efficacy of the risk score in the TCGA cohort and D) CGGA cohort. (E) Concordance index (C-index) analyses 
depicting the GNI model performance in TCGA cohort and F) CGGA cohort. (G) GNI-stratified subgroups discriminating survival 
probabilities in the GBM cohorts.
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examination of TCGA GBM samples further supported 
the higher presence of lymphocytes in the GNI-high sub-
group compared to the GNI-low subgroup (Figure 7B and 
C). Since, cancer stemness was negatively correlated with 
immune cell infiltration, we evaluated the relationship 

between GNI and the TCGA GBM stemness score [93]. As 
expected, there was a negative correlation between GNI 
and both RNAss and DNAss stemness scores (Figure 7D). 
Overall, these results suggest that a high necroptosis 
index indicate an elevated immune activity.

Figure 6.  A) Uni- and multi-variate regression demonstrating prognostic significance of GNI and other factors in TCGA and B) 
CGGA cohorts. (C) a nomogram integrating GNI, clinical, genetic, pathological variables and overall survival probability of the 
combined cohort (TCGA + CGGA). (D) Correlation of actual and predicted overall survival rates in combined cohort (TCGA + CGGA). 
(E) survival probability of the nomogram-stratified clusters in combined cohort (TCGA + CGGA). (F) DCA (Decision curve analysis) 
and ROC curve plot of evaluating the nomogram in combined (TCGA + CGGA), G) TCGA, and H) CGGA cohorts.
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Given the crucial role of macrophages in the immu-
nosuppressive microenvironment of GBM, we investi-
gated the phenotype of macrophages in the GNI-high 
risk subgroup [94]. CIBERSORT algorithm results con-
firmed the infiltration of various immune cells in the 
GNI-high subgroup, including neutrophils, activated 
mast cells, monocytes, M0 macrophages, memory B 
cells, regulatory T cells, and activated CD4 memory T 

cells (Figure 7E and F). The M0 macrophage pheno-
type was predominant in the GNI-high risk subgroup, 
while the M1 and M2 phenotypes were reduced, sug-
gesting that GNI may restrict macrophage polarization 
in the GBM microenvironment. Additionally, these infil-
trated cells were associated with worse prognosis in 
the TCGA dataset (Figure S4A and Supplementary 
Table S12).

Figure 7.  TME Landscape in GNI-stratified GBM subgroups. (A) Differences in tumor microenvironment (TME) and the enrichment 
(ssGSEA) of immune cells (16 types) and immune-related pathways (13 types) in the TCGA GBM samples between GNI subgroups 
(Wilcoxon rank-sum test; *p < 0.05; **p < 0.01; ***p < 0.001). (B) Pathological HE staining (TCGA database) showing the lymphocyte 
infiltration between the GNI-high and GNI-low subgroups. (C) Violin plot depicting the difference in the GNI of TCGA GBM samples 
characterized as lymphocyte-enriched (yes) and lymphocyte-deficient (no). (D) spearman’s correlation between GNI and TCGA GBM 
stemness score. (E) Enrichment of immune cells in GNI subgroups as assessed by CIBERSORT algorithm (Wilcoxon rank-sum test; 
*p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant). (F) Correlation between abundance of immune cells and GNI. Spearman’s 
correlation test; red indicates significance p < 0.05.

https://doi.org/10.1080/07853890.2024.2405079
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3.9.  Validating GNI-Mediated modulation of 
macrophage polarization in GBM

To validate this association of GNI and macrophage 
polarization, we first evaluated the specific GNI com-
ponents related to macrophage dynamics in TCGA 
GBM cells. Within this framework, a cluster of GNI 
genes comprising COL22A1, LOXL1, OSMR, POM121L9P, 
and STC1 displayed a positive relationship with M0 
macrophages and exhibited a negative correlation 
with M1 and M2 types, suggesting their potential role 
in preventing polarization (Figure 8A). Consequently, 
we opted to validate three of these genes, COL22A1, 
LOXL1, and STC1 using clinical samples from patients 
with glioblastoma. Immunohistochemical analysis of 
GBM tissues (n = 5) revealed a positive correlation 
among MLKL (a necroptosis marker), the three GNI 
genes, and the expression of the M0 macrophage 
marker (CD68) (Figure 8B–D). Conversely, the expres-
sion of CD163, a polarization marker associated with 
the M1/M2 macrophage phenotype, remained mini-
mal. To further investigate the role of GNI genes (MLKL, 
STC1, LOXL1, and COL22A1) in modulating macro-
phage polarization, we conducted an indirect 
co-culture experiment. Glioma cell lines (LN229 and 
U251) transfected with overexpression vectors for the 
GNI genes were co-cultured with M0-like macrophages 
differentiated from THP-1 cells by PMA (Phorbol 
12-myristate 13-acetate) (Figure 8E and F). Flow cytom-
etry analysis revealed a considerable decrease in the 
proportion of CD206+ cells in the presence of GNI 
gene overexpression compared to the wild type (nor-
mal control), indicating that the overexpression of GNI 
genes reduce macrophage polarization (Figure 
8G and H).

3.10.  Mapping necroptosis mediators and GNI 
genes in GBM microenvironment at single-cell 
resolution

Consequently, we investigated the expression patterns 
of necroptosis mediators and GNI genes at the single-cell 
level. We accessed a preprocessed single-cell GBM data-
set (GSE148842) containing normalized counts and 
metadata from the TISCH database [86]. This dataset 
encompassed seven GBM samples, totaling 111,397 sin-
gle cells, following initial quality control and data stan-
dardization. A comprehensive set of 28 cell population 
clusters was identified, corresponding to seven distinct 
cell types involving both immune and cancer cells 
(Figure 9A and B). Utilizing the ‘Seurat’ R package, we 
generated UMAP visualizations of both core necroptosis 
regulators and GNI genes. The prevailing expression 

pattern of necroptosis mediators was most noticeable 
within immune cells (including monocytes and M2 mac-
rophages), and to a certain extent, it was also observed 
in malignant cells (Figure 9C). In contrast, GNI genes 
were primarily expressed in the malignant cells (Figure 
9D). Individually, RIPK1 was ubiquitously expressed 
across all cell types, whereas RIPK3 and MLKL exhibited 
more pronounced expression within monocytes and M2 
macrophages (Figure 9E). The spectrum of GNI gene 
expression spanned all cell types, although discernible 
variations in expression patterns emerged within indi-
vidual cell types. For instance, COL22A1 and STC1 were 
expressed in separate clusters of malignant cells, in con-
trast to OSMR, LOXL1, and IGFBP6, indicating potential 
diversity in their oncogenic roles (Figure 9F–J). Single-cell 
analysis indicated that necroptosis could potentially 
take place in myeloid cells, accompanied by the activa-
tion of GNI genes in malignant cells; conversely, the 
activation of GNI genes could lead to necroptosis in 
myeloid cells.

3.11.  Immunomodulators in GNI-defined GBM 
subgroups and anti-tumor immune activity in GBM

Immunomodulators (IMs) are central to the immune 
evasion strategy of cancer cells and are critical for can-
cer immunotherapy. The IMs associated with cell adhe-
sion and migration, such as CD44, ICAM1, SELP, and 
ITGB2, were elevated (Figure 10A). In addition, several 
chemokines (CX3CL1, CXCL9, and CCL5) and cytokines 
(TGFB1, IL1B, and IL10) were upregulated in the 
GNI-high subgroup and positively correlated with 
monocytes, macrophages, and neutrophils, among 
others (Figure 10B). These cytokines are central to the 
immunosuppressive roles of CD4 + T cells (Th1, Th2, 
and Treg) and myeloid-derived suppressor cells [95,96]. 
MHC signaling was elevated in the GNI-high subgroup. 
MHC-I molecules were positively associated with the 
majority of immune cells and were associated with 
better prognosis, for example, HLA-A, HLA-C, and MICB 
(Figure 10B, S4B, and Supplementary Table S13). MHC-II 
molecules were also upregulated in the GNI-high sub-
group and were mainly correlated with plasma cells, 
M2 macrophages, monocytes, activated CD4 memory T 
cells, and neutrophils (Figure 10A and B). MHC-II sig-
naling was associated with the worst prognosis (Figure 
S4B). The costimulatory molecule CD27 (also a marker 
of memory B cells) and its ligand CD70 were upregu-
lated and showed a positive correlation with naïve and 
memory B cells (Figure 10A and B). Additionally, 
CD27-CD70 signaling also plays a critical role in the 
regulation of T-cell responses [97]. Other TNFRs, such 
as TNFRSF4 (OX40, CD134), TNFRSF9 (4-1BB, CD137), 
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https://doi.org/10.1080/07853890.2024.2405079
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Figure 8.  GNI Genes modulates macrophage polarization. (A) Correlation between infiltration of immune cells and individual GNI 
genes (n = 10) in TCGA GBM cohort. (spearman’s correlation test; Statistical significance is indicated as follows: *p < 0.05; **p < 0.01; 
***p < 0.001). (B) IHC quantification of expression level of MLKL, STC1, LOXL1, COL22A1, CD68 and CD163 in the clinical samples 
of glioblastoma. (C) Pearson’s correlation of expression level of MLKL, STC1, LOXL1, COL22A1, CD68 and CD163 in the clinical 
samples of glioblastoma. (D) Representative images of expression (brown, cell cytoplasmic/nucleus stain) of MLKL, STC1, LOXL1, 
COL22A1, CD68 and CD163 in the clinical samples of glioblastoma. (E) PCR analysis for measuring the relative mRNA expression 
of MLKL, STC1, LOXL1, COL22A1 in LN229 and U251 GBM over-expressive (OE) cells and normal control (NC). The data represent 
the mean ± SEM (standard error of mean) of n = 3 independent experiments (independent biological replicas) for each condition. 
Two-tailed unpaired T-test; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns, not significant. (F) Western blot analysis of protein 
expression of MLKL, STC1, LOXL1, COL22A1 in LN229 and U251 GBM over-expressive (OE) cells and normal control. (G) Flow 
cytometry plots demonstrating the difference in CD206 expression on THP-1 differentiated macrophages after coculture with 
LN229 and U251 GBM over-expressive (OE) cells and normal control.
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Figure 9. S ingle-cell transcriptomic analysis of necroptosis mediators and GNI genes in glioblastoma. A, B) UMAP plots displaying 
main clusters and cell-types in single-cell gastric cancer dataset (GSE148842), colored by cluster (A) and (B) cell type. C, D) UMAP 
plots depicting the expression scores of (C) necroptosis mediators (RIPK1, RIPK3, MLKL) and (D) GNI genes, colored by expression 
level. (E) The bubble plot depicting the expression levels of necroptosis mediators (RIPK1, RIPK3, MLKL) and GNI genes across cell 
types. F-I) UMAP plot exhibiting expression of selected GNI genes in single cell GBM dataset.
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Figure 10. I mmunomodulators (IMs) And anti-cancer immune response in GNI subgroups. (A) Differential upregulation of IMs in 
GNI subgroups. (Wilcoxon rank-sum test; *p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant). (B) Heatmap of correlation between 
immune cells and IMs. *p < 0.05; **p < 0.01; ***p < 0.001. (C) Heatmap of the seven-step anti-cancer immune response signature 
gene expression (178 genes) between top 15% GNI-high (n = 25) and GNI-low (n = 25). Purple and cyan represent upregulation & 
downregulation respectively. (D) Principal component analysis (PCA) plots of GNI subgroups for TCGA cohort (top 30%) based on 
overall activity. (E) Boxplot of overall activity difference between GNI subgroups. Wilcoxon rank-sum test. (F) Pearson’s correlation 
between GNI and overall activity. (G) Difference in the individual seven-step activity performance and overall activity between the 
GNI subgroups. Wilcoxon rank-sum test; p < 0.05 was considered significant.
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TNFRSF8 (CD30), TNFRSF14 (HVEM), and TNFRSF18 
(GITR), were also elevated in the GNI-high subgroup, 
which is expressed by T cells and influences T cell 
responses directly or indirectly by inducing inflamma-
tion or activating APCs [98,99]. The GNI-high subgroup 
showed upregulation of several immune inhibitors, 
such as PD-1, PD-L1, CTLA-4, CD274, CD200R1, TIGIT, 
VEGFA, and IDO, indicating T-cell exhaustion (Figure 
10A) [100–107].

The trafficking of immune cells and the activity of 
immunomodulators have been incorporated to esti-
mate the tumor immunophenotype, which is charac-
terized by a seven-step process and indicates the 
status of anti-cancer immune response [81]. The 
seven-step response was significantly higher in the top 
15% of GNI-high subgroup compared to top 15% of 
low-GNI subgroup, as illustrated in Figure 10C–G. 
Significant trafficking of CD8 T cells, killing of the can-
cer cells, and overall anti-cancer immune response 
activity in the GNI-high subgroup was revealed (Figure 
10C–G). These outcomes further endorse the earlier 
observations of GNI association immune activity in GBM.

3.12.  GNI’s potential to predict ICI response

Immune response prediction based on biomarkers has 
been mainly evaluated in melanoma, lung cancer, and 
bladder cancer, which have shown a good response to 
immunotherapy in the form of immune checkpoint 
blockade (ICB) such as CTLA-4 and PD-1/PD-L1 block-
ade [108]. Tumor mutation burden has been proven to 
be a valuable biomarker at different cutoff values for 
predicting response to ICB [109]. We estimated the 
TMB level, which indicated an inverse relationship with 
the GNI (Figure 11A). Interestingly, high TMB was asso-
ciated with improved survival, as shown in Figure 11A. 
Tumor Immune Dysfunction and Exclusion (TIDE) is a 
computational framework that models immune eva-
sion strategies by cancers in terms of T-cell dysfunc-
tion (high CTL infiltration) or exclusion (low CTL 
infiltration), and predicts the tumor response to ICI 
therapy [82]. The GNI-high subgroup had a high T cell 
dysfunction score, as indicators such as CD276, IFN, 
and Merck were higher in this subgroup (Figure 11B). 
However, the exclusion score showed no difference 
even though the TAM2 and MDSCs scores were high in 
the GNI-low subgroup, indicating that the immune 
evasion strategy operating in the GNI-high subgroup 
was via T cell dysfunction. According to the TIDE score, 
ICI response was better in the GNI-low subgroup. 
Nonetheless, T-cell dysfunction was the main immune 
evasion mechanism employed by the GNI-high sub-
group. We further evaluated the prediction efficiency 

of another ICI response indicator, immunophenoscore 
(IPS), which is based on the activity of four factors: 
MHC signaling, tumor suppressor cells (MSDC and 
TAM2), effector cells (T cells), and immunomodulators 
(immune checkpoints) [83]. The GNI-low subgroup 
achieved a low score, indicating a better response to 
ICI therapy (Figure 11C). When limiting the IPS to 
CTLA-4 and PD-1 scores, a response difference was 
observed when both CTTLA-4 and PD-1 were negative 
or CTLA-4 positive plus PD-1 negative, favoring the 
GNI-low subgroup (Figure 11D). There was no differ-
ence in the IPS score when PD-1 was positive, regard-
less of the status of CTLA-4 (Figure 11D). In accordance 
with the TIDE outcome, the IPS also indicated a posi-
tive correlation between GNI and MHC and effector 
cells (Figure 11E). However, immune checkpoint mole-
cules are positively associated with suppressor cells 
rather than effector cells, which corresponds to the 
unique microenvironment in GBM. Finally, we employed 
the submap algorithm to infer the response to ICI 
checkpoint inhibitors (anti-CTLA-4 and PD-1) based on 
response data from a melanoma cohort treated with 
ICI immunotherapy [110]. Interestingly, the outcome 
indicated that the GNI-high subgroup would respond 
to anti-CTLA-4 blockade and also showed a trend 
toward a better response to anti-PD-1 blockade 
(Figure 11F).

To validate whether GNI could predict the response 
to ICI immunotherapy, we investigated its activity in 
ICI-treated cohorts, including IMvigor210 (urothelial car-
cinoma, n = 348; ICI, anti-PD-L1), GSE176307 (metastatic 
urothelial carcinoma, n = 88; anti-PD-1/PD-L1), E-MTAB- 
3218 (array express) (ccRCC, n = 58), GSE91061 (mela-
noma, n = 51), and GSE78220 (metastatic melanoma, 
n = 27; ICI = anti-PD-1). Surprisingly, the integration of 
these patients into high- and low-risk subgroups based 
on GNI demonstrated promise for ICI responses (Figure 
12). In the IMvigor210 cohort comprising urothelial car-
cinoma patients treated with pembrolizumab, there was 
no survival advantage for either GNI subgroup, and the 
overall response tended to favor the GNI-low subgroup 
(Figure 12A). Nonetheless, stable disease was signifi-
cantly higher than disease progression (p = 0.054), and 
GNI was significantly progressively correlated with the 
immune microenvironment from desert to inflamed 
(Figure 12B). Moreover, a significantly better prognosis 
was demonstrated in patients with metastatic urothelial 
carcinoma receiving pembrolizumab and/or atezoli-
zumab (Figure 12C). In this cohort, initial treatment with 
an anti-PD-L1 agent (atezolizumab) resulted in slightly 
better survival compared to pembrolizumab (Figure 
12D). Clear cell renal cell carcinoma (ccRCC) cohort 
receiving anti-CTLA-4 and anti-PD-1agents also showed 
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Figure 11. I mmunotherapy response prediction. (A) Correlation between GNI and tumor mutational burden (TMB) and prognostic 
impact of TMB in GBM and GNI subgroups. (B) Comparison of TIDE (tumor immune dysfunction and exclusion) algorithm results 
(including markers: CTL, CD8, CD276, IFNG, MERCK18, MDSCs, CAFs, TAM2; and scores: T cell dysfunction score, T cell exclusion 
score and TIDE score) between the GNI subgroups. Wilcoxon rank-sum test; *p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant. 
(C) Immunophenoscore (IPS) difference between GNI subgroups predicting immunotherapy response. Wilcoxon rank-sum test (D) 
IPS difference between GNI subgroups predicting anti-CTLA-4 and/or anti-PD-1 immunotherapy response. Wilcoxon rank-sum test. 
(E) Correlation between GNI and IPS and its components of IPS including MHC, effector cells (EC), suppressor cells (SC), checkpoint 
protein (CP) and sum of weighted averaged Z scores of the four components (AZ). (F) probability of immunotherapy (anti-CTLA-4 
and/or anti-PD-1) response of GNI subgroups estimated by submap algorithm.
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a promising response (CR/PR vs SD/PD: p = 0.07; CR vs 
SD: p = 0.041; CR vs PD: p = 0.042) (Figure 12E). Integration 
of risk subgroup based on post-therapy RNA sequenc-
ing showed a positive correlation with progression (PD 
vs. SD: p = 0.043), indicating a change in the activity of 
GNI after immunotherapy initiation (Figure 12F). The 

GNI-based subgrouping of melanoma patients also 
showed a trend toward better survival (p = 0.078) (Figure 
12G). A rather significant improvement was demon-
strated in ipilimumab-naïve patients receiving anti-PD-1 
therapy compared to patients receiving anti-PD-1 ther-
apy after progression on CTLA-4 blockade (Figure 12H). 

Figure 12.  Validation of immunotherapy response. (A) The Kaplan-Meier curves of difference in survival probability between the 
GNI-stratified subgroups and boxplots of GNI variation in responsiveness to immune checkpoint blockade of IMvigor210, (C) 
GSE176307, (E) E-MTAB-3218, (G) GSE91061, and (J) GSE78220 cohorts. The scattered dots represent the GNI of the two subgroups. 
(B) Kruskal–wallis test measures the difference in the GNI among TME immunophenotypes. (D) The Kaplan-Meier curves of differ-
ence in survival probability between the GNI-stratified subgroups of GSE176307 cohort based on type of immune checkpoint 
blockade (anti-PD1/anti-PD-LL1). (F) the Kaplan-Meier curve of difference in survival probability between the GNI-stratified sub-
groups and boxplots of GNI variation in responsiveness to immune checkpoint blockade of E-MTAB-3218 cohort based on 
post-therapy RNA sequencing data. (H) The Kaplan-Meier curves of difference in survival probability between the GNI-stratified 
subgroups of GSE91061 cohort based on treatment type (ipilimumab-naïve or ipilimumab-progressed. (I) The Kaplan-Meier curve 
of difference in survival probability between the GNI-stratified subgroups and boxplots of GNI variation in responsiveness to 
immune checkpoint blockade of GSE91061 cohort based on on-therapy RNA sequencing data. (K) Drug sensitivity analysis of GNI 
subgroups. Wilcoxon rank-sum test.
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On-therapy RNA sequencing failed to show such a 
response (Figure 12I). GNI failed to show any difference 
in response in the cohort of patients with metastatic 
melanoma (Figure 12J). Finally, drug sensitivity analysis 
indicated that the GNI-high subgroup was only sensitive 
to three targeted drugs (out of 198 drugs), suggesting 
a strong resistance profile (Figure 12K). In conclusion, 
these analyses indicate that GNI-high is resistant to the 
majority of molecular targeted drugs but may respond to 
immune checkpoint blockade.

4.  Discussion

Necroptosis, a recently identified form of programmed 
cell death, plays a dual role in cancer and is involved 
in both tumor suppression and progression [111]. In 
various cancer types, downregulation of necroptosis 
mediators (such as RIPK1, RIPK3, and MLKL) is linked to 
tumor grade and prognosis [111–119]. Intriguingly, 
two-thirds of the 60 cancer cell lines exhibited RIPK3 
absence, which could be restored by treatment with 
the hypomethylating agent, decitabine [119]. 
Collectively, these investigations suggest the potential 
anti-cancer effects of necroptosis. However, there are 
also pro-cancer effects associated with necroptosis, 

including the participation of necroptosis-related 
inflammation in stimulating processes such as angio-
genesis, cancer cell proliferation, metastasis, and T cell 
death [113,114]. In agreement with our study findings, 
necroptosis mediators were found to be overexpressed 
in glioblastoma (GBM), correlating with prognosis and 
hinting at a carcinogenic effect. The subgroup with 
high GNI gene expression displayed enrichment of 
processes and signaling pathways conducive to cancer 
progression, such as hypoxia, angiogenesis, epithelial- 
mesenchymal transition (EMT), and the IL6_JAK_STAT3 
pathway.

The TME framework displayed similarities reminis-
cent of the pattern observed in chronic inflammation, 
including the presence of infiltrating inflammatory 
cells, such as macrophages, neutrophils, and mast cells 
[120]. M0 macrophages were the predominant pheno-
type of infiltrating macrophages in the GNI-high GBM 
TME. The reduced presence of M1 macrophages, and 
to a lesser extent M2 macrophages, within the GNI-high 
subgroup may underscore their reported susceptibility 
to necroptosis compared to the M0 phenotype [121]. 
Notably, GNI genes, such as STC1, COL22A1, and 
LOXL1, also appear to impede the polarization of M0 
macrophages to the M1 and M2 phenotypes. Moreover, 

Figure 13. E xploration of 55 necroptosis-related genes in diverse GBM populations revealed a high-risk subgroup with an immu-
nosuppressive immunophenotype and poor prognosis, which was best described by a 10-gene signature termed the glioblastoma 
necroptosis index (GNI). The GNI signature predicts the immune response to immune checkpoint inhibition therapy in several 
cancers.
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inflammation triggered by necroptosis was associated 
with the activation of anti-cancer immune responses, 
fostering dendritic cells (DCs) via antigen presentation 
and stimulating T cells, which was also observed in 
our study [118,122,123]. The inflammation-driven 
immune response was associated with the subsequent 
development of an immunosuppressive TME, as indi-
cated by the enrichment of inflammatory/immune 
pathways, abundance of immune cells, and upregula-
tion of immune checkpoint molecules, as highlighted 
in Figure 13.

Individual characterization of GNI oncogenes could 
reflect how each member contributes to the GNI pheno-
type. Lysyl oxidase-like 1 (LOXL1) belongs to the LOX 
family of copper-dependent ε-amine lysine oxidases, 
which are involved in elastic fiber synthesis and homeo-
stasis, and are implicated in fibrous disease and cancer 
[124]. In cancer, their role has been identified in the con-
struction of the tumor microenvironment by covalently 
cross-linking collagen and elastin in the extracellular 
matrix (ECM), which was also reflected in our study by its 
positive correlation with the stromal score [125]. LOXL1 
was initially identified as a tumor suppressor [126–128]; 
however, it has been increasingly associated with cancer 
progression, angiogenesis, and therapy resistance [129–
131]. Similarly, the interaction between OSMR (expressed 
in fibroblasts) and its cognate ligand, OSM, which is usu-
ally expressed by macrophages, is reported to drive the 
inflammatory environment and tumor growth [132]. The 
outcomes of our study indicate that OSM-OSMR signal-
ing may also operate in the GNI-high subgroup, as OSMR 
was significantly correlated with both stromal and 
immune scores. IGFBP6 has also been reported to play a 
role in fibrosis and chemoresistance in glioblastoma 
through paracrine IGF2/IGF-1R signaling [133,134]. 
Stanniocalcin-1 (STC1) has recently been identified as a 
tumor oncogene that is induced by oxidative stress, 
resulting in poor prognosis by downregulating ERK1/2 
signaling [135]. Hypoxia-induced STC1 also promotes 
tumor growth and metastasis in ccRCC and breast cancer 
[136,137]. Moreover, fibroblast-derived STC1 restricts the 
differentiation of tumor-associated macrophages in lung 
adenocarcinoma [138]. STEAP2 and STEAP3 are ferrire-
ductases and cupric reductases that stimulate the cellular 
uptake of both iron and copper; as such, these proteins 
may participate in ferroptosis and cuproptosis, thereby 
initiating these processes upon necroptosis induction 
[139]. Alternatively, neutrophil-induced ferroptosis has 
been shown to promote tumor necrosis in glioblastoma 
[140]. Hence, further exploration of individual oncogenes 
may unravel various necroptosis-initiating events and 
how necroptosis may affect the induction of other path-
ways contributing to cancer growth.

Non-neoplastic cells constitute a substantial propor-
tion of the GBM microenvironment, including both 
tissue-resident and infiltrative cells [141]. Microglia, a 
tissue-resident cell type, and bone marrow-derived 
macrophages (BMDMs) make up to one-third of the 
tumor mass and greatly contribute to tumor progres-
sion and the immunosuppressive TME [142,143]. BMDMs 
are recruited specifically by tumor cells regardless of 
irradiation and BBB damage, and remain a distinct pop-
ulation despite acquiring microglial features [144–146]. 
Correspondingly, the GNI-high subgroup was enriched 
in M0 macrophages. Glioblastoma-associated macro-
phages (GAMs) and tumor cells play a critical role in the 
development of an immunosuppressive TME by secret-
ing high levels of anti-inflammatory factors, such as 
IL-10, IL-4, IL-1B, MIF, TGF-β1, and PGE2 [145–148]. 
Several of these factors (TGF-β1, IL-10, and IL-1B) posi-
tively correlated with the fraction of various types of 
immune cells, indicating their role in the overall immu-
nosuppressive TME. In particular, M0 macrophages, 
which showed a positive correlation with GNI, were 
positively associated with clinically relevant inhibitory 
checkpoint molecules, such as CTLA-4, PD-L1, and IDO. 
PD-L1 ligand expression in tumors and GAMs is reported 
to suppress T-cell function and proliferation and may 
influence Treg proliferation [105]. Interestingly, M0 mac-
rophages and Tregs were positively correlated, which 
might explain this effect. IDO receptors expressed by 
M0 macrophages could also induce Tregs and suppress 
CD8+ T cells, which showed a strong association with 
IDO2 [100,101,149]. IDO upregulation is associated with 
the worst prognosis, and its genetic ablation in orthot-
opic and transgenic mouse glioma models has led to 
spontaneous rejection of brain tumors [150]. Hence, the 
IDO blockade may serve as a potential therapeutic tar-
get in the GNI-high subgroup. CD200R1 upregulation in 
the GNI-high subgroup represents another potential 
inhibitory immune checkpoint worthy of further investi-
gation. Although CD200 was significantly higher in the 
GNI-low subgroup, CD200R1 has been shown to oper-
ate regardless of CD200 expression in suppressing the 
anti-tumor response [106]. Interestingly, CD200R1 was 
mainly correlated with neutrophils, activated CD4 mem-
ory T cells, and monocytes, and further investigation is 
needed to explore this connection.

Several predictive biomarkers of response to 
immune checkpoint blockade have been identified in 
several cancers, including tumor mutation and neoan-
tigen burden, mismatch repair (MMR) deficiency, CD8+ 
T cell infiltration, and PD-Ll expression [151]. However, 
their predictive ability for GBM is unclear because of 
the limited number of clinical studies. The tumor 
mutation load (TML) in glioma is very low compared 
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to that in high TML malignancies, and only a small 
fraction of GBM patients (3.5%) present with high TML. 
High TML in patients exhibits positively associated 
with MMR mutations and a lack of enriched influx of 
CD8+ T cells, PD-1+ T cells, or tumor-expressed PD-L1 
[152]. Consistently, GNI showed a negative association 
with TMB and a positive correlation with CD8+ T cell 
density and PD-L1 expression. In contrast to other can-
cers, a higher TMB showed a trend toward better sur-
vival in GBM. All these indicators and the outcome of 
our study suggest that TMB may not be an ideal bio-
marker of ICB in gliomas. Newer machine learning 
models to predict ICB response have also been devel-
oped, such as TIDE and IPS, which are mainly based 
on the TME characteristics of melanoma in terms of 
immune cells (anti-cancer and immunosuppressive 
cells) and immune checkpoints [82,83]. These predic-
tion models failed to predict the predictive ability of 
the GNI. Failure was anticipated, as these algorithms 
bank on TME characteristics of melanoma and 
non-small cell lung cancer, which vary greatly from 
GBM. Nonetheless, the submap algorithm was vali-
dated in our study to predict the response to ICB in 
GBM, which indicated a positive response to 
anti-CTLA-4 and anti-PD-1 blockade therapy. A promis-
ing response to immunotherapy was observed in the 
GNI-high subgroup. Moreover, the GNI-high subgroup 
was highly resistant to molecular targeted drugs, 
except Selumetinib, SCH772984 (a highly selective and 
ATP-competitive ERK inhibitor), and KU-55933 (ATM 
kinase inhibitor). KU-55933 has been demonstrated to 
increase TMZ responsiveness of TMZ-sensitive GBM 
cells and abrogate radioresistance in glioblastoma 
stem-like cells [153,154]. This also suggests that the 
GNI-high subgroup may have demonstrated greater 
resistance to therapy and explains the lack of associa-
tion between GNI and the type of therapy, as most 
patients received both treatments. Selumetinib, a 
mitogen-activated protein kinase 1 and 2 (MEK1/2) 
inhibitor, has recently been approved for the treat-
ment of tumors associated with neurofibromatosis, 
and its exploration in GBM is warranted [155]. A ratio-
nale for the use of ERK inhibition (SCH772984) in GBM 
treatment has also been developed [156].

Glioblastoma (GBM) is well-known for its immunosup-
pressive tumor microenvironment (TME) and resistance 
to immune checkpoint blockade (ICB) therapies [8–10]. 
Vaccine and virus-based immunotherapies offer promis-
ing alternatives by targeting tumor-associated antigens 
(TAAs), which enhances specificity for cancerous tissue 
while reducing damage to normal brain tissue [157,158]. 
These therapies are crucial for transforming the ‘cold’ TME 

into a ‘hot’ TME, as they can induce lytic cell death in 
tumor cells [159]. Recent research has shown that com-
bining oncolytic viruses with bortezomib, a proteasome 
inhibitor, can trigger apoptosis and necroptosis, leading 
to greater therapeutic efficacy [160]. This suggests that 
necroptosis may be a key mechanism for converting a 
cold TME into a hot one, as observed in our study. We 
found that patients in the top 30%  of the highest necro-
ptosis index exhibited increased CD8 T cell infiltration 
and enhanced cytolytic activity.

There have few previously published studies on the 
role of necroptosis in the glioma patients using bioinfor-
matic analysis. Wu et  al. identified 614 necroptosis- 
related genes using GeneCards (https://www.genecards.
org/) as opposed to our study which only included NRGs 
(n = 55) reported in published medical literature for direct 
involvement in necroptosis [161]. Wan et al.’s study devel-
oped a necroptosis-related risk signature comprising 18 
genes including  the main NRGs, similar to the study of 
Wu, et  al. but our signature highlighted genes differen-
tially expressed between necroptosis-stratified clusters, 
underscoring the functional implications of necroptosis in 
glioblastoma [162]. In contrast, Li et  al. extended their 
analysis to various cell death pathways beyond necropto-
sis and did not provide empirical validation [163]. Thus, 
our study offers unique insights into necroptosis in GBM 
by detailing its functional implications and providing 
empirical evidence of its role in remodeling the GBM 
tumor microenvironment. Nonetheless, major portion of 
our results were also based on the transcriptomic analy-
sis, which has its own limitations. It doesn’t not account 
for post-translational modifications or protein activity, 
which can be crucial in understanding the functional role 
of genes in cancer progression and treatment response. 
Both RIPK3 and MLKL, known mediators of necroptosis, 
also exhibit necroptosis-independent functions [164,165]. 
Specifically, RIPK3 has been linked to pathogen control 
and immune responses during chronic viral infections, 
potentially through dysregulated type 1 interferon signal-
ing [164]. Similarly, MLKL, in association with RBM6, reg-
ulates endothelial cell adhesion molecule expression, 
thereby influencing EC-leukocyte interactions indepen-
dent of its necroptosis-executing role [165]. Therefore, 
the potential impact of these necroptosis-independent 
functions on our study outcomes cannot be disregarded, 
and caution is needed when interpreting the results. 
Furthermore, our study lacks detailed mechanistic insights 
into how these GNI genes contribute to progression of 
glioblastoma and TME remodeling. Hence, further 
in-depth functional studies are necessary to clarify the 
exact mechanisms by which GNI genes influence GBM 
development and progression.

https://www.genecards.org/
https://www.genecards.org/
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5.  Conclusions

Necroptosis modulation, as evident by the variation in 
the expression of 55 necroptosis-related genes, in glio-
blastoma appears to shape its immune microenviron-
ment and prognosis. The glioblastoma-necroptosis index 
(GNI) developed in this study demonstrated high predic-
tive and prognostic efficiency in GBM and could be a 
useful biomarker. Leveraging these insights could poten-
tially guide the development of targeted therapies aimed 
at manipulating the immune response and improving 
clinical outcomes for GBM patients. However, further 
investigations and translational studies are warranted to 
fully harness the potential of the GNI signature and its 
associated immunomodulation for effective GBM treat-
ment strategies.
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