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Hepatocellular carcinoma with cirrhosis promotes the advancement of malignancy and the 
development of fibrosis in normal liver tissues. Understanding the pathological mechanisms 
underlying the development of HCC with cirrhosis is important for developing effective therapeutic 
strategies. Herein, the RNA-sequencing (RNA-seq) data and corresponding clinical features of patients 
with HCC were extracted from The Cancer Genome Atlas (TCGA) database using the University of 
California Santa Cruz (UCSC) Xena platform. The enrichment degree of hallmarkers for each TCGA-
LIHC cohort was quantified by ssGSEA algorithm. Weighted gene co-expression network analysis 
(WGCNA) revealed two gene module eigengenes (MEs) associated with cirrhosis, namely, MEbrown 
and MEgreen. Analysis of these modules using AUCell showed that MEbrown had higher enrichment 
scores in all immune cells, whereas MEgreen had higher enrichment scores in malignant cells. The 
CellChat package revealed that both immune and malignant cells contributed to the fibrotic activity 
of myofibroblasts through diverse signaling pathways. Additionally, spatial transcriptomic data 
showed that hepatocytes, proliferating hepatocytes, macrophages, and myofibroblasts were located 
in closer proximity in HCC tissues. These cells may potentially participate in the process of stimulating 
myofibroblast fibrotic activity, which may be related to the development of liver fibrosis. In summary, 
we made full use of multi-omics data to explore gene networks and cell types that may be involved in 
the development and progression of cirrhosis in HCC.
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HCC is ranked as the sixth most prevalent malignant tumor and the fourth highest contributor to cancer-related 
mortality worldwide1. Individuals at high risk for HCC should undergo regular monitoring to facilitate tumor 
detection in the early stages. However, the predominant risk factors of HCC are partly associated with the 
geographical region. In developing regions of Africa and Asia, infection with hepatitis B virus and exposure to 
aflatoxin B1 are the primary risk factors. While in developed countries and regions, hepatitis C virus infection, 
alcohol abuse, and metabolic syndrome are the primary risk factors2. Moreover, the pathogenesis of HCC has 
not been comprehensively elucidated. These limitations hinder the accurate diagnosis and effective treatment of 
HCC, eventually leading to a poor prognosis.

Notably, a majority of patients with primary HCC have a history of chronic liver fibrosis, suggesting that 
cirrhosis plays a crucial role in the precancerous condition of HCC, and may be one of the potential targets in 
the management of HCC3. The occurrence and development of cirrhosis are characterized by the activation of 
hepatic stellate cells (HSCs), persistent inflammation, excessive reactive oxygen species (ROS) production, DNA 
damage, and destruction and regeneration of hepatocytes4. Repeated destruction–regeneration events induce 
replication-associated mutations in hepatocytes, leading to the onset of HCC4,5. In addition to hepatocytes, 
certain non-parenchymal cells can promote the development of a tumor microenvironment (TME) through 
various mechanisms, thereby facilitating tumor growth. In the context of cirrhosis, injured hepatocytes alongside 
infiltrating immune cells can persistently stimulate HSCs, leading to the trans-differentiation of HSCs into 
myofibroblasts that produce collagen type I6,7. Myofibroblasts secrete various mediators, including extracellular 
matrix (ECM) proteins, cytokines, and growth factors, which interact with neighboring cells in TME, 
contributing to processes such as epithelial–mesenchymal transition (EMT), suppression of immune responses, 
and formation of new blood vessels8. These processes collectively promote HCC growth and metastasis.

The activation of HSCs by HCC cells within the microenvironment further induces injury to normal hepatocytes 
and even promotes the development of fibrosis in normal liver tissue. Numerous studies have demonstrated 
that HCC cells can stimulate the activation and the differentiation of HSCs into myofibroblasts, subsequently 
contributing to the development of fibrosis, cirrhosis, and the progression of HCC9–11. HSCs transition from a 
quiescent state to an activated phenotype, a process involving in the upregulation of alpha-smooth muscle actin 
(α-SMA), enhanced cellular proliferation, and increased secretion of extracellular matrix components12. HCC 
cells increasing the expression of α-SMA, which allows HSCs to acquire an activated phenotype characterized 
by cytoskeletal remodeling13. Therefore, liver fibrosis and cirrhosis are significant factors that facilitate the onset 
and advancement of HCC, while HCC subsequently leads to the development of fibrosis in adjacent normal 
hepatic tissue in turn. A crucial aspect of liver fibrosis involves the activation and differentiation of HSCs into 
myofibroblasts under the regulation of immune cells and malignant cells14,15. The above studies suggested that 
based on the similarities in immune microenvironment and signaling pathway regulation, the development 
of liver fibrosis and HCC may complement each other. However, the specific molecular mechanisms through 
which immune and malignant cells contribute to the development of cirrhosis remain unclear.

In this study, we analyzed the gene expression and clinical data of patients with cirrhosis and HCC from The 
Cancer Genome Atlas (TCGA) database to identify gene modules associated with liver cirrhosis and explored 
the regulatory mechanism of liver fibrosis in HCC. Based on the single-cell RNA-seq (scRNA-seq) data and the 
spatial transcriptomic data of HCC, we further analyzed the cell subtypes closely related to liver fibrosis, and 
analyzed the mechanisms related to the liver fibrosis process according to the ligand-receptor pairs.

Materials and methods
Acquisition of RNA-seq data from TCGA-LIHC
RNA-seq data were extracted from the TCGA- liver hepatocellular carcinoma (LIHC) cohort using the UCSC 
Xena platform (https://xena.ucsc.edu/) and quantified as log2(FPKM + 1). In the above process, fragments per 
kilobase (kb) of transcript per million mapped reads (FPKM) are a standard method used to normalize transcript 
levels in RNA-seq16,17. Additionally, the clinical data of each patient with HCC, including the severity of liver 
fibrosis, albumin levels, prothrombin time, fetoprotein levels, body mass index (BMI) and vascular tumor type, 
were extracted from the TCGA-LIHC cohort.

Quantification of the enrichment degree of hallmark genes in TCGA-LIHC
50 hallmark genes and their related gene symbols were obtained from the Molecular Signatures Database 
(MsigDB, https://www.gsea-msigdb.org/gsea/msigdb/)18,19. Subsequently, the ssGSEA algorithm in the GSVA 
package was used to calculate the enrichment scores of hallmark genes in each sample in the TCGA-LIHC 
cohort.
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Weighted gene co-expression network analysis (WGCNA)
Based on the similarity of expression patterns of genes involved in the same pathway or biological process, co-
expressed gene networks related to different degrees of liver fibrosis in HCC were constructed using the WGCNA 
method. According to the scale-free network standards, β within a range of 1–20 (the appropriate soft threshold) 
was screened using the pickSoftThreshold function in the WGCNA package20. Thereafter, the blockwiseModules 
function was used for one-step network construction and module detection. Finally, the correlations between 
module eigengenes (MEs) and liver fibrosis were examined.

Functional annotation of gene sets
The gene sets of interest were uploaded to the DAVID database (https://david.ncifcrf.gov/tools.jsp), to enrich 
significant biological processes (P < 0.05).

Pre-processing of single-cell RNA-seq (scRNA-seq) data
The scRNA-seq dataset (GSE14961) containing 10 HCC samples was downloaded from the Gene Expression 
Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/gds/)21. The Read10X function in the Seurat package 
was used to identify cells with 200–8000 total genes and < 20% of mitochondrial genes. Subsequently, the 
SCTransform function was used for data normalization, the RunPCA function was used for principal component 
analysis (PCA), and the Harmony package was used to remove batch effects between different samples. The first 
30 principal components were selected to dimensionality reduction using the uniform manifold approximation 
and projection (UMAP)22. And cell subpopulations were clustered using the FindNeighbors and FindClusters 
functions (resolution = 0.1)23. Eventually, we annotated each cell type based on marker genes obtained from the 
CellMarker2.0 database (http://bio-bigdata.hrbmu.edu.cn/CellMarker)24.

Quantification of the enrichment degree of genes at the single-cell level
We calculated the enrichment scores of gene sets of interest in each cell using the AUCell package, with higher 
scores indicating higher activity of the gene set in a cell.

Cell–cell communication analysis
We used the CellChat package to analyze, quantify, and visualize cell-cell communications between different 
types of cells and myofibroblasts25. The creatCellChat function was used to establish objects, and the 
identifyOverexpressedGenes and identifyOverexpressedInteractions functions were used to identify ligand–
receptor pairs overexpressed in cell subpopulations. Furthermore, the expression values of the above pairs were 
mapped to a protein-protein interaction network using the projectData function, and the probability of ligand-
receptor interactions between different cell subpopulations was evaluated using the computeCommunProb 
function. Additionally, the computeCommunProbPathway function was used to evaluate the probability of each 
ligand-receptor interaction in a pathway in different cells. The netVisual_bubble function was used to generate 
bubble plots for visualization.

Inferred copy number variation (inferCNV) analysis
The inferCNV package was used to examine large-scale copy number variations (CNVs) in scRNA-seq data, 
and determine the intensity of gene expression in different genomic regions26. In this study, we used inferCNV 
to characterize the CNVs landscape including hepatocytes, epithelial cells, and proliferative hepatocytes in 
the genome of HCC tissues, with B cells serving as a reference. The parameters were set as follows: cluster_
by_groups = TRUE, analysis_mode = ‘subcluster’, HMM_type = ‘i3’, denoise = TRUE, HMM_report_by = 
‘subcluster’, HMM = ‘TRUE’.

Quantification of different cell types based on spatial transcriptomics data
The spatial transcriptomic dataset (GSM7021870) was downloaded from the GEO database. The 
FindTransferAnchors and TransferData functions of the Seurat package were used to evaluate the proportion of 
different cell types in each spot.

Statistical analysis
The Kruskal-Wallis test was used to compare data between more than three groups of continuous variables. 
P < 0.05 was considered statistically significant. In this study, all statistical analyses were performed using the R 
software (version 4.3.1, https://www.r-project.org/) .

Results
Clinicopathologic characteristics of HCC patients with cirrhosis
Based on the degrees of liver fibrosis, the patients in the TCGA-LIHC cohort were divided into five groups as 
follows: no fibrosis, portal fibrosis, fibrous septa, nodular formation and incomplete cirrhosis, and established 
cirrhosis (Fig. 1A). We analyzed the relationship between the degree of liver fibrosis and various clinicopathologic 
features to demonstrate the correlation between liver fibrosis and HCC progression. (Table. S1). In particular, 
the established-cirrhosis group had the second highest proportion of HCC patients. Albumin levels were lower 
in the established-cirrhosis group than in the other four groups, indicating the fact that HCC patients with 
cirrhosis had low plasma levels (Fig. 1B). In addition, the prothrombin time was significantly shorter in the 
fibrous septa, nodular formation and incomplete cirrhosis, and established cirrhosis groups than in the no-
fibrosis group (Fig. 1C). However, no significant differences were observed in terms of fetoprotein levels, body 
mass index (BMI), and vascular tumor type among the five groups (Fig. 1D–F).
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Enrichment scores of hallmark gene sets in patients with HCC with cirrhosis
To identify cancer-related pathways enriched in different stages of cirrhosis, we calculated the enrichment 
scores of 50 hallmark gene sets in each patient in the TCGA-LIHC cohort using the ssGSEA algorithm (Fig. 2A). 
The results showed that patients in the nodular-formation-and-incomplete-cirrhosis group had the highest 

Fig. 1.  Clinical characteristics of patients with HCC with cirrhosis in the TCGA-LIHC cohort. (A) The 
proportion of HCC patients with different degrees of cirrhosis. (B–F) Comparison of albumin levels (B), 
prothrombin time (C), fetoprotein levels (D), BMI (E), and vascular tumor type (F) among HCC patients with 
different degrees of cirrhosis.
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enrichment scores of numerous classical hallmarks of cancer, such as hypoxia, epithelial-mesenchymal transition 
(EMT), TGF-β signaling pathway, angiogenesis, and ROS production (Fig. 2A). Furthermore, we analyzed the 
relationships between the degrees of liver fibrosis and the above pathways based on the ssGSEA scores, and found 
that hypoxia and ROS pathways stood out (Fig. 2B–F). Liver fibrosis can cause in hypoperfusion of the hepatic 
lobules, closely related to decreased portal circulation, which ultimately results in intrahepatic hypoxia27. And 
hypoxia, which contributes to the poor prognosis of HCC patients, can increase the expression of hypoxia-
inducible factors and activated downstream receptors, leading to the activation of HSCs, abnormal angiogenesis, 
EMT, and chronic inflammation, especially in advanced fibrosis27–29. Activation of HSCs plays an important 
role in the development of cirrhosis, and can be triggered by numerous signaling molecules, such as ROS and 
TGF-β30–33. In addition, TGF-β is involved in inducing EMT, which plays a crucial role in the progression of 
cirrhosis and metastasis in HCC patients34. Therefore, the above pathways were closely related to occurrence and 
progression of liver fibrosis, eventually leading to related complications including HCC.

Fig. 2.  Enrichment levels of hallmark gene sets in patients with HCC with cirrhosis. (A) Heatmap 
demonstrating the enrichment levels of 50 hallmark gene sets for each cirrhosis degree. (B–F) Box plots 
demonstrating the enrichment levels of hypoxia (B), epithelial-to-mesenchymal transition (C), TGF-β 
signaling pathway (D), angiogenesis (E), and ROS (F) enrichment for each cirrhosis degree.
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Identification of gene modules related to cirrhosis in the TCGA-LIHC cohort
To identify genes related to the initiation and development of cirrhosis, co-expressed gene networks were 
constructed using the WGCNA method, and the relationship between each gene module and cirrhosis severity 
was examined via Pearson correlation analysis in the TCGA-LIHC cohort (Fig. 3A–C). A total of 10 gene modules 
were identified, namely, MEblue, MEturquoise, MEred, MEbrown, MEyellow, MEgreen, MEpink, MEblack, 
MEmagenta, and MEgray (The genes of each gene module were shown in Table. S2). We found that regardless 
of the no fibrosis group, MEbrown and MEgreen exhibited the strongest and most significant correlation 
with portal fibrosis and fibrous septa, respectively (P < 0.05, Fig. 3D). Further analyses showed that genes in 
MEbrown were primarily involved in G-protein coupled receptor signaling pathway and several immune-
related functions, including T-cell activation, B-cell receptor signaling, neutrophil and monocyte chemotaxis, 
macrophage differentiation, and cytokine-mediated signaling (Fig.  3E). In addition, genes in MEgreen were 
primarily associated with ribosome assembly and translation (Fig. 3F). The above pathways or biological process 
may be involved in the progression of liver fibrosis, which the genes in MEbrown and MEgreen may play a 
potential role in.

Enrichment degree of cirrhosis-related gene modules in different cell types
The scRNA-seq data of 10 patients with HCC were extracted from the GSE149614 dataset to identify cell 
types involved in the occurrence and development of cirrhosis. After filtration, normalization, dimensionality 
reduction, and clustering, a total of 34,015 cells were selected and categorized into 9 subpopulations (Fig. 4A, 
S1). Based on the expression of marker genes (Table. S3), the 9 cell subpopulations were identified as 
follows: hepatocytes (APOA2+APOC3+AHSG+TTR+), macrophages (C1QA+FCER1G+AIF1+), NK/T cells 
(NKG7+CD3D+), plasma B cells (IGHG1+MZB1+), proliferative hepatocytes (TOP2A+MKI67+), endothelial cells 
(PLVAP+CLDN5+), myofibroblasts (ACTA2+TAGLN+COL1A1+LUM+), epithelial cells (EPCAM+KRT19+), 
and B cells (MS4A1+LY9+) (Fig. 4B).

The results of the previous analyses suggested that the genes in MEbrown and MEgreen may be involved in 
liver fibrosis. We further used the AUCell algorithm to evaluate the enrichment degree of genes in MEbrown and 
MEgreen at the above single-cell levels to explore key cell types. Notably, the scores of MEbrown showed higher 
enrichment in macrophages, NK/T cells, B cells, and plasma cells (Fig.  4C), whereas the scores of MEgreen 
showed higher enrichment in hepatocytes, epithelial cells, and proliferative hepatocytes (Fig. 4D). These results 
suggested that the genes in MEbrown and MEgreen genes may play an important role in the development 
of cirrhosis, which may be closely related to the above immune cells or abnormal proliferative hepatocytes 
(malignant hepatocytes).

Molecular mechanism of immune cells involved in liver fibrosis
To further investigate the mechanisms through which the immune cells contribute to the development of 
cirrhosis in HCC, we used the CellChat package to identify ligand-receptor pairs in myofibroblasts and main 
immune cells, including macrophages, NK/T cells, plasma B cells, and B cells, based on the above scRNA-seq 
data. Several signaling pathways, including TGF-β, fibroblast growth factor (FGF), NOTCH, WNT, EGF, bone 
morphogenetic protein (BMP) and hepatocyte growth factor (HGF), have be confirmed to be involved in liver 
fibrosis. For example, TGF-β is widely considered as a crucial mediator in tissue fibrosis35, and WNT, FGF and 
NOTCH pathways can play an important role in cell proliferation, differentiation and tissue remodeling36–38. 
Initially, we evaluated the probability of several key signaling pathways involving main ligands-receptor pairs 
among different cell types (Fig. 5A). The results revealed that there were significant differences in the key pathways 
of enrichment in different cell types, including several signaling pathways associated with the development of 
fibrosis, such as TGF-β, FGF, NOTCH, EGF, BMP, and HGF signaling pathways (Fig. 5B–G).

Because ligand-receptor pairs are the key links of signaling pathway transmission, we further analyzed 
the communication between different cells in HCC based on several key ligand-receptor pairs of TGF-β, 
FGF, NOTCH, EGF, BMP, and HGF signaling pathways. In particular, we found that the interaction between 
macrophages and myofibroblasts was the strongest through the above signaling pathways, such as the TGFB1-
(TGFBR1 + TGFBR2) pair in the TCG-β signaling pathway, the FGF7-FGFR1 and FGF7-FGFR2 pairs in the FGF 
signaling pathway, the JAG1-NOTCH3 pair in the NOTCH signaling pathway, the BMP2-(BMPR1B + BMPR2) 
and BMP2-( BMPR1B + ACVR2B) pairs in the BMP signaling pathway, the AREG-EGFR pair in the EGF 
signaling pathway, and the HGF-MET pair in the HGF signaling pathway (Fig. 5B–G).

Molecular mechanisms of hepatocytes involved in liver fibrosis
HCC is characterized by high heterogeneity, and different types of cells, including hepatocytes, proliferative 
hepatocytes and epithelioid cells, may have malignant characteristics in HCC tissues39. CNV is one of the 
most prominent features of tumor cells, so the study chose to analyze these cell types from the perspective of 
genomic variation to reveal their malignant characteristics40. The inferCNV package was used to analyze the 
CNVs profiles of hepatocytes, proliferative hepatocytes, and epithelial cells, with B cells serving as a reference. 
The results demonstrated that numerous genomic regions in these three cell types were notably amplified or 
deleted, based on the above scRNA-seq data (Fig. S2). The above results revealed all hepatocytes, proliferative 
hepatocytes and epithelial cells in primary HCC tissues were malignant in the samples included in this study.

To further explore the mechanisms through which these malignant cells contributed to cirrhosis, we used the 
CellChat package to identify ligand-receptor interactions between myofibroblasts and hepatocytes, proliferative 
hepatocytes, or epithelial cells. Figure  6A shows the probability of key signaling pathways involving main 
ligands-receptor pairs in different malignant cell types. Like immune cells, there were significant differences in 
the key pathways of enrichment in different malignant cell types. including several important signaling pathways 
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Fig. 3.  Identification of cirrhosis-related gene modules in the TCGA-LIHC cohort. (A, B) Determination of 
the soft threshold and the relationship between soft threshold and connectivity. (C) Gene dendrogram and 
modules: each leaf represents a gene, whereas each branch represents a co-expression module. (D) Correlation 
between different cirrhosis degrees and gene modules. (E, F) Enrichment of MEbrown (E) and MEgreen (F) in 
biological processes.
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associated with the development of fibrosis (Fig. 6A), such as TGF-β, FGF, vascular endothelial growth factor 
(VEGF), WNT, NOTCH, and BMP signaling pathways (Fig. 6B–G).

Specifically, we found that the interactions between hepatocytes and myofibroblasts, and proliferative 
hepatocytes and myofibroblasts were the strongest through the above signaling pathways, such as the TGFB1-

Fig. 4.  Enrichment levels of cirrhosis-related gene modules in different cell types based on scRNA-seq. (A) 
Single-cell profiles of patients with primary HCC in the GSE149614 dataset. (B) Bubble plot demonstrating the 
expression of marker genes in each cell type. (C, D) AUCell enrichment scores of MEbrown (C) and MEgreen 
(D) in each cell type.
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Fig. 5.  Analysis of the molecular mechanisms of immune cells involved in fibrosis in HCC. (A) The possibility 
of different immune cell types acting on the singling pathway where the ligand-receptor pairs of myofibroblasts 
reside. (B–G) Ligand-receptor pairs in the TGF-β (B), FGF (C), NOTCH (D), BMP (E), EGF (F), and HGF 
(G) signaling pathway.
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Fig. 6.  Molecular mechanisms of malignant cells involved in fibrosis in HCC. (A) The possibility of different 
malignant cells acting on the singling pathway where the ligand-receptor pairs of myofibroblasts reside. (B–G) 
Ligand–receptor pairs in the TGF-β (B), FGF (C), VEGF (D), WNT (E), NOTCH (F), and BMP (G) signaling 
pathway.
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(TGFBR1 + TGFBR2) pair in the TCG-β signaling pathway, the FGF5-FGFR2 and FGF5-FGFR1 pairs in the 
FGF signaling pathway, the VEGFB-VEGR1 and VEGFA-VEGFR1 pairs in the VEGF signaling pathway, the 
JAG1-NOTCH3 pair in the NOTCH signaling pathway and the BMP2-(BMPR1B + BMPR2) pair in the BMP 
signaling pathway between hepatocytes and myofibroblasts, and the WNT3A-(FZD8 + LRP6) pair in the WNT 
signaling pathway between proliferative hepatocytes and myofibroblasts (Fig. 6B–G).

Spatial distribution of different cell types in HCC tissues
The spatial transcriptomic data of patients with HCC were extracted from the GSM7021870 dataset to explore 
the spatial distribution of different cell types in HCC tissues, providing a reference for further exploring the 
mechanism of liver fibrosis (Fig. 7A–F, S3). The results indicated that hepatocytes constituted the majority of cells 
within HCC tissues, with hepatocytes and myofibroblasts being closest to each other (Fig. 7A, B). Additionally, 
plasma B cells, macrophages and proliferative hepatocytes were in proximity to myofibroblasts (Fig. 7A, C–E). 
These results suggested that hepatocytes, proliferative hepatocytes, macrophages, and plasma B cells may be 
spatially close to myofibroblasts and potentially participate in the process of stimulating myofibroblast fibrotic 
activity, which may be related to the development of liver fibrosis.

Discussion
There are complex intercellular signaling networks between tumors and tumor-associated myofibroblasts41–43. 
The secretion of PDGF and TGF-β by tumors promotes the activation of myofibroblasts, resulting in the 
formation and progression of fibrosis9. In contrast to most malignant tumors, HCC is strongly associated with 
liver fibrosis44. Liver fibrosis promotes tumorigenesis in HCC, whereas fibrosis manifests as reactive desmoplasia 
after tumor formation in other cancers. Affo et al.45 suggested that the pre-malignant microenvironment (PME) 
and TME of HCC should be distinguished. PME, which is formed during the initiation of tumorigenesis, is 
characterized by persistent liver damage, chronic inflammation, and fibrosis, with fibrosis representing the 
most distinctive characteristic of hepatic PME. In the healthy liver, HSCs are inactive and are located around 
sinusoids, characterized by star-shaped morphological features and abundant cytoplasmic lipid droplets46. When 
the liver is injured, activated HSCs differentiate into myofibroblasts that secrete excessive ECM components, 
pro-inflammatory mediators, α-SMA, and tissue inhibitor of metalloproteinase 1 (TIMP 1)47–49. TME consists of 
diverse components including malignant cells, immune cells, and fibroblasts, all of which significantly influence 
tumor survival and progression50. Given that both immune and malignant cells are involved in the regulation 
of fibrosis, these cells can be targeted for effective treatment of liver cancer, thus improving the prognosis51–53. 
However, studies investigating the pathological mechanisms of HCC with cirrhosis are limited at present.

In this study, we analyzed the gene expression profiles and clinical characteristics of patients with HCC 
with cirrhosis in the TIGC-LIHC cohort. The enrichment levels of various cancer-related signaling pathways 
were evaluated based on the severity of liver fibrosis. The results suggest that plasma albumin levels serve as a 
promising indicator of the severity of cirrhosis. Administering human albumin transfusions to manage various 
cirrhosis-associated complications has been shown to provide substantial advantages54. Furthermore, the 
ssGSEA algorithm was utilized to calculated the enrichment scores of 50 hallmarker genes in the TCGA-HILC 
cohort with cirrhosis. The nodular-formation-and-incomplete-cirrhosis group had the highest enrichment level 
of five signaling pathways, namely, hypoxia, EMT, TGF-β, angiogenesis, and ROS. Hypoxia can induce excessive 
production of ROS by the increased generation of free radical species55. Additionally, it triggers the activation of 
the TGF-β signaling pathway and induces angiogenesis and EMT56. The TGF-β signaling pathway is considered 
the strongest stimulator of myofibroblast differentiation57. It plays a crucial role in regulating ECM remodeling 
by promoting the activation of myofibroblasts and accumulation of ECM58. EMT is primarily regulated by 
external signals, with hypoxia and the TGF-β signaling pathway serving as important regulatory factors59. Chen 
et al.60 showed that induction of EMT promoted the progression and development of liver fibrosis to cirrhosis 
through the ROS/TGF-β1/Snail-1 signaling pathway. Therefore, we speculate that the five signaling pathways 
identified in this study participate in the onset and development of liver fibrosis, with hypoxia serving as the 
primary trigger and orchestrating the other four pathways.

WGCNA revealed 10 gene modules associated with cirrhosis. The AUCell algorithm showed that genes 
in the MEbrown and MEgreen modules were highly enriched in immune and malignant cells, respectively. 
Subsequently, the CellChat package and the spatial transcriptomic data of patients with HCC from the GEO 
dataset were used to validate the relationship between cirrhosis and immune cells or malignant cells. The results 
indicated that both immune and malignant cells may play a potential role in the pathogenesis of HCC with 
cirrhosis.

Numerous studies have suggested that reducing macrophage infiltration inhibits the activation of 
myofibroblasts and alleviates liver fibrosis, highlighting the importance of macrophage–myofibroblast interactions 
in the progression of fibrosis61,62. TGF-β produced by macrophages interacts with corresponding receptors on 
myofibroblasts, thereby facilitating fibrosis63. Yang et al.64 demonstrated that JAG1 expressed by macrophages 
interacted with Notch1 on myofibroblasts, promoting NOTCH-mediated activation of HSCs and fibrosis. Li et 
al.65 showed that FGF12, which is highly expressed by macrophages, facilitated the pro-inflammatory activation 
of macrophages and subsequently triggered HSC activation. This study revealed that multiple types of immune 
cells, in addition to macrophages, and malignant cells can interact with myofibroblasts through diverse signaling 
pathways, such as TGF-β and NOTCH. Additionally, the catalytic function of EGFR in hepatocytes may be 
involved in the regulation of fibrosis66. We observed that the intercellular communication between malignant 
cells and myofibroblasts was enriched in a diverse array of signaling pathways, with a particular emphasis on 
TGF pathway. A previous study, conducted in the 3D biomimetic tumor microenvironment of HCC, revealed 
that malignant cells stimulated an increase in the expression of TGF-β, which subsequently facilitated the 
activation and differentiation of HSC13.
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scRNA-seq and spatial transcriptomic analysis are useful tools for investigating the pathogenesis of HCC 
with cirrhosis, as they provide in-depth insights into molecular mechanisms at the single-cell level. scRNA-seq 
enables the analysis of communication and interactions between cancerous and non-cancerous cells in tumors, 
providing comprehensive insights into various TMEs67. Spatial transcriptomic analysis enables the assessment 
of the spatial distribution of genes at the transcriptional level, providing valuable information regarding tissue 
characteristics that cannot be obtained through scRNA-seq68,69. In this study, the Seurat package was used to 

Fig. 7.  Spatial distribution of different cell types in HCC tissues. (A) Distribution of myofibroblasts in HCC 
tissues. (B–F) Distribution of hepatocytes (B), plasma B cells (C), macrophages (D), proliferative hepatocytes 
(E), and endothelial cells (F) in HCC tissues.
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verify cell–cell interactions in HCC tissue and examine the spatial distribution of myofibroblasts, immune cells, 
and malignant cells. Notably, analysis of scRNA-seq and spatial transcriptomic data suggested strong interactions 
between myofibroblasts and immune cells as well as between myofibroblasts and malignant cells. Previous 
studies have shown that myofibroblasts interact with immune or malignant cells through various signaling 
molecules, thereby affecting tumor survival and growth4,70. Therefore, the results of this study indicated that 
communication between myofibroblasts and immune cells as well as between myofibroblasts and malignant cells 
may be closely related to the occurrence and development of HCC with cirrhosis.

Although our study offers a novel viewpoint on the molecular mechanisms underlying HCC with cirrhosis, 
several limitations remain that necessitate further consideration. The analysis presented in this study relies on 
public databases, thus necessitating clinical cohorts to validate our findings. Additionally, our investigation 
did not conduct a comprehensive investigation into the intercellular communications and spatial organization 
among immune cells, malignant cells, and fibroblasts at both the cellular and animal levels. In future work, 
we intend to enhance the accuracy of our study by conducting analyses of clinical samples and performing 
experimental validations.

Conclusion
In this study, multi-omic data from the TCGA-LIHC cohort were comprehensively analyzed using various 
bioinformatic tools. The clinical characteristics and hallmarks of HCC with cirrhosis were preliminarily 
identified. Additionally, the potential mechanisms through which immune and malignant cells contribute to 
the development of HCC with cirrhosis were investigated. This study can improve the understanding of the 
pathological mechanisms underlying the development of HCC with cirrhosis, and provides novel potential 
strategy for the management of HCC patients.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author upon 
request. In this study, RNA-Seq data from TCGA-LIHC cohort and corresponding clinical characteristics 
were obtained from the UCSC Xena database (https://xena.ucsc.edu/). 50 hallmarker genes and their related 
gene symbols were extracted from MsigDB (https://www.gsea-msigdb.org/gsea/msigdb). The GSE14961 and 
GSM7021870 datasets were downloaded from the Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/
geo/).

Received: 16 July 2024; Accepted: 7 October 2024

References
	 1.	 Wu, Q. et al. Hepatitis B virus X protein is stabilized by the deubiquitinating enzyme VCPIP1 in a ubiquitin-independent manner 

by recruiting the 26S proteasome subunit PSMC3. J. Virol. 96, e0061122. https://doi.org/10.1128/jvi.00611-22 (2022).
	 2.	 Singal, A. G. et al. HCC surveillance improves early detection, curative treatment receipt, and survival in patients with cirrhosis: a 

meta-analysis. J. Hepatol. 77, 128–139. https://doi.org/10.1016/j.jhep.2022.01.023 (2022).
	 3.	 Morisson-Sarapak, K., Wrzesiński, M., Zeair, S. & Wawrzynowicz-Syczewska, M. Late recurrence of hepatocellular carcinoma 

in a patient 10 years after liver transplantation unrelated to transplanted organ. Case Rep. Oncol. 14, 1754–1760. https://doi.
org/10.1159/000520535 (2021).

	 4.	 Baglieri, J., Brenner, D. A. & Kisseleva, T. The role of fibrosis and liver-associated fibroblasts in the pathogenesis of hepatocellular 
carcinoma. Int. J. Mol. Sci. 20https://doi.org/10.3390/ijms20071723 (2019).

	 5.	 Narci, K. et al. Context dependent isoform specific PI3K inhibition confers drug resistance in hepatocellular carcinoma cells. BMC 
Cancer. 22, 320. https://doi.org/10.1186/s12885-022-09357-y (2022).

	 6.	 Elpek, G. Cellular and molecular mechanisms in the pathogenesis of liver fibrosis: an update. World J. Gastroenterol. 20, 7260–
7276. https://doi.org/10.3748/wjg.v20.i23.7260 (2014).

	 7.	 Zhou, W. C., Zhang, Q. B. & Qiao, L. Pathogenesis of liver cirrhosis. World J. Gastroenterol. 20, 7312–7324. https://doi.org/10.3748/
wjg.v20.i23.7312 (2014).

	 8.	 Yazdani, S., Bansal, R. & Prakash, J. Drug targeting to myofibroblasts: implications for fibrosis and cancer. Adv. Drug Deliv Rev. 121, 
101–116. https://doi.org/10.1016/j.addr.2017.07.010 (2017).

	 9.	 Zhang, D. Y. & Friedman, S. L. Fibrosis-dependent mechanisms of hepatocarcinogenesis. Hepatology 56, 769–775. https://doi.
org/10.1002/hep.25670 (2012).

	10.	 Kalluri, R. & Zeisberg, M. Fibroblasts in cancer. Nat. Rev. Cancer. 6, 392–401. https://doi.org/10.1038/nrc1877 (2006).
	11.	 Hoshida, Y. et al. Gene expression in fixed tissues and outcome in hepatocellular carcinoma. N Engl. J. Med. 359, 1995–2004. 

https://doi.org/10.1056/NEJMoa0804525 (2008).
	12.	 Abergel, A. et al. Growth arrest and decrease of alpha-SMA and type I collagen expression by palmitic acid in the rat hepatic stellate 

cell line PAV-1. Dig. Dis. Sci. 51, 986–995. https://doi.org/10.1007/s10620-005-9031-y (2006).
	13.	 Liu, Y. et al. 3D biomimetic tumor microenvironment of HCC to visualize the intercellular crosstalk between hepatocytes, hepatic 

stellate cells, and cancer cells. Smart Mater. Med. 4, 384–395. https://doi.org/10.1016/j.smaim.2022.12.002 (2023).
	14.	 Ezhilarasan, D. & Najimi, M. Deciphering the possible reciprocal loop between hepatic stellate cells and cancer cells in the tumor 

microenvironment of the liver. Crit. Rev. Oncol. Hematol. 182, 103902. https://doi.org/10.1016/j.critrevonc.2022.103902 (2023).
	15.	 Zhang, D., Zhang, Y. & Sun, B. The molecular mechanisms of liver fibrosis and its potential therapy in application. Int. J. Mol. Sci. 

23https://doi.org/10.3390/ijms232012572 (2022).
	16.	 Liu, S. et al. Big data analytics for MerTK genomics reveals its double-edged sword functions in human diseases. Redox Biol. 70, 

103061. https://doi.org/10.1016/j.redox.2024.103061 (2024).
	17.	 Gao, C. et al. Genome-wide analysis of metallothionein gene family in maize to reveal its role in development and stress resistance 

to heavy metal. Biol. Res. 55, 1. https://doi.org/10.1186/s40659-021-00368-w (2022).
	18.	 Liberzon, A. et al. The molecular signatures database (MSigDB) hallmark gene set collection. Cell. Syst. 1, 417–425. https://doi.

org/10.1016/j.cels.2015.12.004 (2015).
	19.	 Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics 27, 1739–1740. https://doi.org/10.1093/

bioinformatics/btr260 (2011).

Scientific Reports |        (2024) 14:23832 13| https://doi.org/10.1038/s41598-024-75609-5

www.nature.com/scientificreports/

https://xena.ucsc.edu/
https://www.gsea-msigdb.org/gsea/msigdb
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://doi.org/10.1128/jvi.00611-22
https://doi.org/10.1016/j.jhep.2022.01.023
https://doi.org/10.1159/000520535
https://doi.org/10.1159/000520535
https://doi.org/10.3390/ijms20071723
https://doi.org/10.1186/s12885-022-09357-y
https://doi.org/10.3748/wjg.v20.i23.7260
https://doi.org/10.3748/wjg.v20.i23.7312
https://doi.org/10.3748/wjg.v20.i23.7312
https://doi.org/10.1016/j.addr.2017.07.010
https://doi.org/10.1002/hep.25670
https://doi.org/10.1002/hep.25670
https://doi.org/10.1038/nrc1877
https://doi.org/10.1056/NEJMoa0804525
https://doi.org/10.1007/s10620-005-9031-y
https://doi.org/10.1016/j.smaim.2022.12.002
https://doi.org/10.1016/j.critrevonc.2022.103902
https://doi.org/10.3390/ijms232012572
https://doi.org/10.1016/j.redox.2024.103061
https://doi.org/10.1186/s40659-021-00368-w
https://doi.org/10.1016/j.cels.2015.12.004
https://doi.org/10.1016/j.cels.2015.12.004
https://doi.org/10.1093/bioinformatics/btr260
https://doi.org/10.1093/bioinformatics/btr260
http://www.nature.com/scientificreports


	20.	 Liu, Y., Yin, Z., Wang, Y. & Chen, H. Exploration and validation of key genes associated with early lymph node metastasis in 
thyroid carcinoma using weighted gene co-expression network analysis and machine learning. Front. Endocrinol. (Lausanne). 14, 
1247709. https://doi.org/10.3389/fendo.2023.1247709 (2023).

	21.	 Barrett, T. et al. NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids Res. 41, D991–995. https://doi.
org/10.1093/nar/gks1193 (2013).

	22.	 Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. https://doi.org/10.1038/
nbt.4314 (2018).

	23.	 Su, Y. et al. Identification of a novel signature based on macrophage-related marker genes to predict prognosis and 
immunotherapeutic effects in hepatocellular carcinoma. Front. Oncol. 13, 1176572. https://doi.org/10.3389/fonc.2023.1176572 
(2023).

	24.	 Hu, C. et al. CellMarker 2.0: an updated database of manually curated cell markers in human/mouse and web tools based on 
scRNA-seq data. Nucleic Acids Res. 51, D870–d876. https://doi.org/10.1093/nar/gkac947 (2023).

	25.	 Jin, S. et al. Inference and analysis of cell-cell communication using CellChat. Nat. Commun. 12, 1088. https://doi.org/10.1038/
s41467-021-21246-9 (2021).

	26.	 Patel, A. P. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344, 1396–1401. 
https://doi.org/10.1126/science.1254257 (2014).

	27.	 Lingtong, M. et al. Decreased portal circulation augments fibrosis and ductular reaction in nonalcoholic fatty liver disease in mice. 
Am. J. Pathol.  191. https://doi.org/10.1016/j.ajpath.2021.06.001 (2021).

	28.	 Josef, E. et al. CCL2-dependent infiltrating macrophages promote angiogenesis in progressive liver fibrosis. Gut 63https://doi.
org/10.1136/gutjnl-2013-306294 (2014).

	29.	 Jingyao, C., Min, H., Zhiyang, C. & Zeng, L. The roles and mechanisms of hypoxia in liver fibrosis. J Transl Med. 19. (2021). https://
doi.org/10.1186/s12967-021-02854-x

	30.	 Satdarshan Pal M. β-catenin signaling and roles in liver homeostasis, injury, and tumorigenesis. Gastroenterology 148https://doi.
org/10.1053/j.gastro.2015.02.056 (2015).

	31.	 Yuping, C. et al. Hedgehog controls hepatic stellate cell fate by regulating metabolism. Gastroenterology 143https://doi.
org/10.1053/j.gastro.2012.07.115 (2012).

	32.	 Qiaoting, H. et al. Dual inhibition of reactive oxygen species and spleen tyrosine kinase as a therapeutic strategy in liver fibrosis. 
Free Radic Biol. Med.  175. https://doi.org/10.1016/j.freeradbiomed.2021.08.241 (2021).

	33.	 Abdolamir, A., Reyhaneh, N. M., Azadeh, A., Giada, S. & Kostas, P. Oxidative stress in liver pathophysiology and disease. Antioxid. 
(Basel). 12. https://doi.org/10.3390/antiox12091653 (2023).

	34.	 Gengming, N. et al. GJA1 promotes hepatocellular carcinoma progression by mediating TGF-β-induced activation and the 
epithelial-mesenchymal transition of hepatic stellate cells. Open. Med. (Wars). 16. https://doi.org/10.1515/med-2021-0344 (2021).

	35.	 He-He, H. et al. New insights into TGF-β/Smad signaling in tissue fibrosis. Chem. Biol. Interact.  292. https://doi.org/10.1016/j.
cbi.2018.07.008 (2018).

	36.	 Maria, E., Grace, R., Shizheng, H., Hermann, P. & Katalin, S. Developmental signalling pathways in renal fibrosis: the roles of 
Notch, wnt and hedgehog. Nat. Rev. Nephrol. 12https://doi.org/10.1038/nrneph.2016.54 (2016).

	37.	 Stefano, R. Notch and nonalcoholic fatty liver and fibrosis. N Engl. J. Med. 380https://doi.org/10.1056/NEJMcibr1815636 (2019).
	38.	 Justin, D. Direct and indirect effects of fibroblast growth factor (FGF) 15 and FGF19 on liver fibrosis development. Hepatology 

71https://doi.org/10.1002/hep.30810 (2019).
	39.	 Shuzhen, C., Qiqi, C., Wen, W. & Hongyang, W. Targeted therapy for hepatocellular carcinoma: challenges and opportunities. 

Cancer Lett.460https://doi.org/10.1016/j.canlet.2019.114428 (2019).
	40.	 Andrew, E. et al. Spatially resolved clonal copy number alterations in benign and malignant tissue. Nature 608https://doi.

org/10.1038/s41586-022-05023-2 (2022).
	41.	 Bridelance, J., Drebert, Z., De Wever, O., Bracke, M. & Beck, I. M. When neighbors talk: colon cancer cell invasion and tumor 

microenvironment myofibroblasts. Curr. Drug Targets. 18, 964–982. https://doi.org/10.2174/1389450117666161028142351 (2017).
	42.	 Xu, K. et al. Distinct fibroblast subpopulations associated with bone, brain or intrapulmonary metastasis in advanced non-small-

cell lung cancer. Clin. Transl Med. 14, e1605. https://doi.org/10.1002/ctm2.1605 (2024).
	43.	 Mucciolo, G. et al. EGFR-activated myofibroblasts promote metastasis of pancreatic cancer. Cancer Cell 42, 101–118e111. https://

doi.org/10.1016/j.ccell.2023.12.002 (2024).
	44.	 El-Serag, H. B. Hepatocellular carcinoma. N Engl. J. Med. 365, 1118–1127. https://doi.org/10.1056/NEJMra1001683 (2011).
	45.	 Affo, S., Yu, L. X. & Schwabe, R. F. The role of cancer-associated fibroblasts and fibrosis in liver cancer. Annu. Rev. Pathol. 12, 

153–186. https://doi.org/10.1146/annurev-pathol-052016-100322 (2017).
	46.	 Sun, H., Feng, J. & Tang, L. Function of TREM1 and TREM2 in liver-related diseases. Cells 9https://doi.org/10.3390/cells9122626 

(2020).
	47.	 Park, J. et al. IL-6/STAT3 axis dictates the PNPLA3-mediated susceptibility to non-alcoholic fatty liver disease. J. Hepatol. 78, 

45–56. https://doi.org/10.1016/j.jhep.2022.08.022 (2023).
	48.	 Park, Y. J. et al. Dendropanoxide, a triterpenoid from dendropanax morbifera, ameliorates hepatic fibrosis by inhibiting activation 

of hepatic stellate cells through autophagy inhibition. Nutrients 14https://doi.org/10.3390/nu14010098 (2021).
	49.	 Yang, M., Wang, D., Wang, X., Mei, J. & Gong, Q. Role of folate in liver diseases. Nutrients 16https://doi.org/10.3390/nu16121872 

(2024).
	50.	 de Visser, K. E. & Joyce, J. A. The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth. Cancer Cell 

41, 374–403. https://doi.org/10.1016/j.ccell.2023.02.016 (2023).
	51.	 Liu, Y. et al. Exosomes in liver fibrosis: the role of modulating hepatic stellate cells and immune cells, and prospects for clinical 

applications. Front. Immunol. 14, 1133297. https://doi.org/10.3389/fimmu.2023.1133297 (2023).
	52.	 Koda, Y., Nakamoto, N. & Kanai, T. Regulation of progression and resolution of liver fibrosis by immune cells. Semin Liver Dis. 42, 

475–488. https://doi.org/10.1055/a-1957-6384 (2022).
	53.	 Matsuda, M. & Seki, E. The liver fibrosis niche: novel insights into the interplay between fibrosis-composing mesenchymal 

cells, immune cells, endothelial cells, and extracellular matrix. Food Chem. Toxicol. 143, 111556. https://doi.org/10.1016/j.
fct.2020.111556 (2020).

	54.	 Bai, Z. et al. Use of albumin infusion for cirrhosis-related complications: an international position statement. JHEP Rep. 5, 100785. 
https://doi.org/10.1016/j.jhepr.2023.100785 (2023).

	55.	 Kim, S. H. et al. Enhancing microbial CO(2) electrocatalysis for multicarbon reduction in a wet amine-based catholyte. 
ChemSusChem  17, e202301342. (2024). https://doi.org/10.1002/cssc.202301342

	56.	 Foglia, B. et al. Hypoxia-inducible factors and liver fibrosis. Cells 10https://doi.org/10.3390/cells10071764 (2021). Hypoxia.
	57.	 Carthy, J. M. TGFβ signaling and the control of myofibroblast differentiation: implications for chronic inflammatory disorders. J. 

Cell. Physiol. 233, 98–106. https://doi.org/10.1002/jcp.25879 (2018).
	58.	 Mallikarjuna, P., Zhou, Y. & Landström, M. The synergistic cooperation between TGF-β and hypoxia in cancer and fibrosis. 

Biomolecules 12https://doi.org/10.3390/biom12050635 (2022).
	59.	 Lin, Y. T. & Wu, K. J. Epigenetic regulation of epithelial-mesenchymal transition: focusing on hypoxia and TGF-β signaling. J. 

Biomed. Sci. 27, 39. https://doi.org/10.1186/s12929-020-00632-3 (2020).

Scientific Reports |        (2024) 14:23832 14| https://doi.org/10.1038/s41598-024-75609-5

www.nature.com/scientificreports/

https://doi.org/10.3389/fendo.2023.1247709
https://doi.org/10.1093/nar/gks1193
https://doi.org/10.1093/nar/gks1193
https://doi.org/10.1038/nbt.4314
https://doi.org/10.1038/nbt.4314
https://doi.org/10.3389/fonc.2023.1176572
https://doi.org/10.1093/nar/gkac947
https://doi.org/10.1038/s41467-021-21246-9
https://doi.org/10.1038/s41467-021-21246-9
https://doi.org/10.1126/science.1254257
https://doi.org/10.1016/j.ajpath.2021.06.001
https://doi.org/10.1136/gutjnl-2013-306294
https://doi.org/10.1136/gutjnl-2013-306294
https://doi.org/10.1186/s12967-021-02854-x
https://doi.org/10.1186/s12967-021-02854-x
https://doi.org/10.1053/j.gastro.2015.02.056
https://doi.org/10.1053/j.gastro.2015.02.056
https://doi.org/10.1053/j.gastro.2012.07.115
https://doi.org/10.1053/j.gastro.2012.07.115
https://doi.org/10.1016/j.freeradbiomed.2021.08.241
https://doi.org/10.3390/antiox12091653
https://doi.org/10.1515/med-2021-0344
https://doi.org/10.1016/j.cbi.2018.07.008
https://doi.org/10.1016/j.cbi.2018.07.008
https://doi.org/10.1038/nrneph.2016.54
https://doi.org/10.1056/NEJMcibr1815636
https://doi.org/10.1002/hep.30810
https://doi.org/10.1016/j.canlet.2019.114428
https://doi.org/10.1038/s41586-022-05023-2
https://doi.org/10.1038/s41586-022-05023-2
https://doi.org/10.2174/1389450117666161028142351
https://doi.org/10.1002/ctm2.1605
https://doi.org/10.1016/j.ccell.2023.12.002
https://doi.org/10.1016/j.ccell.2023.12.002
https://doi.org/10.1056/NEJMra1001683
https://doi.org/10.1146/annurev-pathol-052016-100322
https://doi.org/10.3390/cells9122626
https://doi.org/10.1016/j.jhep.2022.08.022
https://doi.org/10.3390/nu14010098
https://doi.org/10.3390/nu16121872
https://doi.org/10.1016/j.ccell.2023.02.016
https://doi.org/10.3389/fimmu.2023.1133297
https://doi.org/10.1055/a-1957-6384
https://doi.org/10.1016/j.fct.2020.111556
https://doi.org/10.1016/j.fct.2020.111556
https://doi.org/10.1016/j.jhepr.2023.100785
https://doi.org/10.1002/cssc.202301342
https://doi.org/10.3390/cells10071764
https://doi.org/10.1002/jcp.25879
https://doi.org/10.3390/biom12050635
https://doi.org/10.1186/s12929-020-00632-3
http://www.nature.com/scientificreports


	60.	 Chen, M. et al. Dibutyl phthalate (DBP) promotes epithelial-mesenchymal transition (EMT) to aggravate liver fibrosis into 
cirrhosis and portal hypertension (PHT) via ROS/TGF-β1/Snail-1 signalling pathway in adult rats. Ecotoxicol. Environ. Saf. 274, 
116124. https://doi.org/10.1016/j.ecoenv.2024.116124 (2024).

	61.	 Miura, K., Yang, L., van Rooijen, N., Ohnishi, H. & Seki, E. Hepatic recruitment of macrophages promotes nonalcoholic steatohepatitis 
through CCR2. Am. J. Physiol. Gastrointest. Liver Physiol. 302, G1310–1321. https://doi.org/10.1152/ajpgi.00365.2011 (2012).

	62.	 Matsuda, M. et al. Oncostatin M causes liver fibrosis by regulating cooperation between hepatic stellate cells and macrophages in 
mice. Hepatology 67, 296–312. https://doi.org/10.1002/hep.29421 (2018).

	63.	 Dooley, S. & ten Dijke, P. TGF-β in progression of liver disease. Cell. Tissue Res. 347, 245–256. https://doi.org/10.1007/s00441-011-
1246-y (2012).

	64.	 Yang, Y. M. et al. Hyaluronan synthase 2-mediated hyaluronan production mediates Notch1 activation and liver fibrosis. Sci Transl 
Med.  11. (2019). https://doi.org/10.1126/scitranslmed.aat9284

	65.	 Li, S. et al. Macrophage-specific FGF12 promotes liver fibrosis progression in mice. Hepatology77, 816–833. https://doi.org/10.1002/
hep.32640 (2023).

	66.	 Gonzalez-Sanchez, E. et al. The hepatocyte epidermal growth factor receptor (EGFR) pathway regulates the cellular interactome 
within the liver fibrotic niche. J. Pathol.263, 482–495. https://doi.org/10.1002/path.6299 (2024).

	67.	 Casado-Pelaez, M., Bueno-Costa, A. & Esteller, M. Single cell cancer epigenetics. Trends Cancer8, 820–838. https://doi.
org/10.1016/j.trecan.2022.06.005 (2022).

	68.	 Xu, M. et al. Tumor associated macrophages-derived exosomes facilitate hepatocellular carcinoma malignance by transferring 
lncMMPA to tumor cells and activating glycolysis pathway. J. Exp. Clin. Cancer Res. 41, 253. https://doi.org/10.1186/s13046-022-
02458-3 (2022).

	69.	 Fang, Z. et al. Signaling pathways in cancer-associated fibroblasts: recent advances and future perspectives. Cancer Commun. 
(Lond). 43, 3–41. https://doi.org/10.1002/cac2.12392 (2023).

	70.	 Novikova, M. V., Khromova, N. V. & Kopnin, P. B. Components of the Hepatocellular Carcinoma Microenvironment and their role 
in Tumor Progression. Biochem. (Mosc). 82, 861–873. https://doi.org/10.1134/s0006297917080016 (2017).

Acknowledgements
We are very grateful to the contributors and maintainers of the public databases used in this study and all the 
authors of the study.

Author contributions
Conception and design: M.-J. X. and H.-W. X.; Administrative support: H.-W. X.; Collection of data: M.-J. X. 
and X.-Y. G.; Data analysis and interpretation: M.-J. X. and H.-W. X.; Manuscript writing and reviewing: M.-J. 
X. and X.-Y. G. and H.-W. X.; Final approval of manuscript: All authors; Accountable for all aspects of the work: 
All authors.

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1038/s41598-024-75609-5.

Correspondence and requests for materials should be addressed to H.X.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in 
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide 
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have 
permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and 
your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain 
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by-nc-nd/4.0/.

© The Author(s) 2024  

Scientific Reports |        (2024) 14:23832 15| https://doi.org/10.1038/s41598-024-75609-5

www.nature.com/scientificreports/

https://doi.org/10.1016/j.ecoenv.2024.116124
https://doi.org/10.1152/ajpgi.00365.2011
https://doi.org/10.1002/hep.29421
https://doi.org/10.1007/s00441-011-1246-y
https://doi.org/10.1007/s00441-011-1246-y
https://doi.org/10.1126/scitranslmed.aat9284
https://doi.org/10.1002/hep.32640
https://doi.org/10.1002/hep.32640
https://doi.org/10.1002/path.6299
https://doi.org/10.1016/j.trecan.2022.06.005
https://doi.org/10.1016/j.trecan.2022.06.005
https://doi.org/10.1186/s13046-022-02458-3
https://doi.org/10.1186/s13046-022-02458-3
https://doi.org/10.1002/cac2.12392
https://doi.org/10.1134/s0006297917080016
https://doi.org/10.1038/s41598-024-75609-5
https://doi.org/10.1038/s41598-024-75609-5
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿Multi-omic analysis identifies the molecular mechanism of hepatocellular carcinoma with cirrhosis
	﻿Materials and methods
	﻿Acquisition of RNA-seq data from TCGA-LIHC
	﻿Quantification of the enrichment degree of hallmark genes in TCGA-LIHC
	﻿Weighted gene co-expression network analysis (WGCNA)
	﻿Functional annotation of gene sets
	﻿Pre-processing of single-cell RNA-seq (scRNA-seq) data
	﻿Quantification of the enrichment degree of genes at the single-cell level
	﻿Cell–cell communication analysis
	﻿Inferred copy number variation (inferCNV) analysis
	﻿Quantification of different cell types based on spatial transcriptomics data
	﻿Statistical analysis

	﻿Results
	﻿Clinicopathologic characteristics of HCC patients with cirrhosis
	﻿Enrichment scores of hallmark gene sets in patients with HCC with cirrhosis
	﻿﻿Identification of gene modules related to cirrhosis in the TCGA-LIHC cohort﻿
	﻿Enrichment degree of cirrhosis-related gene modules in different cell types
	﻿Molecular mechanism of immune cells involved in liver fibrosis
	﻿Molecular mechanisms of hepatocytes involved in liver fibrosis
	﻿Spatial distribution of different cell types in HCC tissues

	﻿Discussion
	﻿Conclusion
	﻿References


