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Abstract

Microbial succession has been suggested to supplement established postmortem interval

(PMI) estimation methods for human remains. Due to limitations of entomological and mor-

phological PMI methods, microbes are an intriguing target for forensic applications as they

are present at all stages of decomposition. Previous machine learning models from soil

necrobiome data have produced PMI error rates from two and a half to six days; however,

these models are built solely on amplicon sequencing of biomarkers (e.g., 16S, 18S rRNA

genes) and do not consider environmental factors that influence the presence and abun-

dance of microbial decomposers. This study builds upon current research by evaluating the

inclusion of environmental data on microbial-based PMI estimates from decomposition soil

samples. Random forest regression models were built to predict PMI using relative taxon

abundances obtained from different biological markers (bacterial 16S, fungal ITS, 16S-ITS

combined) and taxonomic levels (phylum, class, order, OTU), both with and without environ-

mental predictors (ambient temperature, soil pH, soil conductivity, and enzyme activities)

from 19 deceased human individuals that decomposed on the soil surface (Tennessee,

USA). Model performance was evaluated by calculating the mean absolute error (MAE).

MAE ranged from 804 to 997 accumulated degree hours (ADH) across all models. 16S mod-

els outperformed ITS models (p = 0.006), while combining 16S and ITS did not improve

upon 16S models alone (p = 0.47). Inclusion of environmental data in PMI prediction models

had varied effects on MAE depending on the biological marker and taxonomic level con-

served. Specifically, inclusion of the measured environmental features reduced MAE for all

ITS models, but improved 16S models at higher taxonomic levels (phylum and class). Over-

all, we demonstrated some level of predictability in soil microbial succession during human

decomposition, however error rates were high when considering a moderate population of

donors.
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Introduction

Microbial communities undergo succession in response to disturbance events [1]. Vertebrate

death and subsequent decomposition represent one such event, where microbial community

composition is altered in response to nutrient deposition and altered environmental condi-

tions [2–7]. Microbial succession has been studied in various carcass/cadaver decomposition

microhabitats, including internal organs [8–14], skin [3, 4, 15–18], bone [19, 20], and soils [4,

5, 18, 21, 22]. These studies suggest that these successional changes may be robust and univer-

sal enough to be used to predict the postmortem interval (PMI), or time elapsed since death

(or beginning of decomposition). PMI estimations can be important evidence for death inves-

tigations, allowing law enforcement to establish a timeline of events [23]. The work developing

microbial-based PMI models has been inspired by forensic entomology methods, which link

insect succession or development to PMI. Entomological PMI estimation methods are widely

used, but limited to forensic cases where insects are present, the species is identifiable, and

temperature data can be collected. Unlike insects, microbes do not have a pre-colonization

phase where they must be exposed to, detect, and accept a carcass [24, 25], as they are host-

associated and present in the surrounding environment [7]. Together, this makes microbes

advantageous for developing a forensic application estimating time since death.

Thus far researchers have assessed microbial abundance-based PMI prediction models in

all major microhabitats and three different mammalian species. This includes internal [26, 27],

external/skin [3, 17, 18, 28, 29], and soil [28, 29] microbial communities during pig (Sus scrofa)

[3], mouse (Mus musculus) [18, 26, 28], and human (Homo sapiens) [17, 18, 27–29] decompo-

sition. These models suggest some level of predictability in microbial succession; however,

PMI estimations differ based on the microhabitat, taxonomic level considered, and algorithm

used for model construction. To date, most studies apply supervised machine learning algo-

rithms to taxonomic abundance data derived from amplicon sequencing of conserved markers

of a few taxa [3] or whole microbial communities [17, 18, 26–29]. Within these studies, ran-

dom forest regression is the most frequently used supervised machine learning algorithm.

These microbial PMI models report error ranging from *15 hours for mouse intestine sam-

ples to*58 hours in mouse brain samples [26], up to 138 accumulated degree days for human

skin samples [17], and two to six days for soil samples below decomposing mice and humans

[28].

Of the three decomposition microhabitats in terrestrial decomposition systems (i.e., inter-

nal, external, and soil), soils have received the least attention. While there have been multiple

studies assessing internal and external/skin succession [3, 17, 18, 26–28], only two studies have

included swabs of the soil surface (i.e., O horizon) during mouse and human decomposition,

demonstrating repeatable succession [28, 29]. It is unknown if these PMI models could be

applied to microbiological changes within mineral soil horizons. Further, it is unclear how

inter-individual variation and potential species differences may impact model performance,

and thus what the predictability would be across a large population of humans. Recent work

suggests differences in decomposition patterns may exist between species [30, 31] and even

within species, due to intrinsic carcass properties (e.g., body composition) [22]. Consequently,

there is a need to investigate the predictability of soil microbial succession within larger

human sample sizes in order to assess applicability of these models for forensic science. Addi-

tionally, current microbial-based PMI estimation models are trained using relative abundance

of microbial taxa as model features. However, observed changes in soil environmental parame-

ters over time may also be used as indicators of decomposition time. For example, soil electri-

cal conductivity (correlates to salinity), ammonium, and nitrate concentrations have been

shown to undergo predictable changes in human decomposition soils [32–34]. Thus, it is
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possible that the inclusion of environmental predictors along with taxon relative abundance

may help to improve model estimation.

The goals of this study were to 1) determine the utility of soil microbial communities for

predicting decomposition time during human decomposition using 19 replicate human

donors at a single location (East Tennessee); 2) determine which biological marker (16S

rRNA, Internal Transcribed Spacer (ITS), or both) and taxonomic level (phylum, class, order,

or OTU) results in the most accurate model predictions; and 3) assess how inclusion of soil

environmental parameters (e.g., moisture, temperature, pH, conductivity, and enzyme rates)

as model features affects model accuracy. Our first aim was to investigate microbial-based

model performance across a human sample set (n = 19) collected in East Tenneessee to vali-

date previously developed models. Our second aim was to evaluate model performance using

different biological markers, i.e., genes commonly used as sequencing targets. Previous work

reported that 16S rRNA gene-based models performed better then 18S rRNA gene or ITS

models from organic residues collected on soil surfaces [28, 29]. However, we hypothesized

that ITS-based models would be more accurate than 16S-based models due to our previous

obervations showing that fungal community composition between individuals became more

similar over decomposition time, whereas bacterial communities did not, suggesting less noise

and better predictability in the fungal communities [22]. We also aimed to assess which taxo-

nomic level(s) resulted in the greatest model accuracy. Based on previous results [22, 28]), we

hypothesized that higher taxonomic levels, such as phylum and class would provide better

PMI prediction. Our third aim was to probe the impact of environmental features on model

prediction. While no previous studies have addressed this question, we hypothesized that

inclusion of environmental predictors known to change in decomposition soils would help to

improve PMI model predictions. Soil pH and conductivity are known drivers of microbial

community dynamics [35, 36], while enzyme activities provide insight into functionality of the

microbial community, so we chose to evaluate these parameters. We addressed our study aims

using sequencing (16S rRNA and ITS2 amplicon) and soil physicochemical data from 19

deceased human individuals [22] decomposed on the soil surface at the University of Tennes-

see’s Anthropology Research Facility (ARF) in Tennessee, USA. Random forest regressions

were applied to datasets with different combinations of biological markers (16S only, ITS only,

16S and ITS combined) and taxonomic levels (phylum, class, order, OTU), both with and

without environmental predictors. Model performance was then compared by calculating the

mean absolute error (MAE) to determine the influence of different combinations of features

on PMI estimation.

Materials and methods

Study design

This work uses datasets generated from our previous study [22], which revealed the influence

of intrinsic, or cadaver-related factors, on explaining variation in soil microbial communities

during human decomposition. The current study, however, uses these datasets to assess the

effects of environmental factors on predictability of this succession to estimate PMI. Full

experimental details are reported in [22]. Briefly, decomposition of 19 deceased whole body

human donors took place at the Anthropology Research Facility (ARF), located at the Univer-

sity of Tennessee in Knoxville, TN, USA (35˚56’ 28” N, 83˚56’ 25” W). The ARF is a forested

outdoor facility consisting of clay loam and channery clay loam soils of the Coghill-Corryton

complex (CcE) [19, 37].

Adult individuals with no open wounds or had not been autopsied were chosen for this

study, as this could alter microbial decomposers prior to and during our study. Individuals
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were selected independent of demographic categories, however all individuals self-identified

as White and ranged in age from 40 to 91 years (S1 Table) [22]. All individuals were whole

body donors to the Forensic Anthropology Center (https://fac.utk.edu/body-donation/) specif-

ically for the purpose of decomposition research. No living human subjects were involved and

only donors who consent to decomposition research on their donation paperwork were

enrolled in this study. The University of Tennessee, Knoxville, Human Research Protections

Program (HRPP) reviewed this project and determined that research with human donors is

exempt under 45 CFR 46.101. Individuals were placed supine unclothed on the soil surface

between February 2019 and March 2020 (S1 Table). Hourly temperatures were recorded using

TinyTag temperature and humidity loggers (Gemini Data Loggers, UK) until un-enrollment

at the end of active decomposition, characterized by collapse of the abdomen and cessation of

fluid leaking from the trunk [38]. Accumulated degree hours (ADH) were calculated using

hourly temperature readings: 0 ADH was defined as time of placement within ARF, and a

baseline temperature of 10˚C was used for ADH calculations to keep our results comparable

with entomology-based methods [39].

Soil sampling and analysis

Five-cm soil cores were collected from the decomposition-impacted area surrounding each

individual (within * 7.6 cm of the body), as well as from control sites located at least 1 m

away from the donor (either upslope or at the same elevation) at predetermined accumulated

degree hour (ADH) intervals until the end of active decomposition [22]. ADH intervals

included 0 (prior to placement), 100, 250, 500, 750, and 1000 ADH, and thereafter at 500 ADH

intervals until un-enrollment. For each respective sample, cores were homogenized and debris

(e.g., roots, insect larvae, rocks, etc.) removed by hand. A subset of soils (* 20 g) were stored

in a 4 oz. Whirl-Pak bag (Nasco), flash frozen in liquid nitrogen and stored at -80˚C prior to

DNA extraction and extracellular enzyme assays. The remaining soil was was stored in a 7 oz.

Whirl-Pak bag (Nasco) at 4˚C for soil physiochemical measurements [22]. Soil slurries were

prepared as a 1:2 ratio of soil to deionized water, allowed to come to room temperature for 30

minutes, and soil pH and electrical conductivity (EC) were measured using an Orion

Star™A329 pH/ISE/Conductivity/Dissolved Oxygen portable multiparameter meter (Thermo-

Fisher). Gravimetric soil moisture was measured in duplicate by oven drying 2 to 3 g soil ali-

quots at 105˚C for 72 hours. Enzyme activities of β-glucosidase (BG), N-acetyl-β-D-

glucosaminidase (NAG), leucine amino peptidase (LAP), and alkaline phosphatase (PHOS)

were measured according to a modified procedure by Bell et al. (2013) [22, 40]. Breifly, 2.75 g

of soil was weighed from soils stored at -80˚C and held at -20˚C until assays. Soils were thawed

at room temperature prior to slurrying in 50 mM Tris buffer at pH 6.7 in a blender (Waring

commercial blender, model WF2212114). Assays were conducted in triplicate using 800 μl of

slurry and 200 μl of enzyme substrate (1,500 μM). Standard curves (MUB or MUC) were eva-

luted for each plate with conentrations ranging from 0 μM to 200 μM [22].

DNA extraction, sequencing, and amplicon sequence analysis

DNA was extracted from soils stored at -80˚C [22]. Briefly, 0.25 g of soil was extracted with the

DNeasy Powerlyzer PowerSoil kit (QIAGEN Inc.) following manufacturer’s instructions with

modifications for our soil texture (clay loam) and condition (high organic content). Specifi-

cally, soils were homogenized under parameters suggested for high organic soils (2,500 RPM

for 45 s). DNA concentration was determined using a fluorometric assay (Quant-iT™ Pico-

Green1 dsDNA Assay Kit, Invitrogen) with a total volume of 200 μl and 1 μl of DNA. All

DNA extracts were sent to the University of Tennessee Sequencing Core Facility (Knoxville,
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TN) for 16S rRNA and ITS2 region amplicon sequencing on the Illumina MiSeq platform (2 x

150 bp). The primer set 515F [41] /806R [42] was used to amplify the V4 region of the 16S

rRNA gene, while the ITS2 region in fungi was amplified using a mixture of primers (6 for-

ward and 2 reverse: ITS3NGS1, ITS3NGS2, ITS3NGS3, ITS3NGS4, ITS3NGS5, ITS3NGS10,

ITS4NGR, and ARCH-ITS4) described previously [43]. All raw sequences have been deposited

in the National Center for Biotechnology Information’s Sequence Read Archive under the Bio-

Project PRJNA817528.

Raw sequences were processed in Mothur [44] (v.1.43.0) to cluster into 97% similarity oper-

ational taxonomic units (OTUs) and generate OTU count tables for both 16S and ITS datasets

as described in [22]. Briefly, paired-end reads were combined into contings, removing low-

quality sequences (16S: Q > 20, bp� 50; ITS Q > 20, bp < 200), sequences with ambigious

bases (� 1), and primers/adpaters. Chimeras were removed using VSEARCH. Remaining

sequences were classified using the SILVA non-redundant database [45] (v132) or UNITE

RefS database [46] (version 02.02.2020) for 16S and ITS sequences, respectively. Bacterial

sequences were then clustered into OTUs based on� 97% sequence similarity and the Mothur

default method, opticlust, while fungal sequences were clustered using abundance-based

greedy clustering. We chose to cluster our sequences into OTUs rather than ASVs to reduce

dimensionality in our dataset and the probability of splitting single genomes across multiple

ASVs [47], especially when considering the diversity expected across soil microbial genomes.

Count tables were then exported for analysis in R (version 4.4.0). Control samples (e.g., those

not exposed to decomposition) and samples greater than 5000 ADH were removed using phy-

loseq [48] (v1.44.0). Samples were cut off at 5000 ADH to capture the linear response of soil

parameters and account for variation in decomposition timeframes between individuals (S1

Fig) [22]. This resulted in 78 samples from 19 individuals (mean = 4.1 samples per individual)

for model construction.

Machine learning models

Read counts were total sum scaled (TSS) by determining the relative abundance of each OTU

and normalizing to a standard library size (10,000 for all samples) using phyloseq [48]

(v1.44.0). This allowed for comparison of reads across samples and between biomarkers. We

also removed OTUs with less than 10 reads across all samples in TSS normalized count tables

to reduce noise in the datasets. 16S and ITS TSS read count tables were generated at the phy-

lum, order, and class levels by summing the corresponding OTU table at each respective taxo-

nomic level and then applying the TSS normalization as described above. Taxonomic levels

were chosen to represent a subset which covered the full range from phylum to OTU. One of

our goals was to compare predictability of bacterial (16S only), fungal (ITS only), or both

(16S-ITS) communities; therefore, after TSS normalization, 16S-ITS combined datasets for

each taxonomic level (phylum, order, class, OTU) were generated by merging respective 16S

and ITS TSS count tables. As a result, 12 datasets were created and used for random forest

models.

We chose to apply random forest regression to datasets to predict PMI in ADH. This kept

our study similar to those previously conducted on decomposition residues collected from soil

surfaces [28, 29], while also assessing predictability of soil microbial succession during human

decomposition in our geographical region (Knoxville, TN). Model construction was com-

pleted in R using the Ranger [49] (v0.16.0) package. First, samples were assigned to testing or

training datasets. This was completed by randomly assigning 6 donors (*1/3) to the test set,

while the remaining 13 were grouped into the training set. This approach was conducted
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following Belk et al. (2018) [28], to ensure that all samples from a single individual were in

either the testing or training set, respectively, to prevent overfitting.

Next, random forest regressions were applied to microbial taxa TSS normalized count tables

in Ranger. First, random forest model parameters node size (3, 5, 7, 9) and sample size (0.55,

0.632, 0.70, 0.80) were hyper-tuned by comparing models with different combinations of the

parameters listed. The optimal model was chosen by assessing the out-of-bag mean square

error (OOB MSE) of each model and choosing the set of parameters with the lowest OOB

MSE. The optimum model for each biomarker and taxonomic level was assessed by calculating

the OOB MSE of the model and the root mean square error (RMSE) and mean absolute error

(MAE) for predictions of the testing set in 100 runs of the optimum model. RMSE and MAE

were calculated using rmse() and mae() functions from the R package Metrics (v 0.1.4). This

process was repeated for models including measured environmental parameters, with values

for ambient temperature (˚C), pH, electrical conductivity (EC), moisture, β-glucosidase (BG)

activity, N-acetyl-β-D-glucosaminidase (NAG) activity, leucine amino peptidase (LAP) activ-

ity, and alkaline phosphatase (PHOS) activity included as model features (Table 1). For all

environmental parameters, aside from temperature, log response ratio normalized values [22,

50] were used to account for natural seasonal differences in these parameters. The top 25 most

influential model features were extracted from each optimum model to assess taxa/environ-

mental factors influencing model predictions. To evaluate the potential differences in model

predication between biomarkers and taxonomic levels, linear regression was applied to the

average MAE values (mean of 100 runs per model). Variation in MAE due to treatment vari-

ables was assessed with ANOVA, while differences between treatment groups were determined

with post-hoc t-tests in R. Code for generating all feature tables and random forest model

development can be found at https://github.com/jdebruyn/TOX-microbiology.

Results

Soil environmental parameters

We previously reported how the measured soil parameters were altered in response to human

decomposition [22]. In summary, soil EC increased with progression of decomposition in soils

surrounding all decomposing individuals. Soil pH was variable between individuals, with pH

increasing (n = 5 individuals), decreasing (n = 12), or displaying minimal change relative to

the controls (n = 2) [22]. Extracellular enzyme activities were also variable between individuals,

however general trends included increased NAG and PHOS over time. BG and LAP were vari-

able over time;LAP activity correlated to soil pH [22].

General model statistics

In total, 24 models were built in R. Twelve of the models contained environmental features

and the other twelve did not. The number of taxa included as features in models without

Table 1. Overview of variables used to construct models. OTU = Operational taxonomic unit.

Type of data Predictor variables tested

Bacterial and fungal taxa (OTUs)

relative abundances

16S OTUs, ITS OTUs, both 16S and ITS OTUs

Phylogenetic level Phylum, order, class, OTU

Environmental parameters Ambient temperature, soil electrical coductivity, pH, moisture, enzyme

activities (β-glucosidase, N-acetyl-β-D-glucosaminidase, leucine amino

peptidase, and alkaline phosphatase)

https://doi.org/10.1371/journal.pone.0311906.t001
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environmental data are reported in Table 2. Bacterial (16S) and fungal (ITS) features ranged

from 35 to 5195 and 16 to 2219, respectively, depending on taxonomic level. For all models,

MAE ranged from 804.18 to 996.8 ADH (Fig 1). Across all variables considered, the best per-

forming model was the 16S phylum level model with environmental predictors (MAE 804.18)

(S2 Table). In contrast, the worst performing model was the ITS phylum level without environ-

mental data (MAE 996.8) (S2 Table). Predictability, assessed by the linear relationship between

predicted and observed values, for the training (Fig 2A–2C) and testing (Fig 2D–2F) datasets

for the best 16S (phylum + environmental data), ITS only (order + environmental data), and

16S-ITS (order) models are shown in Fig 2. R2 for all models ranged from 0.869 to 0.962 when

predicting PMI for the training set, however these values were reduced when making predic-

tions for the testing dataset (r2 = 0.369–0.741) (S3 Table).

Table 2. Number of microbial taxonomic features provided as input for random forest regression investigated in

this study. 16S-ITS microbial features are the sum of 16S and ITS features.

16S Features 16S-ITS Features ITS Features

OTU 5195 7414 2219

Order 264 411 147

Class 111 177 66

Phylum 35 51 16

https://doi.org/10.1371/journal.pone.0311906.t002

Fig 1. Mean absolute error (MAE) from 100 iterations of each respective model against the testing dataset. Data are reported by biological

marker (column), while color compares models with (gold) and without (gray) environmental predictors. Error bars are the standard error of

MAE values across all 100 iterations for each respective model.

https://doi.org/10.1371/journal.pone.0311906.g001
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Model comparison: Biological marker

Ability of random forest regressions to predict ADH varied depending on the biological

marker used to build models (ANOVA F = 9.655, p = 0.001) (S4 Table). ITS models were gen-

erally less accurate in predicting ADH compared to 16S or 16S-ITS models independent of tax-

onomic level and environmental data (Fig 3). ITS models ranged in MAE from 872.16 to 996.8

ADH, with a mean MAE of 909.59 ADH. Post-hoc t-tests show that ITS models, in general,

had higher MAE than both 16S (t-test p = 0.006) and 16S-ITS (p = 0.012) models (S5 Table).

ITS models represented seven of the 10 worst performing models. In comparison, 16S and

16S-ITS models performed similarly (p = 0.466) (S5 Table). 16S models ranged in MAE from

804.18 to 889.81 ADH, with an average MAE of 841.73 ADH, while 16S-ITS models ranged in

MAE from 812.35 to 890.94 ADH (average MAE = 852.82 ADH). This can also be observed

among the best and worst performing models, where no ITS-only model was in the top 10 best

performing models and combined 16S-ITS models were dispersed among the best and worst

models. For example, the 16S-ITS order level model without environmental data had the third

Fig 2. Model predictions for the training set (A-C) and testing set (D-F) for the top performing model for each biological marker as determined

by the lowest MAE. For each biological marker, top models included the 16S phylum + environmental data (A, D, line color—red) 16-ITS order (B, E,

line color—blue), and ITS order + environmental data (C, F, line color—magenta). Predictability of each model is greater for the training set (A-C)

compared to the testing set (D-F). Soild (training set) and dashed (testing set) lines show the best fit linear relationship and shading indicted the 95%

confidence interval between actual PMI, in ADH, and predicted ADH within each respective dataset.

https://doi.org/10.1371/journal.pone.0311906.g002
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lowest MAE (MAE 812.35) overall, but also the 16S-ITS class level model with environmental

data had the sixth highest MAE (MAE 890.94).

Model comparison: Taxonomic level

Some variation was observed in MAE due to taxonomic level considered for model develop-

ment, however these differences were not significant (ANOVA F = 1.538; p = 0.24) (S6 Table).

When considering the potential influence of taxonomic level within biomarkers, no significant

difference in MAE by taxonomic level was observed for 16S (p = 0.141) or ITS (p = 0.609)

models, while 16S-ITS models was significant (p = 0.048) (S7 Table), likely driven by a differ-

ence in MAE between order and class level models for this biological marker (Fig 4). While

most results were not significant, some trends were observed. First, order level models had the

lowest MAE for all three biological markers assessed. This was also observed in Fig 1, where

order level models had the lowest MAE for all models without environmental data. Trends for

the other taxonomic levels varied depending on the biological marker in consideration. Phy-

lum and class level models performed similarly within 16S models, with OTU models generat-

ing the highest MAE. Within 16S-ITS models, class and OTU level models performed

similarly, displaying the first and second highest MAE, respectively. For ITS models, phylum

level models had the highest MAE, followed by OTU and class.

Model comparison: Environmental parameters

Overall, inclusion of environmental parameters in random forest models to predict ADH from

soil microbial taxa impacted model accuracy. The direction of effect (i.e., increase or decrease

Fig 3. Mean absolute error (MAE) varies as a result of biological marker (16S, 16S-ITS, or ITS) used for model

construction. Average MAE is the result of 100 iterations of the 24 respective models against the testing set. Reported

p-values are the result of post-hoc t-tests adjusted for multiple comparisons with the Holm method.

https://doi.org/10.1371/journal.pone.0311906.g003
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in MAE) was dependent on biological marker and taxonomic level considered (Fig 1). For ITS

models, inclusion of environmental factors reduced MAE irrespective of the taxonomic level.

This reduction was most pronounced for the phylum level model, in which MAE was reduced

by 116.007 ADH. In models containing 16S sequencing data (16S and 16S-ITS), effect of envi-

ronmental features differed by taxonomic level. Specifically, for 16S models, phylum, class,

and order level models performed better and OTU level models performed worse when envi-

ronmental data was included. This was similar for the combined 16S-ITS datasets at the phy-

lum and OTU levels; however, class and order level models performed worse (i.e., increased

MAE) when environmental factors were included.

Model features: Top models

In addition to assessing the predictability of different random forest models, we also looked at

important model features to observe which taxa and/or environmental parameters impacted

model performance. Here we highlight the top 25 features of best performing 16S (phylum

+ environmental), 16S-ITS (order), and ITS (order + environmental) models (S8 Table), deter-

mined by lowest MAE. Both 16S and ITS best models included environmental predictors,

while the combined 16S-ITS model did not (Fig 5A–5C). For the 16S phylum model with envi-

ronmental data, the most important model feature, as assessed by decrease in MSE, was the

phylum Firmicutes. The remaining important features included soil electrical conductivity

(EC), Acidobacteria, Epsilonbacteraeota, and Proteobacteria, respectively. Other features of

interest for this model included Nitrospirae, leucine aminopeptidase activity, pH, and soil

moisture (Fig 5A). For the ITS order model with environmental predictors, the most impor-

tant model features were Pleosporales, soil EC, Unclassified fungi, Rhizophydiales, Unclassified

Fig 4. Mean absolute error (MAE) did not vary as a result of taxonomic level (color) used for model construction for any of the

biological markers assessed (column). Mean MAE is the result of 100 iterations of the 24 respective models against the testing set.

Order level models generally had the lowest MAE, compared to phylum, class, and OTU models. ANOVA p-values are the result of

linear models comparing mean MAE to taxonomic level.

https://doi.org/10.1371/journal.pone.0311906.g004
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Glomeromycota, Unclassified Basidiomycota, and Auriculariales (Fig 5B). In this model, no

other environmental parameters were among the top 25 important features. Other top taxo-

nomic features of interest included Saccharomycetales and Unclassified Sordariomycetes, as

their members are present in the human mycobiome and feces, respectively [51, 52]. The best

performing 16S-ITS model was the order level model without environmental features. Top fea-

tures for this model were the bacterial order Lactobacillales and the fungal order Pleosporales.
Bacterial orders Bacteroidales, Cardiobacteriales, and Clostridiales were third, fourth, and elev-

enth most important features, respectively (Fig 5C). The fungal order Saccharomycetales was

also observed in the top 25.

Relative abundance of anaerobic bacterial taxa identified in random forest models, includ-

ing Firmicutes (Fig 6), Bacteroidales (S2 Fig), Clostridiales (S2 Fig) and Lactobacillales (S2 Fig),

increased as decomposition progressed. In contrast, relative abundance of the aerobic nitrify-

ing organisms of the phylum Nitrospirae decreased (Fig 6). Acidobacteria, among the top phyla

in the 16S model, decreased in relative abundance during decomposition (Fig 6). The phylum

Epsilonbacteraeota, containg many gut-related taxa, displayed increased relative abundance

over time (Fig 6). Relative abundance of the bacterial orders Cardiobacteriales and Pseudomo-
nadales (S2 Fig) and fungal order Pleosporales (Fig 7), identified in the mixed 16S-ITS order

model, increased and decreased, respectively.

Fig 5. Top 25 model features determined by variance of responses in Ranger. For each biological marker, top models included 16S phylum

+ environmental data (A), ITS order + environmental data (B), and 16S-ITS order (C). Bar color denotes whether the feature is a 16S taxon (green), ITS

taxon (orange), or environmental feature (purple).

https://doi.org/10.1371/journal.pone.0311906.g005
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Discussion

The goal of this work was to assess the influence of biological marker, taxonomic level, and

environmental parameters on model prediction of PMI from soil microbial communities.

Model analysis revealed differences between model accuracy due to the biological marker, tax-

onomic level, and environmental parameters considered for model construction. Overall,

models did not predict the test data well. R2 dropped from 0.869—0.962 when predicting the

training dataset to 0.369—0.741 for the test set. Additionally, models ranged in MAE from

804.18 to 996.8 ADH. In East Tennessee, these error rates would correspond to roughly 2.5 to

3.5 days in July and greater than 28 days in February, based on average seasonal temperatures

for the region. Therefore, error rates in the summer would be comparable to those previously

reported for microbial communities from organic residues collected from the soil surface (two

to six days) [28] but would be substantially higher if considering decomposition during cooler

seasons. Further, considering our total decomposition time of 5000 ADH, errors of 804.18 to

996.8 ADH equates to 15.9% to 19.9% of the total decomposition time. The wide error range

when including a greater number of subjects across multiple seasons suggests soil micro-

biome-based models may have low accuracy, particularly when considering individuals across

Fig 6. Relative abundance of the 5 most important bacterial phyla in the top 16S random forest model (16S phylum + environmental data).

Relative abundance of the phyla Firmicutes, Acidobacteria, Epsilonbacteraeota, Proteobacteria, and Nitrospirae change over time, here accumulated

degree hours (ADH), within decomposition-impacted soils. Abundances for each of the 19 individuals (named “TOX###”) are delineated by color.

https://doi.org/10.1371/journal.pone.0311906.g006
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the cline of human variation and through multiple seasons. Specifically, the decomposition

systems were influenced by the starting resource, which is dictated by human variation at both

the genetic and environmental levels. As a result, intrinsic factors have the capacity to alter

both decomposer communities and decomposition rate, and therefore decomposer communi-

ties, leading to variation that can impact future models.

One important source of variation in our study was the different rates of decomposition

between individuals. While we attempted to correct for differences due to thermal energy

input by using accumulated degree hours (ADH), there was still variability in terms of the

morphological stage for a given ADH. For example, 5000 ADH represented the end of active

decomposition for individual 009, but only about 25% of the active decomposition period for

individual 010. Additionally, this time-period did not include decomposition past active decay

for any individual in our study, including advanced decomposition or sustained mummifica-

tion or skeletonization, which could further impact model accuracy. Both individuals (009 and

010) were placed within the facility in the summer, experiencing the same local environmental

conditions and potential for insect and scavenger communities, suggesting there are additional

factors leading to variation in microbial communities within decomposition-impacted soils.

These may include additional environmental parameters not considered in our models, and/

or intrinsic differences between the individuals themselves (e.g., age, weight, medications,

medical conditions etc.) that directly or indirectly impacted microbial communities through

interactions with other decomposers (insects and scavengers). Moving forward, we will need

to employ a strategy to combine antemortem and environmental data in order to investigate

which factors help improve model predictions.

Influence of diversity and taxa succession on PMI estimations

The trends we observed in model MAE between different biological markers, taxonomic levels,

and inclusion of environmental data may be partly explained by differences in diversity

Fig 7. Relative abundance of the fungal order Pleosporales over time, here accumulated degree hours (ADH).

Abundances for each of the 19 individuals (named “TOX###”) are delineated by color.

https://doi.org/10.1371/journal.pone.0311906.g007
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between bacterial and fungal (16S vs. ITS) communities and the number of taxa (i.e., features),

ultimately impacting resolution for predicting PMI. Overall, Chao1 richness and Inverse

Simpson diversity were 10 and 15 times lower, respectively, in fungal communities compared

to bacterial communities [22]. This translated to differences in the total number of model fea-

tures for 16S and ITS models: 16S models had roughly 1.7 to 2.3 times more features, depend-

ing on the taxonomic level considered. As a result, more features, or taxa, in the dataset with

relationships to time (i.e., progression of decomposition) may help to distinguish between

timepoints to improve model predictability.

In our previous work, we observed that the fungal community composition became more

similar as decomposition progressed, with only a few taxa driving fungal successional patterns

[22]. This was also observed in Fu et al. (2019) [53], in which only a few taxa (e.g., Ascomycota
sp., Yarrowia lipolitica, etc.) displayed relationships with PMI. While we hypothesized that

ITS-based models would be more accurate than 16S-based models because of these studies,

our results revealed that 16S models generally outperformed ITS-based models and combining

16S and ITS did not improve 16S models alone. This result coincides with those reported by

Belk et al. (2018) [28], in which 16S models (mean MAE 4.022 days) had lower error than ITS

(mean MAE 4.452 days) or 18S models (mean MAE 4.195 days). The reduced number of taxa

observed in fungal communities, in combination with relatively few taxa changing in abun-

dance, may explain why ITS models had higher MAE than 16S models. This may also explain

why combining 16S and ITS datasets, which would increase overall diversity, did not outper-

form either marker alone. With only a few fungal taxa displaying changes over time, their

inclusion may not have added additional resolution to the bacterial model.

Diversity differences between bacterial and fungal communities may also drive some of the

trends observed between taxonomic levels and with or without environmental factors. In this

study, order level models performed best for all biological markers when not considering envi-

ronmental features. This contrasts with findings by Belk at al. (2018) [28], where lower error

was reported for phylum and class level models. This may be linked to a balance between taxo-

nomic resolution and noise for this timeperiod of decomposition. In our study, OTU level

models displayed the highest MAE for all biological markers when not considering environ-

mental data, which corresponds with previous decomposition studies reporting increased

inter-individual variation at lower taxonomic levels [18, 22, 54]. This may explain why OTU

level models displayed the highest MAE for all biological markers when not considering envi-

ronmental data. Within decomopsition studies, microbial taxonomic succession has mostly

been characterized at higher taxonomic levels, at which general patterns are more similar

between individuals. However, aggregating microbial abundances at coarse taxonomic levels,

such as phyla and class, inherently reduces data dimensionality. It is possible that this decrease

in features, in conjunction with trends in taxon abundance over time, reduces the ability of the

random forest regression to resolve timepoints at the highest taxonomic levels.

This balance between diversity and features with resolution over time may also explain the

effect of environmental features effect on model MAE. We hypothesized that inclusion of envi-

ronmental parameters would improve all model predictions, by combining soil chemical and

microbial successional patterns. While inclusion of environmental predictors improved some

models, it decreased performance of others. This effect appears to be linked to biological

marker and taxonomic level considered for model creation. Specifically, inclusion of environ-

mental parameters into the lower diversity fungal models added features that helped to

improve overall resolution to predict PMI. In contrast, inclusion of environmental data may

have added additional noise to high diversity bacterial datasets at lower taxonomic levels, over-

all leading to decreased model performance.
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Model features

In addition to assessing model performance, we also investigated model features for each top

performing 16S, 16S-ITS, and ITS model as determined by lowest MAE. This included the 16S

phylum model with environmental data, the 16S-ITS order level model, and the ITS order

level model with environmental data. Top model features for 16S phylum level models

included taxa observed in previous human and animal decomposition studies, such as the bac-

terial phyla Firmicutes, Acidobacteria, and Proteobacteria [5, 18]. In our study, Firmicutes and

Nitrospirae were shown to decrease as decomposition progressed, while Acidobacteria
decreased and Proteobacteria remained consistent. These changes seem to be linked to differ-

ences in metabolism and environmental changes that occur when decomposition products are

released into the surrounding soil. For example, it has been suggested heterotrophic microbial

activity responding to the pulse of decomposition products results in depletion of soil oxygen

[54, 55]. This would impact the presence of anaerobic gut and soil taxa. While we did not mea-

sure soil oxygen in this study, soil respiration was increased in these soils, and so oxygen deple-

tion is to be expected [22]. The increased presence of taxa containing facultative and obligate

anaerobic members Firmicutes and Clostridiales in phylum and order models, respectively,

and decrease in Nitrospirae, containing nitrifying bacteria that oxidize nitrogen under aerobic

conditions, support this hypothesis. Increases in Firmicutes and Clostridiales follow succes-

sional trends observed in internal (e.g., organs) microbial communities. Specifically, increased

relative abundance of Clostridium has been termed the “Clostridium Effect” by Javan et al.

(2017) [56] and observed in various organs [6, 56] and the rectum [57] postmortem. Multiple

studies, including this current work, have observed increased relative abundance in Firmicutes
and Clostridiales in soils following deposition of decomposition fluid [5, 7, 21, 58], suggesting

some of these organisms may be host-derived. Decreased presence of Acidobacteria in decom-

position-impacted soils is likely linked to their oligotrophic characteristics in response to high

nutrient deposition [5, 59]. Succession of these taxa and other taxa past 5000 ADH and the

potential implications for PMI models is unclear.

Order level models also revealed some information about soil microbial succession during

human decomposition. The 16S-ITS order level model had the lowest MAE among all 16S-ITS

models. Within this model, important taxa were a combination of 16S and ITS features present

in respective models. Among the top bacterial features, Lactobacillales, Bacteroidales, and Clos-
tridiales were all shown to display general increases as decomposition progressed. This is con-

sistent with previous literature [5]. One interesting find was Cardiobacteriales as the fifth most

important model feature. Cardiobacteriales is a bacterial order of gram-negative rods, whose

members are generally capable of fermentation of various sugars [60]. Within this order, only

the genus Ignatzschineria was identified based on the SILVA non-redundant database (v132)

[45]. This genus has been identified in previous outdoor decomposition studies focusing on

gut [57], skin [15], and soil [5] microbial communities.Ignatzschineria are associated with

insect species [61, 62] and first appear in the soil during release of fluid. We previously

observed this taxon in bacterial decomposition fluid communities [22], suggesting decomposi-

tion fluids as potential vehicle for the transfer of both host- and insect- associated microbes

into the surrounding soil. Their association with insects highlights the potential for decom-

poser insect and scavenger activity to impact microbial succession during decomposition and

suggests that PMI estimation models specific to decomposition setting (indoor or outdoor)

may be required.

Within the ITS order level models, the fungal order Pleosporales was among the most influ-

ential taxon for PMI estimation. Pleosporales, a member of Ascomycota fungi, decreased as

decomposition progressed. This was similar to observations by Fu et al. (2019) [53], where
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Pleosporales sp. was shown to be associated with non-decomposition soils by LEfSe (linear dis-

criminant analysis effect size). Pleosporales are often associated with plants, found as endo-

phytes, epiphytes, and the rhizosphere [60]. Reduced relative abundance of these fungi in

decomposition soils is interesting considering Pleosporales have been shown to positively

respond to nitrogen amendments [63, 64]. Their response to decomposition products may

suggest sensitivity to highly concentrated nitrogen amendments and/or other soil changes,

such as osmotic stress in response to high EC, or intolerance to hypoxia typically observed in

decomposition soils.

Of the environmental predictors assessed, electrical conductivity (EC) appeared to be most

influential. EC was recorded as the top and second most important feature for the 16S phylum

and ITS order models with environmental data, respectively. This is likely due to patterns in

soil EC being more consistent between individuals over time. Specifically, EC was shown to

increase within decomposition soil over time for all 19 individuals. Increases in EC observed

in decomposition soils has been shown to positively correlate with increased ammonium con-

centrations [55, 65], suggesting ammonium would also be a valuable predictor of microbial

community dynamics. The other measured environmental parameters (pH, enzyme rates)

were not identified as a top predictive features in the models. This is likely because these

parameters were more variable both over time as well as between individuals, displaying both

increases and decreases in response to human decomposition [22]. While we did not consider

all possible environmental parameters in this study, these results suggest that feature selection

may help to identify relevant environmental parameters for model construction.

Limitations and considerations

While there are intriguing investigations suggesting that microbial succession could be used to

predict PMI, validation is critical prior to forensic application. Variation between decomposi-

tion studies, including vertebrate species observed, and experimental design, along with small

sample sizes have limited model development to date. Additionally, most decomposition stud-

ies focus on bloat and active decay stages, when decomposers are most active in degrading soft

tissues [66, 67]. While informative for initial compositional shifts, this timeframe does not

allow us to assess for how long these communities may be impacted or if they return to pre-

decomposition conditions [1]. This study starts to address factors that influence PMI estima-

tions from soil microbial succession during human decomposition, however many founda-

tional questions remain. Below we discuss multiple areas to be expanded upon with future

investigation.

First, we did not include all possible environmental and soil data as model predictors, nor

account for interactions with other decomposer communities. Other factors, such as respira-

tion rates, oxygen concentration, ammonium, nitrate, dissolved organic carbon and nitrogen,

sulfur, among others may be relevant features for models predicting PMI within the soil envi-

ronment as they have been shown to change during decomposition [5, 18, 22, 31–34, 37, 55,

68–74] and have the capacity to structure microbial communities. In addition, it is possible

that changes in soil parameters during human decomposition differ based on region due to

soil type and climatic differences impacting decomposition progression or presence of micro-

bial taxa [75], as well as the insect and scavenging species present across ecosystems. Lines of

inquiry should include, but are not limited to, regional and seasonal (both within and between

regions) soil microbial successional patterns in response to carcass decomposition and micro-

bial-insect interactions, including effects of local insect species on microbial community

dynamics. For example, Chrysomya megacephala, an invasive fly species that has a proclivity

for feces, has only recently been documented colonizing human remains in Tennessee, USA
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[76]. This species carries up to 10 times the pathogenic bacterial load compared to the house

fly,Musca domestica, potentially introducing microbes that could alter the progression of

decomposition and result in different microbial community succession between regions with

and without this fly species [77].

Second, we chose to implement the random forest regression algorithm as it is not as sensi-

tive to non-linear data and has high interpretability compared to other forms of supervised

and unsupervised machine learning algorithms [78]. This allowed us to assess prediction of

PMI and identify taxa and environmental features that correlate with PMI, as well as kept our

results similar to previous decomposition studies within the soil environment [28]. However,

recent studies have compared multiple machine learning algorithms in other decomposition

microhabitats (i.e., skin, organs), showing variation both between internal organs [26] and

within the same habitat [17]. Both Liu et al. (2020) [26] and Johnson et al. (2016) [17] observed

other machine learning algorithms performed better than random forest in higher diversity

microhabitats such as the skin and caecum. As the soil environment is among the most diverse

microbial habitat on the planet, it is necessary to assess different machine learning approaches

when predicting PMI within this microhabitat [79].

Third, total PMI (5000 ADH) considered for model construction will likely impact the per-

formance and applicability of these models [79]. Here we showed that order level models had

the lowest MAE in models that do not include environmental features. This contrasts with

findings by Belk at al. (2018) [28] and our hypothesis, in which we expected lower error for

phylum and class level models, suggesting differences between studies, such as region, sam-

pling strategy, number of individuals, species, study timeframe or intrinsic differences between

donor populations may impact model performance. For example, our study went through

5000 ADH, while Belk et al. (2018) [28] presented data up to 25 days. In our study, 5000 ADH

corresponded to 13 to 115 days depending on the individual and time of year, suggesting the

unit of time chosen for PMI estimates may impact model interpretation. While out of the

scope of this paper, a comparison of model performance trained with different units of time

would be informative. Additionally, Belk et al. (2018) [28] observed decreased model error

when only using data points from the first 25 days of decomposition compared to the first 50

days, suggesting microbial-based models may not be as accurate at higher PMIs. Therefore,

future work is needed to determine the PMI range for which microbial-based PMI estimations

are most accurate.

Fourth, we chose to use operational taxonomic units (OTUs) and ADH calculated with a

baseline of 10˚C, as opposed to amplicon sequence variants (ASVs) and/or ADH with a base-

line of 0˚C or 4˚C. The recent application of denoising methods to generate ASVs has become

popular in microbial studies using amplicon sequencing. However, we chose to cluster

sequences into OTUs to reduce dimensionality in our raw dataset and the probability of split-

ting single genomes across multiple ASVs [47]. While Glassman and Martiny (2021) [80]

observed similar results for alpha and beta diversity from OTUs and ASVs in leaf litter com-

munities, other studies have shown differences in diversity when comparing the two methods

[81]. Thus, it is unclear if using OTUs or ASVs will impact machine learning algorithms such

as random forest to predict PMI. Future work should investigate differences in PMI estima-

tions from models constructed with OTUs as well as ASVs. Additionally, we chose to use a

baseline of 10˚C, which is commonly used for entomological methods due to the developmen-

tal threshold of regional (east Tennessee) insects [39]. However, other decomposition studies

within the soil environment have also used 0˚C or 4˚C as thresholds for ADH or accumulated

degree day (ADD) calculations. These differences may impact PMI estimates; however, no one

has addressed effects of different thresholds for ADH/ADD calculation on PMI estimates from
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microbial successional patterns within the soil. Therefore, a comprehensive comparison

between different thermal energy unit (i.e., ADH, ADD and baseline) calculations is necessary.

Conclusion

This study aimed to assess microbial abundance-based prediction of PMI from soil microbial

communities. We compared models with different biological markers, taxonomic levels, and

presence/absence of environmental variables to expand upon previous estimations of PMI

from machine learning algorithms. From this dataset of 19 individuals across multiple seasons,

we observed higher error rates and decreased model precision compared to previously pub-

lished models based on small datasets. Our results show that 16S and 16S-ITS models per-

formed similarly and outperformed ITS models. Further, order level models have the lowest

MAE when not considering environmental parameters. We also show that the addition of

other factors, such as environmental parameters, have the potential to impact PMI estimations.

We observed some level of predictability in soil microbial succession, however high error rates

were seen across 19 individuals and across seasons. While our the number of individuals in

our study is one of the largest to date, it was demographically limited, and we certainly did not

capture all antemortem conditions which could influence decomposition rates. Together this

means microbial-based PMI models would need considerable validation and refinement

across a diverse population and geographical regions prior to implementing in a forensic

context.
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teroidales, Cardiobacteriales, Clostridiales, and Pseudomonadales change over time, here accu-
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name Schineria Tóth et al. 2001 with the genus name Ignatzschineria gen. nov. and to replace the ille-

gitimate combination Schineria larvae Tóth et al. 2001 with Ignatzschineria larvae comb. nov. Interna-

tional Journal of Systematic and Evolutionary Microbiology. 2007; 57(1):179–180. https://doi.org/10.

1099/ijs.0.64686-0 PMID: 17220462

62. Gupta AK, Dharne MS, Rangrez AY, Verma P, Ghate HV, Rohde M, et al. Ignatzschineria indica sp.

nov. and Ignatzschineria ureiclastica sp. nov., isolated from adult flesh flies (Diptera: Sarcophagidae).

International Journal of Systematic and Evolutionary Microbiology. 2011; 61(Pt 6):1360–1369. https://

doi.org/10.1099/ijs.0.018622-0 PMID: 20584814

63. Lowell JL, Klein DA. Comparative single-strand conformation polymorphism (SSCP) and microscopy-

based analysis of nitrogen cultivation interactive effects on the fungal community of a semiarid steppe

soil. FEMS Microbiology Ecology. 2001; 36(2-3):85–92. https://doi.org/10.1111/j.1574-6941.2001.

tb00828.x PMID: 11451512

64. She W, Bai Y, Zhang Y, Qin S, Feng W, Sun Y, et al. Resource availability drives responses of soil

microbial communities to short-term precipitation and nitrogen addition in a desert shrubland. Frontiers

in Microbiology. 2018; 9:186. https://doi.org/10.3389/fmicb.2018.00186 PMID: 29479346

65. Keenan SW, Schaeffer SM, DeBruyn JM. Spatial changes in soil stable isotopic composition in

response to carrion decomposition. Biogeosciences Discuss. 2019; 2019:1–35. https://doi.org/10.5194/

bg-2018-498

66. Payne JA. A summer carrion study of the baby pig Sus Scrofa Linnaeus. Ecology. 1965; 46(5):592–

602. https://doi.org/10.2307/1934999

67. Carter DO, Yellowlees D, Tibbett M. Cadaver decomposition in terrestrial ecosystems. Naturwis-

senschaften. 2007; 94(1):12–24. https://doi.org/10.1007/s00114-006-0159-1 PMID: 17091303

68. Quaggiotto MM, Evans MJ, Higgins A, Strong C, Barton PS. Dynamic soil nutrient and moisture

changes under decomposing vertebrate carcasses. Biogeochemistry. 2019; 146(1):71–82. https://doi.

org/10.1007/s10533-019-00611-3

69. Szelecz I, Koenig I, Seppey CVW, Le Bayon RC, Mitchell EAD. Soil chemistry changes beneath decom-

posing cadavers over a one-year period. Forensic Science International. 2018; 286:155–165. https://

doi.org/10.1016/j.forsciint.2018.02.031 PMID: 29574351

70. Macdonald BCT, Farrell M, Tuomi S, Barton PS, Cunningham SA, Manning AD. Carrion decomposition

causes large and lasting effects on soil amino acid and peptide flux. Soil Biology and Biochemistry.

2014; 69:132–140. https://doi.org/10.1016/j.soilbio.2013.10.042

71. Anderson B, Meyer J, Carter DO. Dynamics of Ninhydrin-Reactive Nitrogen and pH in Gravesoil During

the Extended Postmortem Interval. Journal of Forensic Sciences. 2013; 58(5):1348–1352. https://doi.

org/10.1111/1556-4029.12230 PMID: 23879466

72. Meyer J, Anderson B, Carter DO. Seasonal Variation of Carcass Decomposition and Gravesoil Chemis-

try in a Cold (Dfa) Climate. Journal of Forensic Sciences. 2013; 58(5):1175–1182. https://doi.org/10.

1111/1556-4029.12169 PMID: 23822087

73. Benninger LA, Carter DO, Forbes SL. The biochemical alteration of soil beneath a decomposing car-

cass. Forensic Science International. 2008; 180(2-3):70–5. https://doi.org/10.1016/j.forsciint.2008.07.

001 PMID: 18752909

74. Vass AA, Bass WM, Wolt JD, Foss JE, Ammons JT. Time Since Death Determinations of Human

Cadavers Using Soil Solution. Journal of Forensic Sciences. 1992; 37(5):1236–1253. https://doi.org/10.

1520/JFS13311J PMID: 1402750

75. Carter DO, Yellowlees D, Tibbett M. Temperature affects microbial decomposition of cadavers (Rattus

rattus) in contrasting soils. Applied Soil Ecology. 2008; 40(1):129–137. https://doi.org/10.1016/j.apsoil.

2008.03.010

76. Owings CG, Mckee-Zech H, Steadman DW. First record of the oriental latrine fly, Chrysomya megace-

phala (Fabricius) (Diptera: Calliphoridae), in Tennessee, USA. Acta Parasitologica. 2021; 66(3):1079–

1081. https://doi.org/10.1007/s11686-021-00346-y PMID: 33682073

PLOS ONE Environmental predictors impact microbial-based postmortem interval (PMI) estimation models

PLOS ONE | https://doi.org/10.1371/journal.pone.0311906 October 11, 2024 23 / 24

https://doi.org/10.7717/peerj.3437
http://www.ncbi.nlm.nih.gov/pubmed/28626612
https://doi.org/10.1186/s13717-023-00451-y
https://doi.org/10.1186/s13717-023-00451-y
https://doi.org/10.1890/05-1839
http://www.ncbi.nlm.nih.gov/pubmed/17601128
https://doi.org/10.1099/ijs.0.64686-0
https://doi.org/10.1099/ijs.0.64686-0
http://www.ncbi.nlm.nih.gov/pubmed/17220462
https://doi.org/10.1099/ijs.0.018622-0
https://doi.org/10.1099/ijs.0.018622-0
http://www.ncbi.nlm.nih.gov/pubmed/20584814
https://doi.org/10.1111/j.1574-6941.2001.tb00828.x
https://doi.org/10.1111/j.1574-6941.2001.tb00828.x
http://www.ncbi.nlm.nih.gov/pubmed/11451512
https://doi.org/10.3389/fmicb.2018.00186
http://www.ncbi.nlm.nih.gov/pubmed/29479346
https://doi.org/10.5194/bg-2018-498
https://doi.org/10.5194/bg-2018-498
https://doi.org/10.2307/1934999
https://doi.org/10.1007/s00114-006-0159-1
http://www.ncbi.nlm.nih.gov/pubmed/17091303
https://doi.org/10.1007/s10533-019-00611-3
https://doi.org/10.1007/s10533-019-00611-3
https://doi.org/10.1016/j.forsciint.2018.02.031
https://doi.org/10.1016/j.forsciint.2018.02.031
http://www.ncbi.nlm.nih.gov/pubmed/29574351
https://doi.org/10.1016/j.soilbio.2013.10.042
https://doi.org/10.1111/1556-4029.12230
https://doi.org/10.1111/1556-4029.12230
http://www.ncbi.nlm.nih.gov/pubmed/23879466
https://doi.org/10.1111/1556-4029.12169
https://doi.org/10.1111/1556-4029.12169
http://www.ncbi.nlm.nih.gov/pubmed/23822087
https://doi.org/10.1016/j.forsciint.2008.07.001
https://doi.org/10.1016/j.forsciint.2008.07.001
http://www.ncbi.nlm.nih.gov/pubmed/18752909
https://doi.org/10.1520/JFS13311J
https://doi.org/10.1520/JFS13311J
http://www.ncbi.nlm.nih.gov/pubmed/1402750
https://doi.org/10.1016/j.apsoil.2008.03.010
https://doi.org/10.1016/j.apsoil.2008.03.010
https://doi.org/10.1007/s11686-021-00346-y
http://www.ncbi.nlm.nih.gov/pubmed/33682073
https://doi.org/10.1371/journal.pone.0311906


77. Chaiwong T, Srivoramas T, Sueabsamran P, Sukontason K, Sanford M, Sukontason K. The blow fly,

Chrysomya megacephala, and the house fly, Musca domestica, as mechanical vectors of pathogenic

bacteria in Northeast Thailand. Tropical Biomedicine. 2014; 31(2):336–46. PMID: 25134903

78. Ghannam RB, Techtmann SM. Machine learning applications in microbial ecology, human microbiome

studies, and environmental monitoring. Computational and Structural Biotechnology Journal. 2021;

19:1092–1107. https://doi.org/10.1016/j.csbj.2021.01.028 PMID: 33680353

79. Metcalf JL. Estimating the postmortem interval using microbes: knowledge gaps and a path to technol-

ogy adoption. Forensic Science International: Genetics. 2019; 38:211–218. https://doi.org/10.1016/j.

fsigen.2018.11.004 PMID: 30448529

80. Glassman SI, Martiny JBH. Broadscale ecological patterns are robust to use of exact sequence variants

versus operational taxonomic units. mSphere. 2018; 3(4):e00148–18. https://doi.org/10.1128/

mSphere.00148-18 PMID: 30021874
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