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Abstract

One of the key challenges in robotics is the motion planning problem. This paper presents a

local trajectory planning and obstacle avoidance strategy based on a novel sampling-based

path-finding algorithm designed for autonomous vehicles navigating complex environments.

Although sampling-based algorithms have been extensively employed for motion planning,

they have notable limitations, such as sluggish convergence rate, significant search time

volatility, a vast, dense sample space, and unsmooth search routes. To overcome the limita-

tions, including slow convergence, high computational complexity, and unnecessary search

while sampling the whole space, we have proposed the RE-RRT* (Robust and Efficient

RRT*) algorithm. This algorithm adapts a new sampling-based path-finding algorithm

based on sampling along the displacement from the initial point to the goal point. The sam-

ple space is constrained during each stage of the random tree’s growth, reducing the num-

ber of redundant searches. The RE-RRT* algorithm can converge to a shorter path with

fewer iterations. Furthermore, the Choose Parent and Rewire processes are used by RE-

RRT* to improve the path in succeeding cycles continuously. Extensive experiments under

diverse obstacle settings are performed to validate the effectiveness of the proposed

approach. The results demonstrate that the proposed approach outperforms existing meth-

ods in terms of computational time, sampling space efficiency, speed, and stability.

1. Introduction

Nowadays, transportation and industry frequently use portable robots addressed by autono-

mous vehicles [1–3]. Autonomous vehicles include a framework for perception, navigation,

and control, and the study of the robot organizing framework has always been a major con-

cern. One of the main challenges is how to produce a proper path to reach a target location

without collisions for autonomous vehicles [4–6]. Geometric search techniques and graph

search methods have been explored in earlier research [7]; the computations of geometric
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approaches are extremely straightforward, useful, and reasonable, such as spline curves, and

they adapt well to basic environments. Even though geometric approaches offer certain bene-

fits, they have notable drawbacks. These path-planning techniques need improved intelligence

and adaptability in complex contexts [8].

The effectiveness of optimization techniques frequently employed in mobile robot route

planning has been demonstrated while seeking paths based on graphs. Forward searching in

continuous coordinates is typically carried out using RRT [9]. Although this technique per-

forms quick searches, it is not suitable for confined spaces when the situation is complicated.

The A* algorithm can discover the shortest obstacle-free path based on specific decision crite-

ria [10]. However, the resultant path often consists of difficult-to-follow straight lines. Signifi-

cant efforts have been made to improve the performance of the A*method. For instance, the

Jump Point Search algorithm can speed up the A*method by an order of magnitude [11]. Liu

et al. [12] extended the Jump Point Search technique from a two-dimensional to a three-

dimensional environment. By including dynamic constraints, the Hybrid A* algorithm [13]

can create smooth paths that accommodate the robots. The graph-based approach can identify

an optimal path if a viable path already exists; if not, it will result in failure. This demonstrates

the completeness and resolution excellence of the graph-based approach. However, because

the search space created by the graph-based deconvolution of the state space is too large,

graph-based techniques cannot effectively address large-scale problems (such as those involv-

ing industrial robotic arms). The D* algorithm was designed to guide autonomous vehicles in

a two-dimensional space. Its main advantage is that it can choose the best course while navi-

gating a difficult environment [14]. However, this method is typically constrained by vehicle

kinematics.

The capacity of various research units to plan paths was demonstrated during the 2007

Defense Advanced Research Projects Agency (DARPA) Urban Challenge. The proposed plans

and theoretical models laid the groundwork for further investigation. The “Talos” vehicle, cre-

ated by MIT, employed a closed-loop RRT-based path planning technique [15]. Dolgov et al.

[16] developed a well-hybrid A* searching technique, which uses the vehicle’s 3-dimensional

kinematic state space and local planning via nonlinear optimization, leading to a local opti-

mum. However, these path-planning techniques have not proven their viability and efficacy in

complex, challenging environments. In past years, Suresh et al. [17] employed FSVM to ensure

an accident-free route while avoiding several dynamic obstacles. The outcomes indicate that

this approach is successful. Simulations using this method, which generates fuzzy rules from

plain evaluation data, are shown. Chu et al. [18] implemented an algorithm for real-time route

planning, focusing on selecting the safest and simplest path after creating multiple pathways

based on predefined checkpoints. Makarem and Gillet [19] designed a steering component

appropriate for autonomous vehicles, though it does not consider the impact of obstacles. Che-

bly et al. proposed the “tentacle method” [20], which creates a series of virtual spines showing

potential routes for the vehicle, with the optimal route selected based on an evaluation func-

tion. Moreau et al. [21] developed a better curve design approach for complex, dynamic envi-

ronments. This approach considers all sensors required for obstacle detection and transforms

the planning problem into an optimal problem, solved using Lagrangian and gradient-based

methods. Tazir et al. [22] use two strategies for real-time planning: Dijkstra’s algorithm and

genetic algorithms for avoiding static obstacles, and the wait/accelerate principle for travelling

in dynamic areas. Although this approach is test-efficient, it does not consider robot kinematic

restrictions. Researchers have proposed an innovative Integrated Local Trajectory Planning

and Tracking Control (ILTPTC) framework to allow automated vehicles to travel along a basic

track while avoiding detection and meeting vehicle kinematic limitations [23]. This architec-

ture employs an MPC-based planning technique, which can meet vehicle kinematics
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requirements but falls short of actual needs. The sampling-based planning method is a crucial

planning methodology. Compared to discretizing the state space, sampling-based planning

generates a graph or tree by selecting random points in the state space. In large-scale applica-

tions, sampling-based planning algorithms perform better than graph-based planning algo-

rithms. Since the sampling-based planning method is stochastically complete, the probability

of finding a suitable path approaches 1 as the number of samples approaches infinity. Two

important sampling-based planning techniques are RRT [24] and Probabilistic Roadmaps

(PRM) [25]. PRM, a multi-query motion planning method, produces a viable path after gener-

ating a feasible graph reflecting the spatial connection through random sampling in the state

space. PRM can be used to search for various pathways after creating the graph, but mapping

out the entire area for a single search requires significant effort. RRT, being a one-request

route planning technique, is quicker than PRM. It builds a tree with its root at the starting

point and searches the state space by randomly generating states, selecting the nearest random

tree nodes, and growing the random state from the nearest neighbour selection point. The

search is accomplished when the tree reaches the desired location, and RRT retraces its steps

to find a workable route. RRT can quickly identify an initial path in a high-dimensional area,

although it has several flaws. For instance, due to random sampling, the variance of its runtime

is substantial, which means it can take a considerable amount of time to find a suitable route.

Additionally, RRT does not perform well in environments with narrow passages [26]. Further-

more, since the path is generated randomly, it is likely that the path found using RRT is not

optimal [27]. Rapidly Exploring Random Tree Star or RRT*, is considered a significant

improvement on RRT [28]. RRT* continues to optimize the original path after discovering it

by continuously sampling [29]. To determine the optimal path, RRT* incorporates neighbor-

searching and rewiring tree processes. It is demonstrable that, with an infinite number of sam-

ples, the path generated by RRT* is optimal. However, RRT* requires a significant amount of

memory and time to determine the optimal path [30]. Like RRT, RRT* is also affected by sub-

stantial search time volatility.

Significant efforts have been made to improve the quality of the pathways identified by

RRT and RRT*. For instance, Kino dynamic RRT* [31] can achieve an optimal route that

meets static constraints by extending RRT* to Kino dynamic systems. Anytime-RRT* allows

for rapid path re-planning from any location. Another focus area in RRT-related research is

increasing the search rate and reducing search time variance. For example, RRT-Connect [32]

builds two trees, one rooted at the starting state and the other at the destination state, then

moves the two trees towards each other. A 2D Gaussian mixture model is used in [33] to

quickly find a good initial solution. The training dataset in this article, which includes map

data and the best route, is created using the A* algorithm [34]. Batch Informed Trees [35]

swiftly locate a viable path by restricting the state space to a gradually growing subset. How-

ever, these techniques mainly work effectively in specific settings. RRT can speed up the search

process when combined with various path search strategies. For example, the artificial poten-

tial field (APF) technique is incorporated into RRT* in [36] to accelerate the convergence rate,

although planning time may rise significantly in complex situations. The efficiency of the

path-tracking controller is verified using MATLAB to simulate the car depicted in ADAMS.

To assess the interaction between real-time planning and tracking control of smart cars, Zhou

W [37] recommended new infrastructure that relies on an upgraded RRT method and a linear

time-varying (LTV) path planning and tracking control. Based on the LTV-MPC method, the

basic RRT algorithm is modified to ensure the intended course complies with the vehicle’s

kinematic constraints and approaches the optimal outcome. These modifications include tar-

get orientation, node pruning, curve fitting, and optimal path selection. The impact of vari-

ables, including vehicle speed, planning step, and cycle on real-time planning and stability
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tracking, is then examined. Mata S proposes a vehicle path planning approach based on a sim-

ple linear and time-invariant monorail framework computed using a uniform nominal longi-

tudinal speed. To compensate for variations in dynamic systems between the actual vehicle

and this constant nominal model, a tube-based resilient model predictive control (MPC) strat-

egy is presented [38].

The A*-RRT* technique [39] significantly speeds up convergence by using the route created

by the A*method to guide the RRT* planner’s sampling process. However, for complex prob-

lems, A* requires a considerable amount of effort to identify a starting point. While LM-RRT

[40] uses reinforcement learning techniques to direct tree development, learning-based

approaches might not function effectively in novel environments. It has been demonstrated

that curve interpolation is an effective method for creating reference paths. Many researchers

have employed polynomials [41], Bezier curves [42], and B-splines [43]. To increase the auton-

omy of the vehicle and decrease the number of turns on the planned course, an adaptive ant

colony optimization (ACO) path planning approach is applied [44]. One of the most impor-

tant aspects of autonomous navigation is collision avoidance, where the robot must find its

way from the starting point to the destination while avoiding obstacles. Extensive research has

been done in the area of collision avoidance, including [45–53]. Furthermore, in recent years,

motion planning research has made extensive use of learning-based methodologies. Neural

RRT* uses deep learning to discover a probability distribution for sample selection. RL-RRT

investigates a deep reinforcement learning strategy as a local planner and employs a distance

function that trains through deep learning to bias tree growth toward the targeted area. An

approach that combines inverse reinforcement learning with RRT* is used to learn the cost

function of RRT* [54]. The DL-P-RRT*method uses a virtual artificial potential field to

understand the function of the artificial potential field before applying it to the RRT* algo-

rithm. Learning-based approaches work well in specific situations, but they may struggle to

generalize in unfamiliar environments.

Furthermore, a bidirectional RRT-type motion planning algorithm for hybrid systems,

called HyRRT-Connect, is proposed in [55]. This algorithm constructs two search trees for

motion planning: the first tree starts from the initial point and propagates in the forward direc-

tion, while the second tree begins at the goal point and propagates in the backward direction.

Once an overlap between the forward and backward paths is detected, a connection is estab-

lished between them. While HyRRT-Connect ensures a path from the source to the destina-

tion, it doubles the search time, whereas the proposed approach converges faster. In [56], the

DT-RRT* algorithm is introduced, combining the double-tree structure with RRT*. This

method also employs two trees: one for space exploration and the other for optimization.

Although this algorithm performs well, it requires additional searches. A novel optimal path

planning algorithm based on convolutional neural networks (CNN), called neural RRT*
(NRRT*), is also proposed. The NRRT* algorithm utilizes a nonuniform sampling distribution

generated from a CNN model and is trained using data samples from successful path planning

cases. While effective, this algorithm requires data samples for training the neural network

models, which can be difficult to obtain in some scenarios.

To address the flaws in path tracking found in traditional methods like RRT and RRT*, R.

Mashayekhi [57] introduced Informed RRT*-Connect, which decreases the number of

searches compared to previous methods. However, our proposed RE-RRT* expedites the

search for the optimal route while limiting the number of randomly generated search nodes

and minimizing the convergence rate. It generates random nodes only near obstacles and pro-

ceeds along a single path toward the goal position within 9 to 10 seconds. Therefore, RE-RRT*
is quicker than Informed RRT*-Connect when searching for a path that is close to optimal.

These approaches often overlook efficiency gains achievable through targeted sampling and
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direct path integration, which RE-RRT* addresses comprehensively. This context highlights

how RE-RRT* bridges gaps left by traditional and batch-based methods, offering superior

performance in terms of convergence time and path quality.

In contrast to these algorithms, our Robust and Efficient RRT* (RE-RRT*) offers several

additional functions and improvements. Unlike standard RRT*, which samples randomly

across the entire space, RE-RRT* restricts sampling to areas near obstacles and along potential

pathways to minimize unnecessary exploration. When a direct path from the start to the objec-

tive is possible, RE-RRT* reduces the need for significant tree expansion, thereby speeding up

convergence compared to techniques like RRT-Connect. It employs a pruning technique to

simplify and enhance the efficiency of the generated paths in complex scenarios with numer-

ous obstacles.

Through focused sampling and efficient path extensions, RE-RRT* yields smoother path

outputs and faster convergence rates compared to batch approaches such as Batch Informed

Trees. While Neural RRT* emphasizes neural network-based steering and optimization, it

requires data samples for training the neural network models, which can be challenging to

obtain. In contrast, RE-RRT* prioritizes efficient tree growth and path refinement using tradi-

tional search techniques. These attributes make RE-RRT* a dependable and efficient path

planning algorithm capable of functioning in challenging environments without compromis-

ing computational performance.

The remaining paper is divided into several sections. The second section provides the for-

mal formulation of the motion planning problem and the relevant context. The third section

defines the RE-RRT* approach proposed in this study. The forth section presents the simula-

tion and assessment of our experimental findings. The final section concludes our work.

2. Problem statement

In this section, we outline the relevant background for this study. After introducing the formal

concept of motion planning problems, we will discuss related algorithms such as RRT and

RRT*.
Two primary challenges in path planning using RRT and RRT* are:

• convergence speed

• unnecessary sampling and searches

The following fundamental limitations in these methods still exist: (1) The use of random

sampling lengthens the algorithm’s execution time and hinders convergence, and (2) The

application of the nearest node selection technique frequently results in complicated scenario

planning. (3) The planned path cannot be employed in the path planning of autonomous vehi-

cles since it does not take vehicle kinematics restrictions into account.

The RE-RRT*method is based on the RRT algorithm, and RRT* is a crucial technique

for determining the approximative optimum route. As a result, Algorithms 1 and 2 intro-

duce the RRT and RRT* shown in Figs 1 and 2, accordingly. Lavalle formally presented the

Rapidly Exploring Randomized Trees (RRT) approach in 1998. Beginning from the starting

point and extending into a tree-like structure, the nodes of this method are mostly extended

in the form of trees. Random sample locations in the planning area are used to decide the

direction in which the form structure will expand. It can always identify a successful path

regardless of how complex the environment is given enough time, making it probabilistically

complete. Nevertheless, because random nodes are chosen each time to establish the search’s

direction, the randomness is rather high, and the efficiency is low. The RRT is a technique

built on a single query search that finds a viable path very rapidly. RRT creates a tree during
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Fig 1. RRT algorithm.

https://doi.org/10.1371/journal.pone.0311179.g001

Fig 2. RRT* algorithm.

https://doi.org/10.1371/journal.pone.0311179.g002
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the initiation step xinit, with the starting state acting as the node. RRT chooses the closest ver-

tex xnear, after randomly sampling a state xfree, in state space for each iteration. The steering

function will then create the RRT algorithm which generates xnew, as seen in Fig 3. If the

edge c has no obstacles, then the set of nodes will be expanded by xnew and the set of edges

will be expanded by { xnear, xnew} The search is completed if xnew found at the desired loca-

tion xgoal.

A. DataSets

The route that RRT chose might not be the best one. RRT* solves this issue by adding a

rewire step. The best parent node for xnew will be found for nodes with a distance smaller than

r surrounding it if the edge xnear, xnew is free of obstacles. Additionally, RRT* considers xnew as

a substitute parent node for existing nearby nodes in addition to adding it to the tree. There-

fore, RRT* constantly modifies the random tree as the sample periods go closer to infinity

until it discovers an ideal path. However, the RRT* takes a long time, making it unsuitable for

systems that must immediately identify an optimal path. To minimize this issue, we suggest

RE-RRT* which uses the RRT* algorithm with some addition that works efficiently and takes

less time to converge to the goal position. The MATLAB trials demonstrate that the approach

increases planning speed and success rate.

3. Methodology

We introduce our Robust and Efficient Rapidly Exploring Random Tree algorithm in this sec-

tion. Section 3.1 presents the model structure of the suggested method. Sections 3.2–3.3 intro-

duce further information.

3.1 Model structure

The decision-making system receives a grid map from the perception system. Global path,

maneuver, and path-planning modules in the decision-making system work together to enable

the vehicle to manage a variety of situations. The decision-making system then generates a

route and sends it to the vehicle’s monitoring system. The suggested method’s model structure

is shown in Fig 4. This model takes a grid map, which is m x n (here m x n can be any size like

800 x 800 or 500 x 500), and information about the initial position and goal position as input.

Also, we set the target point threshold, expansion steps, rewire range, which is radius r, and

maximum iteration. The entire grid map is filled with all the identified items. A collision-free

route is swiftly generated using the steering constraint model.

Fig 3. Schematic result of RRT algorithm.

https://doi.org/10.1371/journal.pone.0311179.g003
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A simplified model of the vehicle is shown in Fig 5. The theta ‘θ’ that defines the orientation

of the vehicle and the kinematic equation can be explained as follows:

_x

_y

" #

¼
cos y

sin y

" #

v ð1Þ

3.2 Framework of RE-RRT*
The complete framework and methodology of RE-RRT* is explained here. Which includes all

steps from the start to the end of this algorithm. Our proposed algorithm is based on a

Fig 4. The RRT algorithm’s software architecture.

https://doi.org/10.1371/journal.pone.0311179.g004

Fig 5. Vehicle kinematics model.

https://doi.org/10.1371/journal.pone.0311179.g005
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sampling-based path-finding algorithm. A small difference between RRT* and RE-RRT*
makes RE-RRT*more efficient and robust by limiting the random sampling and searches on

the entire map. RE-RRT* limits unnecessary search, reduces the convergence time and makes

the system efficient in this way.

3.2.1 Improvement of RE-RRT*. The RE-RRT* algorithm has two major enhancements.

• Firstly, random sampling is limited, which helps to avoid searching over the entire space. In

this way, our proposed algorithm speeds up the convergence rate.

• The second improvement is to minimize random nodes by limiting their generation only

around the obstacles. Otherwise, our vehicle will be in a straight line from the initial position

to the goal point.

One of the principles of the sampling-based path-finding algorithm is to build the search

tree concurrently in the starting state and the goal state. The RE-RRT* initiative technique dif-

fers from the standard sampling-based path-finding algorithms, as shown in algorithms 1 and

2. From the start position, a path is generated in a straight line towards the goal position. After

creating random spots across the obstacle, the tree is extended if there is a collision. After

crossing the obstacle, the path leads to the goal position in a straight line until the next obstacle

finds out on the vehicle path. RE-RRT* algorithm’s searching schematic diagram is shown in

Fig 6.

Keeping in mind Fig 5, now we can visualize the RE-RRT* algorithm. The vehicle’s starting

point is in green color and the ending point is in red. The huge black boxes are obstacles and

we named them Obstacles 1, 2, and 3. Our vehicle started its path from the green signal moving

forward towards the goal position in a straight line. When the vehicle reached near to the

obstacle e.g., obstacle no 3, it stopped there. Until the sampling-based path-finding algorithm

Fig 6. RE-RRT* algorithm’s searching schematic diagram.

https://doi.org/10.1371/journal.pone.0311179.g006
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finds the path where there would be no obstacle and it would be a collision-free path. The blue

dotted rectangle shows the area where there is random sampling and node generation as

shown in Fig 3. This is the area from where the random tree generates and ends until it crosses

the obstacle area. At that point, the random sampling and node generation process would stop

and from that point, let’s say xnew to goal position straight line nodes will generate and our

vehicle follow that path.

3.2.2 The extension strategy of RE-RRT*. The extension strategy of RE-RRT* is a bit dif-

ferent from RRT*. Unlike RRT*, RE-RRT* limits unnecessary searches and reduces the sam-

pling space by adding a line equation with RRT*method. The starting point of the vehicle is

our starting node. The next nearest node in a straight line will be chosen by the given formula.

Dx ¼
xinit � xgoal

n
ð2Þ

Dy ¼
ygoal � yinit

n
ð3Þ

Here Δx and Δy are the nodes generating along the x and y-axis. The n defines the no of

nodes which are generating on the straight path from the initial to the final position of the

vehicle route. When the vehicle detects an obstacle on the path using the collision detection

method of the RRT* algorithm, it stops and waits for the RRT* algorithm to generate a tree

that navigates around the obstacle and finds an optimal path to cross it without colliding with

it. At the beginning, the map is provided to the system, so the vehicle first scans the map to

identify the obstacle areas. The collision detection algorithm uses the ceil and floor methods to

check the height and width of the obstacle. Once the area of the obstacle has been scanned by

the vehicle, then it can easily generate the random nodes across the obstacle and finds the

shortest path to pass this area and move further towards the goal position. The tree generates

the random nodes and rewires them as mentioned in Fig 7 to determine the shortest path and

the starting nodes of the tree will be the coordinate (x,y) where our vehicle detects the obstacle

existence and stops there. Using the Euclidean distance formula, we are looking for the closest

nodes. Fig 7 shows how we select the nearest neighbour node by using the Euclidean distance

formula.

Fig 7. Schematic diagram for selecting the nearest node.

https://doi.org/10.1371/journal.pone.0311179.g007
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The Euclidean distance between xi and xrand is closer, θi< θj so, xi chosen as the closest

neighbor node of the point which is under consideration. The parent node will be chosen

based on whatever node produces the lowest cost to reach the random sample, and they are

added appropriately. Following is a Euclidean distance equation that we used to determine the

distance between the random sampling point and the nearby point:

Dist ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxrand � xiÞ
2
þ ðyrand � yiÞ

2

q
ð4Þ

3.2.3 Vehicle steering angle. By expanding the tree to get new nodes, there must be a fac-

tor theta, our vehicle steers according to it. θ is our vehicle’s steering angle.

y ¼ atan2ðyrand � ynear; xrand � xnearÞ ð5Þ

xnew ¼ xnear þ cosðyÞ � Dx ð6Þ

ynew ¼ ynear þ sinðyÞ � Dy ð7Þ

Eqs 6 and 7 are written according to the vehicle’s kinematic model shown in Fig 5.

3.2.4 Pruning process. The resulting pathways are typically exceedingly convoluted and

uneven because of the sampling-based path-finding algorithm, especially in situations with

numerous complicated obstacles. It is challenging to locate them successfully. The ride comfort

of the vehicle will be impacted by too many fold points, which is unsuitable for path planning.

Consequently, it is necessary to prune and smooth the routes of the sampling-based path-find-

ing algorithm. To get a smooth and turn-free path, this algorithm deleted the useless nodes

and updated them with useful nodes and the nodes that give optimal cost. It removes the num-

ber of turns in the path to achieve the pruning effect.

Fig 8 shows the pruning principle clearly. We have a solid obstacle and several random

nodes generated around it. The irregular path sampling is shown in black lines. As we can see,

the paths between nodes n1 to n6, and n8 to n12 are safe, so n1 to n6 and n8 to n12 can be con-

nected directly, as shown in the red line. The next segment illustrates the contrast effect before

and after pruning.

Fig 8. Pruning principle.

https://doi.org/10.1371/journal.pone.0311179.g008
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To speed up the convergence rate of the vehicle, two main improvements, which we dis-

cussed above, are mentioned in Fig 9. This is the complete pseudo-code for robust and efficient

rapidly exploring random tree star (RE-RRT*).
Fig 10 is a schematic representation of the RE-RRT*method flow chart. It entails the fol-

lowing steps: It starts from the initial points and then checks the direction towards the goal

position. Nodes will be added in a straight line. Moves steps one by one. When there is an

obstacle on the way, random nodes will be generated around the obstacle until the vehicle

reaches the goal position. Besides this, it also checks the neighbor nodes and updates the short-

est nodes by deleting the previous ones.

4. Simulation and results

In this research, MATLAB R2022a is utilized for the simulation experiment, and the size of the

experimental map is m X n. There are various obstacles throughout the map. The vehicle

Fig 9. RE-RRT* algorithm.

https://doi.org/10.1371/journal.pone.0311179.g009

Fig 10. Flow chart of RE-RRT* algorithm.

https://doi.org/10.1371/journal.pone.0311179.g010
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navigates the obstacles as it goes from its starting position to its destination location. Table 1

displays the algorithm’s parameter settings. We include obstacles in the map to test the perfor-

mance of RE-RRT* in complicated spaces. Several tests were carried out to assess the perfor-

mance of the suggested method, and we eventually compared the outcomes between previous

sampling-based path-finding algorithms.

Figs 11–13 shows the schematic representation of simulated environment 1 with obstacles

of different shapes. Fig 11 shows the result of RRT, where the blue lines show the random sam-

pling over the whole map. The green irregular line is the path tracked by the RRT algorithm,

which is not smooth. Fig 12 shows the result of the RRT* algorithm, which is the improved

Table 1. The hyperparameters setting of RE-RRT*.
Hyper Parameters Values

Size of image m x n

Start Point (Xinit,Yinit)

Goal Point (Xgoal,Ygoal)

Segments on the line 10-15

Radius for neighbor node 30.0

Expansion step 30.0

Max Iteration 1000

Update time 50.0

Delay Time 0.0

https://doi.org/10.1371/journal.pone.0311179.t001

Fig 11. The result of RRT for experiment 1.

https://doi.org/10.1371/journal.pone.0311179.g011
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Fig 12. The result of RRT* for experiment 1.

https://doi.org/10.1371/journal.pone.0311179.g012

Fig 13. The result of RE-RRT* for experiment 1.

https://doi.org/10.1371/journal.pone.0311179.g013
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version of the RRT algorithm. The red lines show the rewired sampling. It generates a

smoother path than RRT, but it takes a lot of time to execute the result because the sampling

space is over the whole map. Fig 13 shows the result of the suggested method, the RE-RRT*
algorithm. This is the improved method of the RRT* algorithm. We can see clearly in this pic-

ture how this method limits the random sampling and improves the execution time by 80% by

limiting the sampling space only around the obstacle. As our vehicle started moving straight

from the initial position towards the final position, when it reached the obstacle area, the

RRT* algorithm was used to track the best route to pass the obstacle, and after tracking the

path, the vehicle moved in a straight line towards the goal position.

In the scenario of Environment 1 mentioned in Table 2, we can see that our method avoids

a lot of unnecessary searches and speeds up the convergence rate. The basic RRT takes 26 sec-

onds to converge to the goal position, while RRT* generates a smoother path than RRT but

takes 3 to 4 minutes to rewire the node connections and yields a pruned output, which is not

efficient. In contrast, our proposed RE-RRT*method takes only 11 seconds to converge to the

goal position using the same parameters Fig 14 shows the schematic representation of RRT*
for simulated environments 2 and Fig 15 shows the Re-RRT* for the same scenerio. Figs 16

and 17 shows simulation of environment 3 with a narrow path for RRt* and Figs 18 and 19

shows RE-RRT*. As we can see the difference between the results of RRT* and RE-RRT*. In

RRT*, the nodes are generated randomly Over the whole map, it checks every node to see if it

Table 2. The main evaluation indicators of RRT, RRT* and RE-RRT* path planning results of environment 1.

Scenario Total count/No of samplings Distance (D) Delete Index Angle (ϕ) Execution time (sec)

RRT 752 408 0 0.19 26

RRT* 738 256 270 -0.9 The first result in 22 sec pruned output takes 3-4min

RE-RRT* 282 241 66 -1.2 11

https://doi.org/10.1371/journal.pone.0311179.t002

Fig 14. The result of RRT* for experiment 2.

https://doi.org/10.1371/journal.pone.0311179.g014
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is optimal or not. So, this process makes the system slow and increases the convergence time

to meet the desired goal. On the other hand, RE-RRT*minimizes the convergence rate even in

a complex scenario to meet the desired goal by limiting random sampling only across the

obstacles. Also, it reduces the number of turns through the pruning process. Tables 3–5 show

the main evaluation indicators of RRT* and RE-RRT* path planning results for environments

Fig 15. The result of RE-RRT* for experiment 2.

https://doi.org/10.1371/journal.pone.0311179.g015

Fig 16. The 1st result of RRT* for experiment 3.

https://doi.org/10.1371/journal.pone.0311179.g016
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Fig 17. The 1st result of RE-RRT* for experiment 3.

https://doi.org/10.1371/journal.pone.0311179.g017

Fig 18. The 2nd result of RRT* for experiment 3.

https://doi.org/10.1371/journal.pone.0311179.g018
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2 and 3. In all cases, the RRT* generates pruned output in 1 to 2 minutes or 3 to 4 minutes,

whereas the suggested RE-RRT* takes a maximum of 12 seconds and a minimum of 7 seconds

to generate a smooth and pruned output and converge to the goal position.

Figs 20 and 21. illustrates the schematic representation of simulated environment 4 with

multiple obstacles on the way. Table 6 shows the comparison of the total count, distance,

Fig 19. The 2nd result of RE-RRT* for experiment 3.

https://doi.org/10.1371/journal.pone.0311179.g019

Table 3. The main evaluation indicators of RRT* and RE-RRT* path planning results of environment 2.

Scenario Total count/No of samplings Distance (D) Delete Index Angle (ϕ) Execution time (sec)

RRT* 193 98 18 1.04 The first result in 22 sec pruned output takes 3-4min

RE-RRT* 76 54 3 0.6 11sec

https://doi.org/10.1371/journal.pone.0311179.t003

Table 4. The main evaluation indicators of RRT* and RE-RRT* path planning results of environment 3 from Figs 16 and 18.

Scenario Total count/No of samplings Distance (D) Delete Index Angle (ϕ) Execution time (sec)

RRT* 198 98 20 1.04 The first result in 22 sec pruned output takes 1-2min

RE-RRT* 80 61 6 0.6 11sec

https://doi.org/10.1371/journal.pone.0311179.t004

Table 5. The main evaluation indicators of RRT* and RE-RRT* path planning results of environment 3 from Figs 17 and 19.

Scenario Total count/No of samplings Distance (D) Delete Index Angle (ϕ) Execution time (sec)

RRT* 198 90 13 0.7 The first result in 14 sec pruned output takes 1 min

RE-RRT* 150 48 11 0.6 9sec

https://doi.org/10.1371/journal.pone.0311179.t005
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Fig 20. The result of RRT* for experiment 4.

https://doi.org/10.1371/journal.pone.0311179.g020

Fig 21. The result of RE-RRT* for experiment 4.

https://doi.org/10.1371/journal.pone.0311179.g021
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deleted index, theta (angle), and execution time between RRT* and RE-RRT*. RE-RRT*
proves to be more efficient than the simple RRT* as it converges to the goal position in just 7

seconds.

Table 7 shows the comparison of our proposed method with existing algorithms. The

RE-RRT* algorithm provides efficient path finding with low computational time (3.0 seconds)

and a short path distance (250 meters), while maintaining a moderate cost. Neural RRT*
assumes efficient path finding after training, achieving relatively lower computational time (2

seconds) and path distance (250 meters) with higher cost because the problem with Neural

RRT* is that its dependent on training data. In complex environment, most of the time it is

very difficult to train data for such scenarios. That’s why in comparison with our proposed

algorithm, cost is lower and feasible for complex environment than Neural RRT*. On the

other hand, RRT-Connect is slower, with higher computational time (4.0 seconds) and path

distance (320 meters). Batch Informed Trees outperform RRT-Connect by offering faster

computational time (3.5 seconds) and better path distance (270 meters).

5. Conclusion

To increase the speed and stability of determining the best path, we proposed the RE-RRT*
algorithm, a novel RRT-based path planning technique. As a result, enhancements were made

to random sampling, which is limited, which helps to avoid searching over the entire space. To

increase the effectiveness of path planning even further, we developed the collision detection

algorithm. The suggested RE-RRT*method has significant speed and stability improvements

over the RRT and RRT* algorithms. For instance, as compared to the RRT method, the

RE-RRT* algorithm dramatically reduced the average search time and its variance to locate a

real path. At the same time, RE-RRT* is much faster than RRT* in terms of searching for a

path that is close to optimal. As a result, our RE-RRT*method shows excellent promise in

real-world motion planning applications. The simulation results in MATLAB showed that the

algorithm has a fast convergence speed. Future efforts will concentrate on accelerating plan-

ning and adding more testing scenarios, such as testing with different types of robots or inte-

gration with sensor data for real-time adjustments.

Table 6. The main evaluation indicators of RRT* and RE-RRT* path planning results of environment 4.

Scenario Total count/No of samplings Distance (D) Delete Index Angle (ϕ) Execution time (sec)

RRT* 427 98 281 1.6 The first result in 25 sec pruned output takes 3-4 min

RE-RRT* 75 45 12 0.9 7sec

https://doi.org/10.1371/journal.pone.0311179.t006

Table 7. Comparison of RE-RRT* with existing algorithms.

Algorithm Computational Time/

(Sec)

Path Distance

(m)

Convergence Rate

(iterations)

Cost

RE-RRT* 3.0 250 50 Lower then the previous algorithm

Neural-RRT* [34] 2.0 250 60 Dependent on Data, In complex environment most of the time difficult

to train data for such scenerios

RRT Connect [32] 4.0 320 1000 Higher due to full space exploration

Batch Informed

Tree [35]

3.5 270 100 Lower due to batch processing

RRT* [28] 26 312 1000 Higher due to random exploration

https://doi.org/10.1371/journal.pone.0311179.t007
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39. M. Brunner, B. Brüggemann, and D. Schulz, Hierarchical Rough Terrain Motion Planning Using an Opti-

mal Sampling-Based Method, in Proceedings of the 2013 IEEE International Conference on Robotics

and Automation, IEEE 2013, Karlsruhe, Germany, 6–10 May 2013, pp. 5539–5544.

40. Wang W., Zuo L., and Xu X., A Learning-Based Multi-RRT Approach for Robot Path Planning in Narrow

Passages, Journal of Intelligent Robotic Systems, vol. 90, pp. 81–100, 2018. https://doi.org/10.1007/

s10846-017-0641-3

41. Yang K. and Sukkarieh S., An Analytical Continuous-Curvature Path Smoothing Algorithm, IEEE

Transactions on Robotics, vol. 26, no. 3, pp. 561–568, 2010. https://doi.org/10.1109/TRO.2010.

2042990

42. Jung K. and Sukkarieh S., Continuous Curvature Path Smoothing Algorithm Using Cubic B-Spline Spi-

ral Curves for Non-Holonomic Robots, Advanced Robotics, vol. 27, no. 4, pp. 247–258, 2013. https://

doi.org/10.1080/01691864.2013.755246

43. Maekawa T., Noda T., Tamura S., Ozaki T., and Machida K.-I., Curvature Continuous Path Generation

for Autonomous Vehicle Using B-Spline Curves, Computer-Aided Design, vol. 42, no. 4, pp. 350–359,

2010. https://doi.org/10.1016/j.cad.2009.12.007

44. Y. Li, Y. Ming, Z. Zhang, W. Yan, and K. Wang, An Adaptive Ant Colony Algorithm for Autonomous

Vehicles Global Path Planning, in 2021 IEEE 24th International Conference on Computer Supported

Cooperative Work in Design (CSCWD), 2021, pp. 1117–1122.

45. M. Zohaib, S. M. Pasha, H. Bushra, K. Hassan, and J. Iqbal, Addressing Collision Avoidance and Non-

holonomic Constraints of a Wheeled Robot: Modeling and Simulation, in Proceedings of the 2014 Inter-

national Conference on Robotics and Emerging Allied Technologies in Engineering

(iCREATE), pp. 306–311, 2014.

46. Zohaib M., Ahsan M., Khan M., and Iqbal J., A Featureless Approach for Object Detection and Tracking

in Dynamic Environments, PloS One, vol. 18, no. 1, pp. e0280476, 2023. https://doi.org/10.1371/

journal.pone.0280476 PMID: 36649310

47. M. Zohaib, S. M. Pasha, N. Javaid, and J. Iqbal, IBA: Intelligent Bug Algorithm–A Novel Strategy to

Navigate Mobile Robots Autonomously, in Proceedings of the Communication Technologies, Infor-

mation Security and Sustainable Development: Third International Multi-topic Conference, IMTIC

2013, Jamshoro, Pakistan, December 18–20, 2013, Revised Selected Papers 3, pp. 291–299,

2014.

48. Zohaib M., Pasha S. M., Javaid N., Salaam A., and Iqbal J., An Improved Algorithm for Collision Avoid-

ance in Environments Having U and H Shaped Obstacles, Studies in Informatics and Control, vol. 23,

no. 1, pp. 97–106, 2014. https://doi.org/10.24846/v23i1y201410

49. Zohaib M., Iqbal J., and Pasha S. M., A Novel Goal-Oriented Strategy for Mobile Robot Navigation With-

out Sub-Goals Constraint, Revue Roumaine Sci. Techn.-Ser. Electrotechn. Energetique, vol. 63, no.

1, pp. 106–111, 2018.

50. Khan H. and Iqbal J. and Khelifa B. and Zielinska T., Longitudinal and lateral slip control of autonomous

wheeled mobile robot for trajectory tracking, Frontiers of Information Technology & Electronic Engineer-

ing, vol. 16, no. 2, pp. 166–173, 2015. https://doi.org/10.1631/FITEE.1400183

51. Ayalew Wubshet and others, Optimal path planning using bidirectional rapidly-exploring random tree

star-dynamic window approach (BRRT*-DWA) with adaptive Monte Carlo localization (AMCL) for

mobile robot, Engineering Research Express, vol. 6, no. 3, pp. 035212, 2024. https://doi.org/10.1088/

2631-8695/ad61bd

52. Madebo Muluken and Abdissa Chala and Lemma Lebsework and Negash Dereje, Robust Tracking

Control for Quadrotor UAV with External Disturbances and Uncertainties Using Neural Network Based

MRAC, IEEE Access, 2024. https://doi.org/10.1109/ACCESS.2024.3374894

53. Kedir Chala and Abdissa Chala, PSO based linear parameter varying-model predictive control for tra-

jectory tracking of autonomous vehicles, Engineering Research Express, vol. 6, 2024. https://doi.org/

10.1088/2631-8695/ad722e

PLOS ONE Trajectory optimization and obstacle avoidance of autonomous robot using robust and Efficient RRT

PLOS ONE | https://doi.org/10.1371/journal.pone.0311179 October 11, 2024 23 / 24

https://doi.org/10.1007/s10514-015-9518-0
https://doi.org/10.1007/s10846-017-0641-3
https://doi.org/10.1007/s10846-017-0641-3
https://doi.org/10.1109/TRO.2010.2042990
https://doi.org/10.1109/TRO.2010.2042990
https://doi.org/10.1080/01691864.2013.755246
https://doi.org/10.1080/01691864.2013.755246
https://doi.org/10.1016/j.cad.2009.12.007
https://doi.org/10.1371/journal.pone.0280476
https://doi.org/10.1371/journal.pone.0280476
http://www.ncbi.nlm.nih.gov/pubmed/36649310
https://doi.org/10.24846/v23i1y201410
https://doi.org/10.1631/FITEE.1400183
https://doi.org/10.1088/2631-8695/ad61bd
https://doi.org/10.1088/2631-8695/ad61bd
https://doi.org/10.1109/ACCESS.2024.3374894
https://doi.org/10.1088/2631-8695/ad722e
https://doi.org/10.1088/2631-8695/ad722e
https://doi.org/10.1371/journal.pone.0311179


54. Pérez-Higueras N., Caballero F., and Merino L., Teaching Robot Navigation Behaviors to Optimal RRT

Planners, International Journal of Social Robotics, vol. 10, pp. 235–249, 2018. https://doi.org/10.1007/

s12369-017-0448-1

55. W. Ayalew, M. Menebo, L. Negash, C. M. Abdissa, Solving Optimal Path Planning Problem of an Intelli-

gent Mobile Robot in Dynamic Environment Using Bidirectional Rapidly-exploring Random Tree Star-

Dynamic Window Approach (BRRT*-DWA) with Adaptive Monte Carlo Localization (AMCL), Authorea

Preprints, 2023.

56. Chen L., Shan Y., Tian W., Li B., Cao D., A fast and efficient double-tree RRT*-like sampling-based

planner applying on mobile robotic systems, IEEE/ASME Transactions on Mechatronics, vol. 23, no.

6, pp. 2568–2578, 2018. https://doi.org/10.1109/TMECH.2018.2821767

57. Mashayekhi R. and Idris M. Y. I. and Anisi M. H. and Ahmedy I. and Ali I., Informed RRT*-Connect: An

Asymptotically Optimal Single-Query Path Planning Method, IEEE Access, vol. 8, pp. 19842–19852,

2020. https://doi.org/10.1109/ACCESS.2020.2969316

PLOS ONE Trajectory optimization and obstacle avoidance of autonomous robot using robust and Efficient RRT

PLOS ONE | https://doi.org/10.1371/journal.pone.0311179 October 11, 2024 24 / 24

https://doi.org/10.1007/s12369-017-0448-1
https://doi.org/10.1007/s12369-017-0448-1
https://doi.org/10.1109/TMECH.2018.2821767
https://doi.org/10.1109/ACCESS.2020.2969316
https://doi.org/10.1371/journal.pone.0311179

