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Abstract

MicroRNAs (miRNAs) are key regulators of gene expression in plants, influencing various

biological processes such as oil quality and seed development. Although, our knowledge

about miRNAs in olive (Olea europaea L.) is progressing, with several miRNAs being identi-

fied in previous studies, but most of these reported miRNAs have been predicted without the

aid of a reference genome, primarily due to limited genome accessibility at the time. How-

ever, significant knowledge gaps still need to be improved in this area. This study addresses

the complexities of miRNA detection in olive, using a high quality reference genome and a

combination of genomics and machine learning-based methods. By leveraging random for-

est and support vector machine algorithms, we successfully identified 56 novel miRNAs in

olive, surpassing the limitations of conventional homology-based methods. Our subsequent

analysis revealed that some of these miRNAs are implicated in the regulation of key genes

involved in oil quality. Within the context of oil biosynthesis pathways, the novel miRNA

Oeu124369 regulates fatty acid biosynthesis by targeting acetyl-CoA acyltransferase 1 and

palmitoyl-protein thioesterase, thereby influencing the production of acetyl-CoA and palmitic

acid, respectively. These findings underscore the power of machine learning in unraveling

the complex miRNA regulatory network in olive and provide a high quality miRNA resource

for future research aimed at improving olive oil production by exploring the target genes of

the identified miRNAs to understand their role and their biological processes.

Introduction

A substantial variety of endogenous non-coding RNAs (ncRNAs) are microRNAs (miRNAs)

that regulate gene expression at the post-transcriptional level through the degradation of target

mRNAs [1] and translation inhibition [2]. Plant miRNAs are regulators of different physiolog-

ical processes, growth and development, meristem differentiation, hormone signaling, signal

transduction, and response to biotic or abiotic stresses [3, 4]. Additionally, each plant species

contains a large number of less conserved miRNAs, indicating the potential for miRNAs to

have a functional impact on almost every aspect of plant life [4]. Therefore, understanding the

function of the plant miRNAs appears to be crucial for further progress in breeding programs.

Identification of miRNAs is challenging because miRNA families sometimes only differ in a
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single nucleotide. Therefore, it can be said that new methods such as machine learning are

more accurate than previous methods and identify novel miRNAs at a lower cost and faster.

For this reason, machine learning has been used to identify new miRNAs and their target

genes in different plants families and species [5–9]. On the other hand, increasing the specific-

ity of prediction algorithms by reducing the number of false-positive miRNA predictions is

the most challenging part of machine learning models [10]. In a study performed by Douglass

et al., (2016), Bayesian classifier was used to identify plant miRNAs in Arabidopsis, rice, soy-

bean, and peach. In a separate study conducted by Williams et al. (2012), 18 plant species were

utilized for miRNA prediction using a decision-tree model that was developed through super-

vised machine learning. In research carried out by Meng et al. (2014), a novel support vector

machine-based classification model was developed to predict real and pseudo-plant pre-miR-

NAs along with their miRNAs. The model achieved an accuracy of around 90% when tested

on plant datasets from nine different plant species.

Olive (Olea europaea L.) is particularly important for its balanced fatty acids and phenolic

compounds. Due to the high economic value of olive oil, the availability of complete genomic

information can be of great value, and therefore supplementing the available information

regarding miRNAs can be a part of this goal. Research on miRNA in olive trees is currently

insufficient, with only a few miRNAs identified in the available studies [11–13]. An initial

study examined lateral buds of olive trees at two developmental stages and identified 18

known miRNA families [11]. In a study conducted on Olea europaea, researchers identified

135 miRNAs from 22 miRNA families in both mature and immature fruits, as well as leaves

[12]. These miRNAs showed distinct expression patterns in various tissues and growth

stages, emphasizing their regulatory function in controlling the transition between reproduc-

tive and vegetative phases [12]. In a different study, Guo et al. (2020) used a novel methodol-

ogy to finally identify additional miRNAs by reanalyzing the data generated by Yanik et al.

(2013) and Donire et al. (2011). In other species, the miRNAs are shown to control oil quality

and seed development and investigated in soybean (Glycine max) and canola (Brassica
napus) [14–16]. Wang et al. (2016) discovered that some miRNAs found in Brassica napus
regulate functional genes such as 3-ketoacyl-ACP synthase and 3-ketoacyl-ACP reductase,

which are directly involved in fatty acid biosynthesis. Moreover, Koerbes et al. (2012) pre-

dicted that miRNA target genes encode a diverse set of proteins involved in seed develop-

ment and energy storage in Brassica napus [15]. In a study conducted by Song et al., (2011),

38 known miRNAs and 8 new miRNAs were discovered which may function in soybean seed

development.

Despite advancements in miRNA research across plant species [17], our comprehension of

miRNA identification and function in olive remains nascent. A review of the literatures shows

that the miRNAs in olives have not been fully identified. On the other hand, a significant void

exists in our knowledge of novel miRNAs and their regulatory roles in olive development and

fruit quality. This study aims to bridge this gap by employing sophisticated computational

approaches to identify and characterize novel miRNAs in olive. Given the presence of the olive

reference genome [18] and transcriptome data from different tissues and developmental

stages, we employed 12 miRNA libraries to detect known and potential new miRNAs with

high confidence for the first time. Furthermore, to better understand the identified miRNA’s

role in olive oil quality, we employed machine learning to identify miRNA’s target genes and

also the regulatory roles of these miRNAs in shaping olive oil quality. The results of the present

research can help to complete the olive annotation and clarify some of the unknown regions of

the genome.
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Methods

Data collection and preprocessing

Raw miRNA-seq data from three experiments (PRJNA184000, PRJNA137457 and

PRJNA413783) were obtained from SRA database. Totally, these data contain 12 samples col-

lected from leaves, fruits and lateral buds at different developmental stages (Table 1).

The quality of raw miRNA-seq data was evaluated by using FastQC (0.11.9) [19] and

trimmed by using Cutadapt (1.15) for removing adaptors and also low-quality bases from the

end of reads. FastQC was utilized after each trimming to assess the properties of processed

reads and to validate trimming efficiency. Based on the quality control results, the

PRJNA137457 project data was lower than the other two data series that were sequenced using

Illumina sequencing, and therefore needed more trimming.

The miRNA detection

In the currents study, two methods were used for miRNAs detection: ShortStack and machine

learning based approach. The ShortStack (3.x) [20] (https://github.com/MikeAxtell/ShortStack/

releases) performs alignment, annotation, and quantification of expressed small RNAs. There-

fore, miRNA-seq data in fastq format and the olive reference genome (OE9) [21] were given as

input to ShortStack. The ShortStack employs bowtie to find all potential best-matched align-

ments for each read in the alignment process as the first step and then using default values and a

user-adjustable limit of 50 alignments per read. After that, ShortStack will determine the likeli-

hood of each alignment. The position of miRNAs on olive genome was determined by Short-

Stack. Regarding available machine learning algorithms Random Forest exhibit superior

performance in miRNA detection due to their inherent robustness to overfitting and capacity to

capture intricate feature interactions. Unlike SVMs, which often struggle with complex datasets,

Random Forests can effectively handle the multifaceted nature of miRNA sequence and struc-

tural data, leading to enhanced prediction accuracy and reduced false positives. This capability

is particularly advantageous when dealing with noisy or high-dimensional miRNA datasets.

Given the established strengths of Random Forest algorithms in handling complex biological

data, we opted to employ the state-of-the-art BrumiR package for our analysis [22]. BrumiR

extracts key features from the miRNA sequences, including sequence length, GC content, mini-

mum free energy of secondary structure, and the presence of known miRNA motifs. These fea-

tures are used to train the random forest model and performance are evaluated using accuracy,

precision, recall, and F1-score. A combined approach utilizing the statistical rigor of ShortStack

and the predictive power of BrumiR provided us a comprehensive framework for miRNA iden-

tification. By capitalizing on the strengths of both methodologies, we will be able to expand the

repertoire of identified miRNAs, enhancing the accuracy and depth of our analysis.

The position of miRNAs on olive genome was determined by ShortStack. We used the R

software’s RIdeogram package (https://github.com/TickingClock1992/RIdeogram) (Hao et al.,

2020) to show the distribution of detected miRNAs on olive chromosomes.

Table 1. The information of three experiments used in miRNAs prediction.

Project accession Libraries Platform Tissue Reference

PRJNA184000 6 Illumina Fruit [12]

Leaves

PRJNA137457 2 454 GS FLX Lateral buds [11]

PRJNA413783 4 Illumina Fruit [13]

https://doi.org/10.1371/journal.pone.0311569.t001
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Mapping and clustering miRNAs

To discover the expression level of each miRNA in each sample we mapped clean miRNA-seq

reads against predicted miRNAs using Bowtie1 [23] and the number of each miRNAs were

counted by Samtools [24]. Moreover, a BLAST search against known miRNAs downloaded

from miRbase was conducted using blastn in NCBI-blast package.

The miRNAs target detection and enrichment analysis

psRNATarget (http://plantgrn.noble.org/psRNATarget/) [25] was implemented with default

parameters for detecting the candidate target of miRNAs. The OE9 [21] cDNA sequences of

olive [26] was used to identify possible target of miRNAs. The resulted targets were graded

based on their scores, from 0 to 5 with a range of changes of 0.5, and only grades equal to or

less than 2.5 were accepted and used in the next steps (S1 Table). To complement the psRNA-

Target predictions, we employed the miTAR tool, a machine learning-based approach for

miRNA target prediction. miTAR utilizes a support vector machine (SVM) to identify poten-

tial target sites based on sequence and structural features. We used miTAR with default param-

eters to predict miRNA targets in olive. By combining the results from both psRNATarget and

miTAR, we aimed to increase the confidence in target identification. (S2 Table) [27]. Leverag-

ing both miTAR and psRNATarget for miRNA target prediction offers a synergistic approach.

While psRNATarget excels in thermodynamically stable target site prediction, miTAR’s

machine learning framework expands the search space for potential regulatory interactions.

This complementary strategy not only enhances the confidence in predicted targets through

concordance analysis but also has the potential to unveil novel miRNA-target relationships,

thereby providing a more comprehensive understanding of miRNA-mediated gene regulation.

The pathway enrichment analysis was conducted using in house pipeline scripts and related

pathways were selected for more investigation.

Expression profile of miRNA targets

The genes expression pattern in fruit and leaf tissues were determined based on RNA-seq data

(Ahmed et al. 2012) (PRJNA556567) as a gene expression atlas to identify the expression pro-

file of miRNA targets (S3 Table). The quality control of raw Illumina RNA-seq reads was eval-

uated by FastQC software (0.11.8) (http://www.bioinformatics.babraham.ac.uk/projects/

fastqc/). The raw reads were trimmed by Trimmomatic software (0.32) by discarding adaptors,

ambiguous nucleotides, low-quality (<20), and short-length reads (<50 nt) for all the experi-

ments. FastQC was utilized after each trimming to assess the properties of processed reads and

to validate trimming efficiency. The clean reads were mapped onto the olive genome as the ref-

erence (OE9) using the Hisat2 [28]. The aligned reads were sorted by position using the Sam-

tools. The read counts were calculated using the HTSeq [29] to estimate the count of uniquely

mapped reads for each of the experiments. Finally, the differential expression analysis was car-

ried out by DESeq2 [30] with default hypothesis testing method (Wald test) and false discovery

rate (FDR) <0.05 was used to find the differentially expressed genes in tissues and develop-

ment stages comparisons.

Results and discussion

Twelve samples collected from different tissues and developmental stages, were used to predict

miRNAs in olive. These miRNA-seq samples contain 265,098,547 reads with an average of

22,091,545 reads per sample (S4 Table). In the initial method, we detected 150 miRNAs in

olive using ShortStack (S5 Table) and additionally 5476 miRNAs were identified through a
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machine learning approach (S6 Table). The integration of machine learning into miRNA iden-

tification has emerged as a pivotal advancement, surmounting the inherent limitations of tra-

ditional homology-based approaches. Unlike sequence alignment methods, which heavily rely

on the availability of homologous sequences, machine learning algorithms excel in discerning

intricate patterns within miRNA sequences, enabling the discovery of novel miRNAs with

minimal sequence similarity [31]. Moreover, traditional methods often struggle with computa-

tional efficiency when handling vast datasets, a challenge effectively addressed by the scalability

of machine learning models. Recognizing these limitations, we employed a dual-pronged

machine learning strategy for miRNA prediction. The BrumiR pipeline, incorporating both

random forest and support vector machine (SVM) algorithms, was instrumental in capturing

the complexity of miRNA sequence features. Random forest, renowned for its ensemble learn-

ing approach, proved adept at handling the high-dimensional and noisy nature of miRNA

sequence data, while SVM’s kernel-based techniques offered flexibility in modeling complex

relationships between features [32, 33]. By combining these complementary algorithms, we

aimed to maximize our ability to identify both known and novel miRNAs, thereby expanding

the breadth of our miRNA repertoire. This machine learning-driven approach offers several

advantages over traditional methods. Firstly, it enables the identification of miRNAs with low

sequence similarity to known miRNAs, expanding the discoverable miRNA space. Secondly,

the ability to handle large datasets efficiently allows for the analysis of complex miRNA expres-

sion patterns. Thirdly, the incorporation of multiple machine learning algorithms enhances

the robustness and accuracy of miRNA prediction. The judicious selection of machine learn-

ing algorithms was paramount to the success of this study. Random forest and support vector

machines were chosen due to their complementary strengths in handling complex biological

data. Random forest, with its ensemble nature, is robust to overfitting and effectively captures

intricate patterns within miRNA sequences. Conversely, support vector machines excel in

identifying optimal decision boundaries, particularly in high-dimensional spaces, such as

those encountered in miRNA analysis [34, 35]. We compared our predictions with established

miRNA databases (e.g., miRBase) which these validation steps were crucial in establishing the

credibility of our findings. The BLAST of detected miRNAs against the miRbase database

(hairpin and mature) showed 84 significant hits. However, 66 miRNAs did not have any hits

in miRbase database. Consequently, we classified all the detected miRNAs into 3 groups. The

first group of miRNAs shown by one-star (*), are the miRNAs that have hits in the mature

dataset of miRbase database. The second group of miRNAs shown by two-stars (**), contain

miRNAs that have not hit in mature database but have hits in the hairpin precursor sequences

of miRbase database. If the miRNAs did not have any hit in any of mature and hairpin data-

bases in miRbase, it was set as third group with three-stars (***), and were considered as puta-

tive novel miRNAs. The two experiments (PRJNA184000 and PRJNA137457) in the present

study were previously used by Guo et al [36], and the distinction between the current investi-

gation and their research lies in the approach for detecting miRNAs, with their findings indi-

cating the identification of 266 miRNAs through the utilization of the mirdeep2 software

package. The results of the present study demonstrated that 70 miRNAs from 150 identified

miRNAs were also reported by Guo et al., (2020) in Olea europaea. Comparing the results of

the current study with the studies of Donire et al., (2011) and Yanik et al., (2013) shows that 56

novel miRNAs in the present investigation were not reported in previous studies. Therefore,

according to the obtained results, it can be said that totally 56 new miRNAs have been identi-

fied in olive. Their information and potential target genes are listed in Table 2 and S5 Table.

The results demonstrated that tissue, developmental stage of the samples and miRNAs identifi-

cation approach have impact on the number of miRNAs [37–39].
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Table 2. The information of 56 putative novel miRNAs in olive.

miRNA miRNA sequence Chromosome position Targets number

Oeu7865 TGGGAAAACAGGGGGGCGGTCA 2:10464576–10464706 4

Oeu207142 AAGTGACCCTGACAGACTAGCATA 1:8059–8268 7

Oeu5499 GCCATGTAGGACGATTACCGATAG 1:31586249–31586447 3

Oeu8938 ATGGGTGGTAGTTACGAACGTGAG 2:18108667–18108946 1

Oeu9273 ACGACTGCTGTAGTGAGCGACTGC 2:20008492–20008699 1

Oeu38941 TGTCATGATTTGAATAGTTCGGAG 7:10944026–10944175 6

Oeu53669 AGTGACTCCGTGGAAGCATTTTAC 11:4257463–4257730 1

Oeu62331 GAGGTGTAAAGTGGGTTGGGTTGG 12:21576103–21576167 7

Oeu66021 AAGCAAGACCGAACATGACCA 13:15339075–15339297 6

Oeu71543 TCCATTTTGGAGAGTTTGAGCATT 15:2927120–2927288 4

Oeu91814 GGAGGGGCGGCTGTGTCAATTCA 21:4348323–4348597 3

Oeu95050 AGGAGAGTGTACACCGGAATGTCA 22:7700992–7701183 1

Oeu98360 ACTTTTTGGTTGTTTGATTGCAAG 1:533490–533775 4

Oeu99834 ATAAATTAAGTATCGGTGTTTAGG 1:931241–931494 1

Oeu115815 ATACAGCAACATGGGGACTGATA 1:438834–439079 1

Oeu124369 GATGGATGAAATTGGTATGGGTGA 1:544236–544476 21

Oeu142324 AGCCAATATCGACGAATGAGCAAG 1:194900–195052 1

Oeu145482 AAAATCCTTCTGGCAGCTCGGCAT 1:198268–198480 1

Oeu184651 ACTAGTGCAGGTGGACAACAT 1:60158–60260 3

Oeu192090 AATGAATTATTGGTGTACAGCAAG 1:14613–14900 2

Oeu197013 AAATGATCTAATGGACATCGGTGT 1:20622–20867 2

Oeu197612 AGGAGAGTGTATACCGAACTGTAA 1:42920–43171 1

Oeu365 GGTTGAGAGTTGTAGGAAATG 1:3147594–3147745 5

Oeu6327 GCTCACCCTCTTTCTGTCACC 2:32098037–32098159 1

Oeu9135 TCGGTTGGTGCAGTTCGGGAG 3:23416308–23416413 3

Oeu9740 CGGTGCCACGCTGTGTGCGAC 3:30418789–30419002 1

Oeu11313 ACACCCTTCGGCACACCAAATTAT 4:13119963–13120122 5

Oeu12130 ATCGATCTATGTGGCATTGAGGTC 4:21716090–21716200 9

Oeu21457 TTAGATTCACGCACAAACTCG 7:4580674–4580834 6

Oeu27159 GTATTGGAAGACTTGTGGACC 10:9469652–9469785 7

Oeu28501 GGTGCAATGGGGTGACGCCGAGA 11:2269904–2270190 3

Oeu33233 AGCTCAACCAACTTTACACCTCTA 12:21576092–21576173 5

Oeu34586 GTTCGCTTCCACCACTTGAAG 13:9838519–9838702 7

Oeu39167 CGTTTTGGATCGGCCTTGCGCT 15:13278082–13278363 1

Oeu49787 AGATGCTGGTGTTGGTGATCGCG 21:10246955–10247173 7

Oeu52228 GCACGTCGGACATTCTGCTAGAGA CA.1:1090272–1090390 3

Oeu52650 TGCTCCATATCCAGTCCTGAG CA.1:507480–507584 5

Oeu53653 AGCCCAACCAACTTTACACCTCTA CA.1:1103886–1104092 7

Oeu68016 ACAGAATACTCACATGCAGGGCTC CA.1:438262–438471 4

Oeu68174 TGAGGGGGTTGTATGACATGATG CA.1:32063–32174 3

Oeu69526 GGTGCAATGGGGTGACGCCGAGA CA.1:251041–251205 4

Oeu70966 ATGAATCAAGGGTCCACTATCACC CA.1:115920–116110 1

Oeu71318 ACCGCAGTTGCCTTTCGTGATATA CA.1:237319–237618 2

Oeu72434 AGTGCCATCTCTTCTGTGACT CA.1:411613–411699 -

Oeu72818 CACGTGCCTGTCTTCCCCATC CA.1:399793–399907 2

Oeu76531 TTACAAAATTAAGAAGTGGCGGCC CA.1:347863–347965 9

Oeu77844 CATGGTGGGCATTATAACTCA CA.1:195016–195097 10

(Continued)
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To further validate the identified microRNAs, we investigated their secondary structures.

The secondary structure of microRNAs (miRNAs) is a critical determinant of their function

and stability [40]. Understanding miRNA secondary structure is crucial for accurate detection,

functional characterization, and the development of therapeutic strategies targeting miRNAs

[41]. We have modeled the secondary structures of the three putative miRNAs we identified,

and these are shown in Fig 1.

The chromosomal distribution of all detected miRNAs was graphically depicted using the

RIdeogram package (Fig 2). Among the 150 detected miRNAs, 65 miRNAs (43%) were

mapped on chromosomes and the rest of them were mapped on contigs. The detailed informa-

tion of miRNAs distribution on different chromosomes is shown in S7 Table. According the

Table 2. (Continued)

miRNA miRNA sequence Chromosome position Targets number

Oeu82910 TTTGATGTCAGCATTCCCTCC CA.1:40851–41070 5

Oeu83091 CCTTTTCTTTCTGTACTTTGGG CA.1:241019–241317 34

Oeu86548 TGATATGCCATGAACAATGATC CA.1:2460–2535 6

Oeu89051 GACAAACTCGACACTTGGCGGCCC CA.1:114852–115073 1

Oeu93033 GTACACCGGAGTGTTAACCTC CA.1:116082–116264 1

Oeu94849 ATGGGATGTCACGATGAATGA CA.1:179631–179812 4

Oeu100566 GTTCAAGAAAGCTGTGGGACA CA.1:31367–31476 12

Oeu100857 CTGGGCGACCTGATGAGGTGGC CA.1:84973–85150 -

Oeu109699 TCTCGTACTACATGGAATGCT CA.1:9521–9804 2

https://doi.org/10.1371/journal.pone.0311569.t002

Fig 1. The secondary structure of tree novel olive miRNA. This secondary structure shows the hairpin structure of predicted

miRNAs.

https://doi.org/10.1371/journal.pone.0311569.g001
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results chromosomes 16 and 23 were microRNA-free and other miRNAs are almost equally

distributed on other chromosomes.

Predicted miRNA targets and pathway detection

The miRNA-regulated genes control a variety of biological and metabolic processes such as

leaf, stem, root, and flower development and responses to abiotic and biotic stresses [42, 43].

Moreover, one miRNA can target more than one regulatory gene [44]. Therefore, characteriza-

tion of a miRNA target is essential to provide a biological insight into each miRNA-mediated

pathway. The prediction of targets for the all miRNAs was done by psRNATarget and 1235 tar-

gets were identified. In contrast, the machine learning method predicted 1443 targets, with

1235 of them being in common with psRNATarget (Fig 3).

The pathway enrichment analysis was performed for the targets and 72 metabolic pathways

were identified (S8 Table). The evaluation of 10 top metabolic pathways shows a significant

number of putative novel miRNAs are involved in these pathways. The fatty acid elongation

and fatty acid metabolism are critical pathways on the fatty acid biosynthesis and also flavo-

noid biosynthesis, flavonoid biosynthesis and phenylpropanoid biosynthesis are important

pathways related to rare compounds in olive oil quality [45]. Hormone signal transduction is

also a crucial process in all plant species.

Fatty acid biosynthesis related pathways

Providing carbon to create the carbon skeleton of fatty acids is one of the stages of fatty acid

biosynthesis, which is provided from various sources. The pathway of galactose metabolism is

one of the main pathways that can help to supply the carbon skeleton of fatty acids. In the

galactose pathway, UDP-Galactose must be produced for the synthesis of galactinol as a pre-

cursor in oligosaccharides production. The UDP-Galactose is generated from two distinct

Fig 2. The distribution of detected miRNAs on olive chromosomes. 43% of identified miRNAs were localized on

chromosomes and chromosomes of 16 and 23 had no miRNAs, while the others had similar numbers.

https://doi.org/10.1371/journal.pone.0311569.g002
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metabolites and enzymes [46]. One of the routes identified is known as Leloir pathway [47],

catalyzed by UDP-glucose 4-epimerase enzyme [48]. Previous studies indicate that higher

plants either lack or possess limited activity of the UDP-glucose 4-epimerase enzyme associ-

ated with the Leloir pathway [48, 49]. The results of the present study show that miRNA

Oeu21457 targets the UDP-glucose 4-epimerase (OE9A021881) enzyme and causes its inacti-

vation, which can be one of the reasons for the lower activity of this pathway in UDP-Galactose

production. The analysis of UDP-glucose 4-epimerase expression in the fruit and leaf tissues

suggests that the Oeu21457 activity is likely higher in the fruit.

Acetyl-CoA as important compound in fatty acid metabolism, is supplied in plant cells in

two ways: from pyruvate in the glycolysis pathway and in the second way with beta-oxidation

of fatty acids. After the production of long-chain fatty acids, and process of beta-oxidation of

fatty acids, acetyl-CoA is finally released [50]. The results of the meta-analysis conducted by

Asadi et al, show that five enzymes are effective in the process of beta-oxidation of fatty acids,

which include acyl-CoA oxidase, Enoyl-CoA hydratase, beta-hydroxyacyl dehydrogenase,

long-chain-3-hydroxyacyl-CoA dehydrogenase, and acetyl-CoA acyltransferase [45]. Present

study show the novel miRNA Oeu124369 targets the acetyl-CoA acyltransferase 1 enzyme

(EC: 2.3.1.16) (ACAA1) (OE9A119317) in the path of beta-oxidation of fatty acids (Fig 2). The

RNA-seq data analysis indicates that Oeu124369 expression is higher in the leaf compared to

the fruit, resulting in lower ACAA1 expression in the leaf. This suggests that the biosynthesis

of fatty acids in the olive leaf may be lower than in the fruit. Therefore, if one key enzyme in

this pathway is deactivated, it can disrupt the synthesis of acetyl-CoA and subsequently impact

the production of other fatty acids. Pye et al, also reported bna-miR395d, bna-miR395e, and

bna-miR395f, which regulate ACAA1 are involved in fatty acid elongation. Furthermore,

miR858 was found to target two other genes both encoding [51]. In another study conducted

on Brassica napus, eight miRNAs were discovered which target genes that are involved in ace-

tyl-CoA generation [52].

Another target of miRNA Oeu124369 in the fatty acid metabolism pathway is palmitoyl-

protein thioesterase (EC: 3.1.2.22) (OE9A102418) at the end of fatty acid elongation. In the

Fig 3. The gene IDs targeted by miRNAs that are shared between psRNATarget and miTAR. A significant overlap

of 1235 genes was observed in the target predictions of psRNATarget and miTAR.

https://doi.org/10.1371/journal.pone.0311569.g003
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fatty acid biosynthesis, palmitic acid is the first fatty acid produced during fatty acid synthesis

[53]. The miRNA Oeu124369 targets the palmitoyl-protein thioesterase and reduced produc-

tion of palmitic acid. The palmitoyl-protein thioesterase remove CoA from palmitoyl-CoA

and produce the palmitic acid (Fig 4). Regarding the level of palmitic acid is one of the indica-

tors of oil quality improvement, it can be said that the inactivity of palmitoyl-protein thioester-

ase enzyme by miRNA Oeu124369 is probably effective in regulating palmitic acid production

and oil quality. In brinjal (Solanum melongena), Sme-miR529 binds to 14 different mRNAs,

one of which is involved in palmitoyl hydrolase processing [54].

Minor compounds related pathways

Phenolic compounds are significant components found in olive fruits. Research on the pheno-

lic profiles in various olive tissues has revealed the presence of unique compounds. These com-

pounds play a crucial role in determining the quality of olive oil by impacting its taste,

contributing to bitter and pungent sensory characteristics, acting as primary antioxidants, and

influencing the oil’s oxidative stability [55, 56]. In the biosynthesis of phenylpropanoids, key

compounds like flavonoids, lignin, and verbascoside are synthesized. Intermediate compounds

such as p-Coumaric acid and p-Coumaroyl-CoA play a crucial role in the production of these

compounds in this pathway. A portion of the verbascoside structure is formed through the

phenylpropanoid pathway when p-Coumaric acid is transformed into caffeic acid. Addition-

ally, in an alternate pathway, p-Coumaric acid can be converted to p-Coumaroyl-CoA to gen-

erate flavonoids and lignin [57, 58]. The present study results show that miRNAs Oeu53211

Fig 4. The inactivation of the acetyl-CoA acyltransferase 1 enzyme by the novel putative miRNA Oeu124369 leads to a decrease in Acetyl-CoA

production and additionally, the deactivation of palmitoyl-protein thioesterase by the same miRNA results in a reduction in palmitic acid

biosynthesis in the fatty acid elongation pathway.

https://doi.org/10.1371/journal.pone.0311569.g004
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and Oeu91814 target peroxidase (POD) (EC: 1.11.1.7) (OE9A091733), caffeic acid 3-O-

methyltransferase (COMT) (EC: 2.1.1.68) (OE9A010735), and Shikimate O-hydroxycinna-

moyltransferase (HCT) (OE9A103182) (EC: 2.3.1.133) enzymes in the pathway of phenylpro-

panoid biosynthesis, which can reduce lignin production. The RNA-seq analysis further

validated that Oeu53211 expression is elevated in the fruit, suggesting that lignin production

in this tissue may be lower, resulting in softer fruit tissue. In Chinese olive, there is a positive

correlation between peroxidase enzyme expression and lignin content, which indicates that it

is involved in lignin biosynthesis [59]. Lignin biosynthesis is catalyzed via a series of enzymes,

including phenylalanine ammonia-lyase (PAL), 4-coumarate-CoA ligase (4CL), cinnamyl

alcohol dehydrogenase (CAD), cinnamoyl-CoA reductase (CCR), and PODs. Therefore, per-

oxidase enzyme plays an important role in lignin polymerization and the Oeu53211 and

Oeu91814 target the POD and have probably negative effects on lignin polymerization. On the

other hand, in a study conducted by Alagna et al., (2012) peroxidase enzyme was introduced

as an important enzyme in the phenolic compound degradation in olive fruits, which is espe-

cially expressed in the early stages of growth (45 days after flowering). Therefore, the identifi-

cation of the Oeu53211 and Oeu91814 miRNAs that target the peroxidase enzyme can rule the

level of polyphenols and their decomposition. It is noteworthy that increase of lignin level in

the fruit tissue can have negative effects on the quality and tissue of fruit.

Squalene as another crucial compound in olive oil, has a positive impact on human health

and also contributes to the oil stability by protection against oxidation. Squalene is produced

in following of the terpenoid backbone biosynthesis pathway and by activity of the enzyme

squalene synthase (EC: 2.5.1.21), farnesyl diphosphate is converted to squalene [60]. In sesqui-

terpenoid and triterpenoid biosynthesis, miRNA Oeu80058 targeted squalene synthase

(OE9A101945), inactive the enzyme, and probably reduced squalene production. In high phe-

nolic cultivars, the squalene synthase enzyme is expressed highly at 90 to 112 days after flower-

ing while in low phenolic cultivars the squalene synthase has stable expression from 45 to 165

days after flowering and also is lowest than high phenolic cultivars [56, 61]. Therefore, this

miRNA can reduce the quality of oil in some genotypes by inactivating an important enzyme

in the production of squalene.

Conclusion

Plant miRNAs play a crucial role as regulators of various physiological processes and under-

standing their functions is essential for advancements in breeding programs. Recently, machine

learning methods have proven to be more accurate and cost-effective in predicting and identify-

ing novel miRNAs compared to traditional methods. In the current study, machine learning

was utilized for the first time to identify miRNAs and their target genes in olive. In the current

investigation, 150 miRNAs were identified using ShortStack and 5476 miRNAs were identified

through a machine learning approach. According to the obtained results, 56 novel miRNAs in

the present investigation were not reported in previous studies. A total of 1235 targets were

identified and 72 metabolic pathways were recognized. The carbon skeleton essential for fatty

acid biosynthesis is derived from various sources, including the galactose metabolism, which

leads to the formation of UDP-Galactose crucial for fatty acid synthesis. The miRNA Oeu21457

targets UDP-glucose 4-epimerase, potentially influencing the production of UDP-Galactose.

Acetyl-CoA, a pivotal component in fatty acid metabolism, is produced through glycolysis from

pyruvate and beta-oxidation of fatty acids. The novel miRNA Oeu124369 targets acetyl-CoA

acyltransferase 1, impacting fatty acid production. Additionally, Oeu124369 targets palmitoyl-

protein thioesterase, affecting palmitic acid production. These findings provide insights into

miRNA regulation in fatty acid biosynthesis, potentially enhancing oil quality. Phenolic
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compounds are crucial components in olive fruits, directly impacting olive oil quality by con-

tributing to its flavor and serving as primary antioxidants for stability. These compounds,

responsible for bitter and pungent notes, are essential for the overall flavor profile. Studies dem-

onstrate the intricate biosynthesis of phenylpropanoids in olives, necessary for producing flavo-

noids, lignin, and verbascoside. The miRNAs Oeu53211 and Oeu91814 were observed to target

enzymes in the phenylpropanoid pathway, potentially altering lignin production and fruit qual-

ity. Notably, lignin biosynthesis involves enzymes like peroxidases, crucial for polymerization.

Squalene, another significant component in olive oil, influences both human health and oil sta-

bility. The miRNA Oeu80058 was found to target squalene synthase, impacting squalene pro-

duction. Variations in squalene synthase expression at different growth stages are linked to

phenolic content, indicating genotype-specific regulation of squalene production and oil qual-

ity. Understanding these processes can aid in enhancing olive oil quality and maintaining desir-

able fruit characteristics. Moreover, the identified miRNAs aid in improving the annotation

process and elucidating certain obscure areas of the genome.
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