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ABSTRACT Poultry behavior indicates their health,
welfare, and production performance. Timely access to
broilers’ behavioral information can improve their welfare
and reduce disease spread. Most behaviors require a
period of observation before they can be accurately
judged. However, the existing approaches for multi-object
behavior recognition were mostly developed based on a
single-frame image and ignored the temporal features in
videos, which led to misrecognition. This study proposed
an end-to-end method for recognizing multiple simulta-
neous behavioral events of cage-free broilers in videos by
Broiler Behavior Recognition System (BBRS) based on
spatiotemporal feature learning. The BBRS consisted of 3
main components: the improved YOLOvS8s detector, the
Bytetrack tracker, and the 3D-ResNet50-TSAM model.
The basic network YOLOv8s was improved with
MPDIoU to identify multiple broilers in the same frame
of videos. The Bytetrack tracker was used to track each
identified broiler and acquire its image sequence of 32 con-
tinuous frames as input for the 3D-ResNet50-TSAM
model. To accurately recognize behavior of each tracked

broiler, the 3D-ResNet50-TSAM model integrated a tem-
poral-spatial attention module for learning the spatiotem-
poral features from its image sequence and enhancing
inference ability in the case of its image sequence less
than 32 continuous frames due to its tracker ID switch-
ing. Each component of BBRS was trained and tested
with the rearing density of 7 to 8 birds/m®. The results
demonstrated that the mAPQ0.5 of the improved
YOLOv8s detector was 99.50%. The Bytetrack tracker
achieved a mean MOTA of 93.89% at different levels of
occlusion. The Accuracy, Precision, Recall, and F1 scor
e of the 3D-ResNet50-TSAM model were 97.84, 97.72,
97.65, and 97.68%, respectively. The BBRS showed satis-
factory inference ability with an Accuracy of 93.98%
when 26 continuous frames of the tracked broiler were
received by the 3D-ResNet50-TSAM model. This study
provides an efficient tool for automatically and accurately
recognizing behaviors of cage-free multi-broilers in videos.
The code will be released on GitHub (https://github.
com/CoderYLH/BBRS) as soon as the study is
published.
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INTRODUCTION

China is the largest producer and consumer of poultry
meat in the world, with poultry meat consumption
accounting for about 25% of all meat consumption
(China Animal Agriculture Association, 2022). Broiler
production is an important part of poultry production.
The natural behavioral expressions of broilers can reflect
their health, welfare, and production performance
(Yang et al., 2023a). Timely acquisition of behavioral
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information of broilers can improve their welfare and
reduce the spread of diseases (Xiao et al., 2019). Cur-
rently, the broiler behaviors are inspected by farm work-
ers, who identify health abnormalities of broilers based
on their behavioral expressions. However, this method is
labor-intensive, subjective, and inefficient (He et al.,
2022). With an aging population and rising labor costs,
an automated and intelligent method is needed to
replace the manual inspection to meet the development
needs of modern large-scale poultry farming enterprises
(Zhao, 2019).

Computer vision, as an emerging non-destructive
detection technology, has the advantages of being effi-
cient, non-stress inducing, and low-cost. It is regarded as
an effective means for monitoring poultry behaviors
(Handan-Nader and Ho, 2019). The existing approaches
for multi-object behavior recognition were mostly
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developed based on a single-frame image. The object
detectors such as the You Only Look Once (YOLO)
and the Region-Based Convolutional Neural Network
(R-CNN) were usually applied to recognize poultry
behaviors including resting, feeding, drinking, pecking
at feathers, standing, fighting, exploring, and mating
from the single-frame image (Wang et al., 2020; Subedi
et al., 2023; Yang et al., 2023b). To enhance the robust-
ness of the detectors, a combination of techniques
including data augmentation, attention mechanisms,
improved loss functions, and improved feature fusion
strategies were deployed (Liu et al., 2023; Xiao et al.,
2023). However, most behaviors usually require a period
of observation before they can be accurately judged.
The methods based on a single-frame image ignored the
temporal features of behaviors and suffered from seman-
tic ambiguities due to high spatial feature similarities
between different behaviors, which easily lead to misre-
cognition.

To effectively utilize the temporal features of poultry
behaviors, a feature learning model was used to extract
spatial features from the continuous single-frame images
first, followed by employing a sequential model such as
Long Short-Term Memory Network (LSTM) to learn
the temporal dependencies of the spatial features (Fang
et al., 2021; Nasiri et al., 2022; Volkmann et al., 2022).
Alternatively, a video understanding model such as the
Temporal Shift Module (TSM) was utilized to simulta-
neously extract both the spatial and temporal features
from videos, which was reported in the field of livestock
behavior recognition and held significant potential for
application in poultry behavior recognition (Ji et al.,
2023). However, these methods involved clipping a con-
tinuous image sequence of a single behavioral event from
the raw video, or ensuring that the raw video contained
only one behavioral event. In a word, they were primar-
ily designed for scenarios with single behavioral events,
making their direct application challenging due to the
simultaneous occurrence of multiple behavioral events.

The general objective of this study is to develop an
end-to-end method for recognizing multiple simulta-
neous behavioral events of cage-free broilers in videos.
The specific objectives are: 1) to improve the the basic
YOLOvS8s detector for identifying multiple broilers in
the same frame of videos, 2) to employ an algorithm for
tracking each identified broiler to acquire its image
sequence of 32 continuous frames, 3) to establish a model
for recognizing broiler behaviors with the obtained
image sequences as inputs, and 4) to evaluate the perfor-
mance of the whole system consisted of the above 3 com-
ponents.

MATERIALS AND METHODS
Materials

Experimental setup and Data acquisition All proce-
dures of this experiment were performed under the guid-
ance of the Care and Use of Animals of the Zhejiang
University (Hangzhou, China). The Committee on the

Ethics of Animal Experiments of Zhejiang University
approved the protocol. As shown in Figure 1, 2 batches
of experiments were conducted in a 3.2 m X 3.0 m X
2.6 m (lengthxwidthxheight) room equipped with a
heating plate, air conditioner, and temperature and
humidity sensors. The ground was filled with 5 cm thick
litter. The light was on from 6:00 to 22:00, with an inten-
sity of 25 lux. The camera (DS-2TD2636B-10/P (B),
Hikvision, Hangzhou, China) was mounted at the center
of the room at a height of 1.8 m from the ground, with a
resolution of 2,688 x 1,520 pixels and a sampling frame
rate of 25 fps. The central area, located within the cam-
era’s field of view (FOV), was 1.2 m in length and 1.1 m
in width, and contained a drinker, feeder, and weight
scale. To collect different behaviors of broilers, ten 18-
day-old broilers (Youhuang 5B, male) were purchased in
2 batches from Jiangsu Lihua Animal Husbandry Co.,
Ltd. The broilers were acclimated in the central area for
2 d to familiarize themselves with the experimental envi-
ronment. For each batch, the experiment began when
the birds reached 20-days-old and ended at 33-days-old,
lasting a total of 14 d. The temperature was maintained
at 33°C from 9:00 to 18:00 and set to 23°C from 18:00 to
9:00 the next day for the first batch as experimental
group, while the temperature was kept constant at 23°C
for the second batch as control group. The videos of
broilers were recorded from 9:00 to 18:00. Since the cam-
era’s FOV extended beyond the central area, the region
of interest (ROI) in videos were limited to 1628x1520
pixels for eliminating irrelevant background regions.
The ROI in videos were then utilized for subsequent
video processing tasks.

Dataset Description In this study, 918 GB of videos
were collected in two batches of experiments. Two data-
sets were derived from the videos for training and testing
the components within the BBRS: an object recognition
dataset and a behavior recognition dataset. Both data-
sets were randomly split into training, validation, and
testing sets in a ratio of 7:1:2, as shown in Table 1. A
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Figure 1. Diagram of the experimental system for collecting broiler
behavior data.
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Table 1. Dataset composition of object recognition and behavior
recognition.

Dataset types Total Train Validation Test  Classes

Object recognition 3,048 2,133 304 611 1
dataset

Behavior recognition 7,153 5,005 709 1,439 5
dataset

Table 2. Definitions of broiler behaviors.

Number of video

Types Description segments

Activity Including walking and 1,556
standing actions
Spreading wings to 1,557
expose the skin
underneath
Lying on the bedding 1,172
without the behavior
of spreading wing
The broiler head is posi- 1,525
tioned on the side of
the feeder and the
beak pecks continu-
ously at the feed
The broiler head is posi- 1,343
tioned on the side of
the drinker and the
beak repeatedly per-
forms the actions of
lowering the head to
collect water and lift-
ing the head to drink
water

Spreading wing

Resting

Feeding

Drinking

total of 3,048 images with 1 category of objects were
manually selected from the videos. These images
included the information on the broilers from both
batches over the entire experimental period, covering
the age range from 20 d to 33 d. They were labelled by
LabelMe 5.3.1 (https://github.com/labelmeai/labelme)
as the object recognition dataset for training and testing
the improved YOLOv8s detector (Section Improved
YOLOuv8s detector). Additionally, a total of 7153 video
segments with 5 categories of behaviors were extracted
from the videos using the ByteTrack tracker (Section
Bytetrack tracker). These video segments also covered
the entire experimental period for both batches of
broilers, capturing the age range from 20 d to 33 d. They
served as the behavior recognition dataset for training
and testing the 3D-ResNet50-TSAM model (section D-
ResNet50-TSAM  behavior recognition model). As
shown in Table 2, the behavior categories included activ-
ity, spreading wing, resting, feeding, and drinking, with
video segments numbers of 1,556, 1,557, 1,172, 1,525,
and 1,343, respectively. To maintain consistency within
behavior categories and discriminability between differ-
ent behavior categories, and to avoid potential semantic
ambiguities in category definitions, the detailed defini-
tions of the 5 behavior types were also provided in
Table 2.

Algorithm Development Environment and Software
The algorithm development and testing platform used
in this study is a computer equipped with an NVIDIA

GeForce RTX 3090 GPU with 12GB of VRAM, a 13th
Gen Intel(R) Core(TM) i5-13400 CPU, and runs on the
Ubuntu 22.04 operating system. The project environ-
ment includes Python 3.10, OpenCV 4.8.1, PyTorch
2.0.0, torchvision 0.15.1, and CUDA 11.7.

Methods

Overall architecture of the BBRS To develop the
method for recognizing multiple simultaneous behav-
ioral events of cage-free broilers in videos, an end-to-end
system named the Broiler Behavior Recognition System
(BBRS) was proposed in this study, and its overall
architecture was illustrated in Figure 2. The BBRS con-
sists of 3 components: the improved YOLOvS8s detector,
the Bytetrack tracker, and the 3D-ResNet50-TSAM
model. Initially, the improved YOLOv8s detector is
used to perform frame-by-frame detection on the origi-
nal video and output bounding boxes of the detected
broilers. Subsequently, the Bytetrack tracker is
employed to construct tracking trajectories and assign
tracking IDs for each individual broiler across different
frames. Based on the tracking ID and bounding box of
each broiler, a continuous image sequence of 32 frames is
extracted. The obtained continuous image sequences of
all the broilers are then fed into the 3D-ResNet50-
TSAM behavior recognition model, which performs syn-
chronous inference to classify the corresponding behav-
ior category for each broiler.

The key module of the BBRS is the tracking result
processing algorithm, which obtains the tracking results
and utilizes them for 3D-ResNet50-TSAM model infer-
ence. The detailed steps of this algorithm are outlined
below, and its pseudo-code is represented in Algorithm 1.

1. The tracking results list includes broiler IDs, bound-
ing boxes, frame IDs, and confidence scores, and is
assumed to maintain a continuous image sequence of
length T for each broiler.

2. For each broiler within a time window of length T:

a. If the tracking IDs are continuous, extract the cor-
responding continuous 7-frame bounding boxes
for each ID, compute the maximum bounding rect-
angle for the T-frame bounding boxes, and derive
the corresponding image sequence from the origi-
nal video using this maximum bounding rectangle.
This results in n sets of image sequences of the size
of the maximum bounding rectangle and length of
T (where n is the number of broilers).

b. For broilers whose k tracking IDs are not continu-
ous (k < n), extract bounding boxes for m frames
(m < T), where m is the last frame before the ITD
switches, calculate the maximum bounding rectan-
gle for these frames, and derive the required m-
frame image sequence from the original video using
this bounding rectangle. The deficient T-m frames
are padded with blank frames of the same size.
The image sequences for the remaining n-k broilers
are procured as described in part a., ensuring a
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Figure 2. Overall architecture of the BBRS for broiler behavior recognition.

total of n sets of image sequences of the size of the
maximum bounding rectangle and length of 7.

3. Rescale the n sets of image sequences to a uniform size
of 224 x 224, yielding data with the form (B, T,C,H,
W), where By is the batch size equal to the number of
broilers n, T is the length of a time window, C'is the
number of channels, set to 3, and H and W are the
height and width of the input, both with values of
224.

4. Feed the data shaped (B, T,C,H,W) into the 3D-
ResNet50-TSAM model for inference, achieving the
behavioral labels corresponding to each broiler ID.

Improved YOLOv8s Detector To realize the recogni-
zation of broiler behaviors, the first step was to identify

Algorithm 1. Tracking result processing algorithm for behavior
recognition.

Input: List of tracking results L, time window length 7, video V.
Output: Behavioral labels O for each target ID.
1: Initialize image sequences array S|n| for n targets

2 for (i=1ton) do

3: B_bozx = extract_bounding _boxes(L[i|, T);

4: if (is_ continuous(B_ box)) then

5 R = compute_max_rectangle(B_ boz); //Compute the
maximum bounding rectangle

6: Si] = derive_sequence(V, R, T); //Derive the image
sequence

7 Else

8: m = find_switch_frame(B_boz, T); //Find the last frame
before the ID switches

9: R = compute_max_rectangle(B_ boz|1:m);

10: Si] = derive sequence(V, R, m);

11: Sli] = pad_sequence(9]i], T); //Blank frames padding

12: end if

13: end for

14: for (i=1ton) do

15: S|i] = rescale _sequence(S]7, 224, 224); //Normalization

16: end for

17: O = model _inference(S); //Behavior recognition

18: Update tracking results L for model inference based on next

time window length T;
19: return O;

all the broilers in each frame. Therefore, the basic
YOLOvVS8s detector was improved to do this task. The
improved YOLOv8s detector mainly comprises of the
Backbone, the Neck, and the Head (Figure S1). Initially,
images are fed into the Backbone to extract feature
maps, which then pass through the Neck for bidirec-
tional feature fusion to enhance multi-scale representa-
tion capability of the extracted features. Ultimately,
decoupling operations are performed in the Head to sep-
arately utilize the feature maps for classification and
regression tasks.

The basic YOLOvS8s detector uses the Complete IoU
(CIoU) Loss as the regression loss to compute the over-
lap area, center point distance, and aspect ratio between
the predicted and ground-truth boxes (Zheng et al.,
2020). However, it has shown to be less accurate and
slower in convergence when the predicted and ground-
truth boxes share the same aspect ratio but differ in size.
To overcome the limitation, the improved YOLOvS8s
detector replaces CloU Loss with Minimum Point Dis-
tance based IoU (MPDIoU) Loss. MPDIoU Loss mini-
mizes the Euclidean distance between the 4 vertices of
the predicted and ground-truth boxes, calculated as
equs. (1 and 2).

2 2
Ilgt o xlpred) + (yft _ y{)red)
w? + h?
. 2
zé)ved) + (ygt
w? + h?

MPDIoU = IoU — (
(-

LMPDIOU =1— MPDIoU

2
pred
— Y% )

(1)

(2)

where IoU is the Intersection over Union of the predicted
and ground-truth boxes, (¥, 47") and (zJ',yJ") are the
coordinates of the top-left and bottom-right corners of
the ground-truth box, respectively, and (z!’ red. yr !y and
(227" 427"} are the coordinates of the top-left and bot-
tom-right corners of the predicted box, respectively,
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with w and h being the width and height of the input
image (Ma and Xu, 2023).

By applying MPDIoU Loss, the improved YOLOvS8s
detector achieves higher sensitivity in localizing broiler
targets of varying sizes and postures, particularly in
dealing with individuals with partial occlusions where
this novel loss function provides more accurate and sta-
ble bounding boxes, delivering high-quality observa-
tional data to the BBRS’s tracker.

The improved YOLOvS8s detector was trained using

the object recognition dataset for 150 epochs, with a
batch size of 12, and selecting the Stochastic Gradient
Descent (SGD) optimizer, while the rest of the training
parameters remained default. The performance of the
improved YOLOvS8s detector was evaluated on the test
set.
Bytetrack Tracker After the broilers were identified, it
is necessary to track them for acquiring continuous
image sequences of their behavior expression process.
The image sequences contains spatial and temporal
information which helps to make more accurate judg-
ments about broiler behaviors. Most trackers typically
associate targets between consecutive frames by compar-
ing similarities in their position, appearance, and motion
characteristics to generate tracking trajectories (Rakai
et al., 2022). However, in the field of poultry, the high
similarity in the appearance features of broilers leads to
difficulties in achieving performance advantages with
appearance-based trackers, which in turn increases
computational complexity. Consequently, this study
opts for the Bytetrack tracker that does not rely on an
appearance feature branch.

The principle of the Bytetrack tracker entails con-
ducting object detection on images to acquire bounding
boxes with associated confidence scores (Figure S2). The
obtained boxes are then classified into high-score boxes
Dygr, and low-score boxes Dj,, based on confidence
scores threshold Tyq.. The kalman filtering is then used
to predict and update the status of existing trajectory
sets T IoU is computed between Dy;g, and Ty, after
which the Hungarian matching algorithm is employed
for the first association between T and Dyg. The sets
of unmatched detection boxes and trajectories are
respectively denoted as Diepain and  Tremgin. The
unmatched high-score detection boxes in D45, are ini-
tialized as new trajectories into the trajectory sets Tie.
Subsequently, the Hungarian matching algorithm is
used for a second association between the remaining tra-
jectories T,emain and low-score boxes Dy,,. Each trajec-
tory in  Tyemaein Tecords the number of consecutive
unmatched frames, and if this number exceeds a prede-
fined buffer threshold Ty, the trajectory is deleted
(Zhang et al., 2022). This mechanism enables the Byte-
track tracker to provide robust performance in high-den-
sity poultry farming scenes.

The Bytetrack tracker utilizes 3 hyperparameters:
Tbuffera Tirack, and Thateh. Tbuffer is set to 30, determining
the maximum number of frames a trajectory can retain
in tracking status before being marked as lost. Tyer is
set to 0.5, which serves to differentiate between high-

score and low-score detection boxes. Tyuen is the IoU
threshold between the predicted and detection boxes,
set to 0.8.

The stability of the Bytetrack tracker is a crucial pre-
requisite for the BBRS to receive a continuous image
sequence of target broiler. It determines the subsequent
accuracy of behavior recognition. In experiments, the
stability of the tracker is influenced by factors such as
broilers occlusion and motion blur. Compared to tran-
sient interference caused by sudden motion blur,
dynamic occlusion of broilers is a continuous and critical
factor affecting tracker’s performance. This research
defines the average occlusion degree OD,,, of the video
to quantify the impact of broiler occlusion events on
tracker performance and standard deviation oop,, to
describe the variability of occlusion degree throughout
the video, calculated as Eqs. (3)-(5).

B rame
ODjrame = <1 - f) x 100% (3)
Bcomplete
1 N
ODcwg = N Z ODfmmei (4)
=1
1 & 2
GODaUg = NZ(O-Dfmmef - Owag) (5)
=1

Where ODjome is the occlusion degree of a single
frame, OD,,, is the average occlusion degree of a video,
oop,, is the standard deviation of occlusion degree
throughout the video, N is the number of frames in a
video, Bfame is the number of broiler pixels in the image
during an occlusion event, and Bompiere represents the
number of broiler pixels in the image when there is no
occlusion event. Bjame and Beompiere are calculated as fol-
lows: each frame of the test video is frame-by-frame
detected using the improved YOLOv8s detector to
obtain each frame’s bounding boxes, which serve as
prompts for the Segment Anything Model (SAM) to
perform semantic segmentation and obtain broiler
masks (Kirillov et al., 2023). For masks with substan-
dard segmentation quality, a new prompt for the SAM
model involving a combination of bounding boxes from
the improved YOLOvS8s detector and points provided
by the operator is utilized to predict new masks, ensur-
ing improved segmentation accuracy through this tai-
lored approach. The number of mask pixels for each
frame is then tallied.
3D-ResNet50-TSAM Behavior Recognition Model
To extract the spatial and temporal features hidden in
the obtained image sequences, a behavior recognition
model 3D-ResNet50-TSAM was established. The 3D-
ResNet50-TSAM model is built upon the basic 3D-
ResNet network by integrating a Temporal-Spatial
Attention Module (TSAM), which enables the model
to autonomously learn important regions and key frames
from the obtained image sequences. The 3D-ResNet50-
TSAM model processes a continuous image sequence of
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broilers through 3D convolution layers and residual
blocks of groups A, B, C, and D for feature extraction
(Figure S3). The features’ spatial dimensions are then
compressed through a global average pooling layer. Sub-
sequently, a Fully Connected (FC) layer models the
non-linear relationships of the features, and finally, a
softmax function maps the output to probability values
to obtain the behavior recognition results (He et al.,
2016; Hara et al., 2018). The number of residual blocks
within groups A, B, C, and D are 3, 4, 6, and 3, respec-
tively, and the last residual block in each group is an
improved residual block (Figure S4a), while the rest are
basic residual blocks (Figure S4b). Replacing only the
last residual block of each group with the improved
residual block, as opposed to all of them, not only enhan-
ces the model’s ability to learn deeper features but also
reduces the computational burden and prevents overfit-
ting.

Two main improvements are applied to the basic
residual block to form the improved residual block.
Firstly, the ReLU activation function in the basic resid-
ual block has been replaced with the Mish activation
function, defined in eqns. (6 and 7).

f(z) = x-tanh(c(2)) (6)
s(z) =In(1+¢’) (7)

Where ¢(z) is the softplus function.

The Mish activation function is smooth, continuous,
and non-monotonically increasing. Compared to the
ReLU activation function used in the basic residual
block, the Mish activation function, owing to its non-sat-
urating nature, can mitigate the vanishing gradient
problem in deep networks. Moreover, due to its continu-
ity and differentiability, it maintains an effective gradi-
ent flow during backpropagation, which aids in efficient
weight updates during training, enhancing the adapta-
tion of the model to the distribution of activation values
(Misra, 2020). This improvement bolsters the learning
representation capability and generalization of the 3D-
ResNet50-TSAM model.

Secondly, at the end of the last batch normalization
(BN) layer in the basic residual block, the TSAM has
been appended. TSAM is a fusion of temporal and spa-
tial attention mechanisms that provide several advan-
tages over current popular spatio-temporal attention
mechanisms based on self-attention, such as the Non-
Local (NL) block(Wang et al., 2018). These advantages
include lower computational complexity, higher effi-
ciency, and better interpretability. The operation of
TSAM is as follows: Given an input feature map
sequence { T, Ty T, }, where n is the number of feature
maps, and each feature map T;(1<i<n) is of size
HxWxC, with H, W, and C corresponding to the
height, width, and number of channels of the feature
map, respectively. Each feature map T; is used to per-
form max pooling and average pooling operations along
the channel direction, resulting in max-pooled feature
maps W, 1 e and average-pooled feature maps

Wi—i—ag both of size HxWx1. The feature maps
Wici—mee and W;_i_y, are element-wise summed to
yield a feature map W, ; of size Hx Wx1. Global max
pooling and global average pooling operations are subse-
quently applied to the feature map W;_;, producing
max-pooled feature maps W, o, and average-pooled
feature maps W o4y, each of size 1x1x1. Adding
Wi—2—max and Wi_o_g,, feature maps together, a feature
map W;_ s of size 1x1x1 is obtained. After passing the
feature map sequence W;_ 5 through the sigmoid activa-
tion function, temporal weights W/ , are obtained,
which, when multiplied with the feature map Tj, result
in a weighted feature map sequence { 17, T5--- T} of size
HxWxC. This operation emphasizes the contribution
of important temporal frames while suppressing interfer-
ence from irrelevant ones. Building on this, each
weighted feature map T from the sequence {T7,T%-
T} undergoes parallel max pooling and average pooling
operations along the channel direction, leading to max-
pooled maps W, 3 . and average-pooled maps
Wi—3—q4ug, both of size Hx Wx1. The addition of feature
maps Wi_3_ma: and W;_3_4, results in a feature map
W;_s of size Hx Wx 1. After applying the sigmoid activa-
tion function, spatial weights W/ are obtained and,
when multiplied with 77, produce the final output fea-
ture map sequence {7, T, T} of size HxWxC. This
operation is utilized to emphasize learning of important
regions within each temporal frame.

Moreover, due to disparities in the number of video
segments for the 5 broiler behaviors in the behavior rec-
ognition dataset, an effective solution to address the
class imbalance problem and enhance model perfor-
mance for predicting behaviors with fewer samples is
employed during the training of the 3D-ResNet50-
TSAM model. This solution involves the use of a
weighted cross-entropy loss function, Lyce. Ly modifies
the traditional cross-entropy loss function by introduc-
ing corresponding weight coefficients for each behavior
class, thereby adjusting the impact of each class on the
overall loss. The formula for L. is as follows in eqn. (8).

N
Lwce = _Z(wiyi IOg(@z)) (8)

where N represents the number of behavior classes, w; is
the weight coefficient for the i-th behavior class, y; is the
true label for the i-th behavior, and ¥, is the predicted
probability for the i-th behavior by the model.

For the training of the 3D-ResNet50-TSAM model, a
series of data augmentation techniques are employed to
enhance the model’s generalization capability in behav-
ior recognition tasks. These techniques include adjust-
ments in contrast, brightness, saturation, as well as
horizontal flipping, vertical flipping, and random crop-
ping. The network weights and parameters are updated
using SGD optimizer, with the weighted cross-entropy
loss function L., quantifying the discrepancies between
model predictions and true values. Key hyperparameters
that require fine-tuning during the model training pro-
cess encompass the training epoch, batch size, input
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Table 3. Parameter settings for training the 3D-ResNet50-
TSAM model.

Parameters Value
Training epoch 150
Batch size 4
Input size 224
Learning rate 0.01
Momentum 0.9
Weight decay 0.0001
Sample duration 32
Sample stride 1

size, learning rate, momentum, and weight decay, as well
as the sample duration and sample stride, which are
essential for temporal data augmentation. The training
parameters for the 3D-ResNet50-TSAM model are pre-
sented in Table 3.

In the testing phase, to comprehensively assess the
performance of the fully trained model across different
temporal segments of the video, a temporal data aug-
mentation strategy is employed, where subsequences are
extracted from each original 64-frame sequence at dis-
tinct intervals (frames 0-31, 16-47, and 32-63).

Performance Evaluation Metrics for the
BBRS

This study evaluated not only the performance of each
component of BBRS, but also that of the whole BBRS.

For the improved YOLOvS8s detector, the perfor-
mance evaluation metrics include mean Average Preci-
sion (mAP), Precision, Recall, and F1 score, calculated
by eqns. (9-12).

mAPZM 9)

n
. TP
Precision = TP + FP (10)
TP
- 1
Recall TP+ N (11)

2 x Precision X Recall
1 = 12
seore Precision + Recall (12)

Where TP and FP are the number of correctly and
incorrectly detected broilers, respectively, and FN is the
number of broilers missed for detection.

For the Bytetrack tracker, the performance evalua-
tion metrics include Multiple Object Tracking Accuracy
(MOTA), IDF1 score, and ID Switches (IDSW), calcu-
lated by eqns. (13 and 14).

FN + FP+ IDSW
MOTA=1- 1
0 a7 (13)
2IDTP
IDF1 score = (14)

2IDTP + IDFP + IDFN

Where IDSW is the number of ID switches. IDTP,
IDFP, and IDFN respectively stand for the numbers of
true positive IDs, false positive IDs, and false negative
IDs, while GT is the number of the ground truth bound-
ing boxes.

For the 3D-ResNet50-TSAM behavior recognition
model, the employed performance metrics are Precision,

Recall, F1 score, and Accuracy, calculated by eqns.
(10-12) and (15).

TP+ TN
TP+ TN+ FP+ FN

Where TP and FP are the number of correctly and
incorrectly recognized behaviors, respectively, F'N is the
number of behaviors missed for recognition, and TN is
the number of correctly identified absence of behaviors.

Accuracy = (15)

RESULTS AND DISCUSSION

Performance of the Improved YOLOvS8s
Detector

Table 4 presents the performance of the YOLOvSs
detector before and after improvements. Prior to the
improvement, despite interference factors such as
mutual occlusion among broilers, incomplete broiler pre-
sentation, dim lighting, and low contrast between fore-
ground and background, the basic YOLOv8s detector
still achieved commendable performance on the test set.
The wvalues for F1 score, Precision, Recall, and
mAPQ0.5 were 99.58%, 99.54%, 99.62%, and 99.29%,
respectively. These figures indicated that the object rec-
ognition task in this study was not overly difficult, which
was highly associated with the number of broilers per
unit area as well as the size of the broilers in the image.
Building on this foundation, the improved YOLOvS8s
detector yielded a 0.21% increase in mAP@Q.5, provid-
ing the BBRS’s tracker with stable and reliable observa-
tions.

Performance of the Bytetrack Tracker

In this study, occlusion levels were classified into 3
categories: high, medium, and low, with corresponding
OD,,, values ranging between 0-10%, 10-20%, and 20-
30%, respectively. Two 30-second video segments from
each occlusion category were selected to test the perfor-
mance of the ByteTrack tracker.

The test results of the ByteTrack tracker are shown in
Table 5. The mean MOTA, IDF1 score, and IDSW
under the 3 different occlusion levels were 93.89%,
87.55%, and 5, respectively. For low occlusion scenarios,
where broilers were relatively scattered, the MOTA
could reach over 98%, with the IDF1 score of around
93%. This indicated that the ByteTrack tracker
achieved accurate and stable tracking of broilers under
low occlusion conditions. Medium occlusion scenarios
presented a decline in tracking performance due to the
tracker having to handle random occlusions caused by



8 HUET AL.

Table 4. Performance of improved YOLOvS8s detector.

Model F1 score (%) Precison (%) Recall (%) mAPQ0.5 (%)
YOLOvS8s 99.58 99.54 99.62 99.29
YOLOvV8s + MPDIoU 99.77 99.73 99.81 99.50
Table 5. Performance of Bytetrack tracker under different occlusion levels.
Occlusion level Video sequence OD,y (%) oop,, (%) MOTA (%) IDF1 score (%) IDSW
Low seq-1 5.94 2.13 98.77 93.95 2
seq-2 7.04 3.34 98.19 93.22 3
Medium seq-3 14.34 3.23 94.45 88.41 4
seq-4 16.42 3.91 94.89 87.85 4
High seq-5 24.86 3.19 88.67 81.24 8
seq-6 25.43 3.55 88.36 80.64 9

the movement of broilers. For high occlusion scenarios,
the MOTA was below 90%, the IDF1 score was around
80%, and the IDSW was 8. Comparatively, the MOTA
dropped by about 10%, IDF1 score decreased by
approximately 13.5%, and the number of IDSW
increased 3-fold from the low occlusion scenarios. This
demonstrated that the tracker faced significant chal-
lenges in stable association of multiple broilers with
severe mutual occlusion.

The experiment revealed the strengths and limitations
of the ByteTrack tracker in handling scenarios with
varying degrees of broiler occlusion. The tracking perfor-
mance of the ByteTrack tracker decreased with ascend-
ing occlusion levels, and the number of IDSW increased
accordingly. Additionally, in the BBRS pipeline, every
32-frame continuous image sequence of each broiler is
fed into the 3D-ResNet50-TSAM model for inference to
obtain behavior recognition results. During this 32-
frame image sequence, if an ID switching occurs, the 3D-
ResNet50-TSAM model will not receive a complete and
valid image sequence. The images from the frame where
the ID switching occurs to the 32nd frame will be padded
with blank frames, while only the images from the first
frame to the last frame before the ID switching contain
valid information of the broiler. Therefore, an ID switch-
ing occurring within this 32-frame sequence directly
impacts the amount of wvalid information the 3D-
ResNet50-TSAM model can receive and process, thereby
affecting the accuracy of behavior recognition.

Performance of the 3D-ResNet50-TSAM
model

Figure 3 depicts the confusion matrix of the 3D-
ResNet50-TSAM on the test dataset. The model exhib-
ited Accuracy, Precision, Recall, and F1 score of 97.84,
97.72, 97.65, and 97.68%, respectively. The results indi-
cated the high accuracy and stability of the behavior rec-
ognition method. For specific behaviors, the Precision
for activity, spreading wing, resting, feeding, and drink-
ing were 98.07, 96.00, 95.18, 99.61, and 99.73%, respec-
tively. Feeding and drinking behaviors had the highest
Precision, followed by activity, with spreading wing and

resting having relatively lower Precision. There were 15
samples in which the behavior of resting was incorrectly
identified as spreading wing, possibly because the
broilers, while resting, exhibited small degrees of spread-
ing wing that led the model to misinterpret the behavior
as spreading wing. Moreover, 3 samples of spreading
wing behavior were misconstrued as activity, likely due
to the presence of larger movements in conjunction with
spreading wing, causing the model to classify it as activ-
ity. Additionally, 3 samples of spreading wing behavior
were misclassified as resting because the degree of
spreading wing was small, and the broilers were almost
motionless at that time window. This indicates that
when the behavior characteristics of broilers are not suf-
ficiently distinct, there is a reduced differentiation
between behaviors, directly affecting the model’s recog-
nition capability. To address these issues, prior expert
knowledge on the behavioral characteristics of resting
and spreading wing can be integrated into the BBRS.
Extensive experience in recognizing broiler behaviors is
held by ethologists. The experience can be transformed
into text and incorporated into the model, making the
BBRS a mechanism and data-driven system, thereby

500

activity

spread wing

300

rest

True Class

feed

100

drink

drink

activity

spread wing rest feed
Predicted Class

Figure 3. The confusion matrix of the 3D-ResNet50-TSAM on the
test dataset.
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Table 6. Contribution of different modules to the 3D-ResNet50-
TSAM model.

Experiment number TSAM Mish Luyce Accuracy (%)

1 X X X 95.30
2 x X Vv 95.71
3 X N X 95.66
4 N X X 97.45
5 v v v 97.84

enhancing its accuracy. Furthermore, the feature extrac-
tion capability of the BBRS can be improved by finer-
grained motion analysis to extract more effective fea-
tures for better distinguishing between subtle variations
in resting and spreading wing behavior.

To further investigate the impact of individual mod-
ules on the performance of the 3D-ResNet50-TSAM
model, a series of ablation studies were conducted, with
the results shown in Table 6. Upon replacing all ReLLU
activation functions with Mish activation functions in
the basic residual blocks of the 3D-ResNet50 model,
there was an observed increase in Accuracy of 0.36%.
When substituting the cross-entropy loss function with
the Ly during the training of the 3D-ResNet50 model,
the Accuracy improved by 0.41%. The integration of the
TSAM within the residual blocks of the 3D-ResNet50
model contributed to the Accuracy improvement of
2.15%, indicating a significant role of TSAM in boosting
the model’s performance. The comprehensive adoption
of TSAM, Mish activation, and L, in the final 3D-
ResNet50-TSAM model, manifested in a cumulative
accuracy enhancement of 2.54%. This outcome suggests
that the combination of the aforementioned 3 modules
effectively and significantly contributes to the perfor-
mance improvement of the 3D-ResNet50-TSAM model
for behavior recognition.

To delve deeper into the operational mechanisms of
the 3D-ResNetb0-TSAM model during inference, this
study separately analyzes the model’s dependence on
temporal and spatial attention for decision-making.
Figure 4 presents the temporal attention weight curves
for 5 broiler behaviors. Observing the distribution of
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Figure 4. Temporal attention weight curves of 5 broiler behaviors.

attention weights for these behaviors over various
frames revealed a differentiated focus trend during
model inference. For behaviors such as resting, activity,
and spreading wing, the model tended to pay more
attention to the first 8 frames of the image sequences,
assigning equal weight to these frames. This implied
that, in the model’s cognition, these continuous 8 frames
were more important for model inference and held the
same informational value. Conversely, for feeding and
drinking behaviors, the model concentrated on the last 8
frames of the image sequences, indicated that these final
frames played a crucial role in the recognition of feeding
and drinking behaviors.

Additionally, it was noteworthy that despite the mod-
el’s decision-making inclination toward a particular set
of 8 frames, the maximum difference in weights does not
exceed 0.12 when assigning temporal attention weights
to the 32-frame continuous image sequences of the 5
behaviors. Thus, the model did not entirely neglect the
other 24 frames, which still provided additional contex-
tual information for formulating a holistic understand-
ing of the behaviors. Consequently, the 3D-ResNet50-
TSAM model demonstrated heterogeneity and bias in
its attention allocation when recognizing different
behaviors; nonetheless, the entire 32-frame image
sequence contributed to the model’s inferential judg-
ment in a relatively equitable manner. These findings
are pivotal for elucidating the decision-making process
of deep learning models in broiler behavioral recognition
tasks.

Building on the aforementioned analysis, this study
further employs the Gradient-weighted Class Activation
Mapping (Grad-CAM) technique to visualize the spatial
attention of the 8 frames with the highest temporal
attention weights for each behavior, as shown in
Figure 5. Within each subfigure, the first row displays
the original image frames, while the second row shows
the corresponding heatmaps. The 3D-ResNet50-TSAM
model focused more on the warmer color regions (red
and yellow) relative to cooler ones (blue and green), and
the more a region tended towards the color red, the
greater its influence on the model’s decision-making. For
the activity behavior, the model primarily focused on
the regions of the broiler’s head and feet; for the spread-
ing wing behavior, the model mainly focused on the skin
areas exposed after the wings were spread; for the resting
behavior, the model showed attention to the overall
region of the broiler; for the feeding behavior, the model
significantly focused on the broiler’s head and the adja-
cent region of the feeder; and for the drinking behavior,
the model similarly emphasized the broiler’s head and
the part of the drinker it contacted. These focus regions
identified by the model showed high consistency with
the regions humans paid attention to when recognizing
these behaviors, further validating the 3D-ResNet50-
TSAM model’s reasonableness in behavior cognition.

To further illustrate the effectiveness of the proposed
3D-ResNet50-TSAM, it was compared with commonly
used 3D convolutional networks in the field of video
behavior recognition, including C3D, TSN, T'SM, TSM-
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(a) Activity

(d) Feeding

(e) Drinking

Figure 5. Spatial attention visualization results of 5 broiler behaviors.

NL, I3D, and I3D-NL, with results presented in Table 7
(Tran et al., 2015; Wang et al., 2016; Carreira and Zis-
serman, 2017; Lin et al., 2019). The C3D model had
Accuracy, Precision, Recall, and F1 score of 90.84,
90.74, 91.08, and 90.91%, respectively, which were lower
than the other models, but it had the advantage in

inference speed, at only 15 ms. The 3D-ResNet50-
TSAM model performed the best among all the com-
pared models, reaching the highest in Accuracy,
Precision, Recall, and F1 score values at 97.84, 97.72,
97.65, and 97.68%, respectively. The TSM-NL model
ranked second in performance, with an Accuracy only
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Table 7. Performance comparison of different behavior recognition models.

Model Backbone Accuracy (%) Precision (%) Recall (%) F1 score (%) Inference time (ms)
C3D - 90.84 90.74 91.08 90.91 15
TSN ResNet-50 93.11 93.01 93.20 93.10 516
TSM ResNet-50 96.29 96.11 96.47 96.29 620
TSM-NL ResNet-50 96.87 96.67 97.05 96.86 651
13D 3D ResNet-50 92.25 92.08 92.47 92.27 64
I3D-NL 3D ResNet-50 94.48 94.31 94.70 94.42 7
Ours 3D ResNet-50-TSAM 97.84 97.72 97.65 97.68 146

0.97% lower than the 3D-ResNet50-TSAM model, but
with an inference time approximately 4.5 times longer.
The inference times of the I3D and I3D-NL models were
close to each other; however, their Accuracy, Precision,
and other metrics were somewhat lacking compared to
the 3D-ResNet50-TSAM model. Overall, although the
3D-ResNet50-TSAM model was not as fast in inference
speed as the C3D, I3D, and I3D-NL models, it exhibited
a clear advantage in comprehensive performance and
could provide stable and reliable results for the broiler
behavior recognition.

Analysis of the BBRS’s Overall Performance
Effects of Tracking ID Switches on BBRS Accuracy

In the BBRS, the final accuracy of behavior recognition
results was influenced by multiple factors, including the
performance of the improved YOLOvS8s detector, the
Bytetrack tracker, and the 3D-ResNet50-TSAM behav-
ior recognition model, all of which had been discussed in
detail in the aforementioned sections. This section
addressed the impact on behavior recognition results
due to the issue of tracking ID switches, which could dis-
rupt the 3D-ResNet50-TSAM model from receiving a
complete 32-frame image sequence.

According to the behavior recognition logic of the
BBRS, the tracker provides the behavior recognition
model with a continuous 32-frame image sequence
(1.28 s). If the target broiler’s ID switches within this
time window, the behavior recognition model will be
forced to infer based on an incomplete image
sequence prior to the switch. In light of this issue,
this study evaluated the performance of the 3D-
ResNet50-TSAM model in handling incomplete image
sequences, with results shown in Figure 6. The longer
the duration of the continuous image sequence of the
target broiler received by the 3D-ResNet50-TSAM
model, the higher the corresponding accuracy. When
the model received approximately 80% of the com-
plete image sequence (around 1.02 s or 26 continuous
frames), the Accuracy of the 3D-ResNet50-TSAM
model could reach 93.98%. The model’s accuracy when
handling a 1.15 s sequence was almost equivalent to
that of a full sequence, but dropped significantly when
only a 0.5 s sequence was available. Thus, for practical
application of the BBRS, ensuring that its tracker con-
sistently tracked the target broiler within the time win-
dow for at least 1.02 s could help to maintain a high
accuracy level in behavior recognition.

Effects of Various Broiler Ages on BBRS Accuracy-
The BBRS consists of 3 components: the improved
YOLOvVSs detector, the Bytetrack tracker, and the 3D-
ResNet50-TSAM model. Among these components, the
improved YOLOvS8s detector and the 3D-ResNet50-
TSAM model are deep learning models that require
broiler images and videos for training. Therefore, during
the development of BBRS, the object recognition data-
set and the behavior recognition dataset were used to
train and test the deep learning models within the sys-
tem. These datasets were created using images of
broilers ranging from 20 to 33-days-old throughout the
experimental period. The inclusion of data from broilers
at various ages during the training phase ensured that
the BBRS could generalize well to different growth
stages within the 20 to 33-day window. To further clar-
ify the effect of various broiler ages on BBRS accuracy,
the accuracy of the BBRS at 14 different broiler ages
was evaluated (Figure S5). The result showed that the
accuracy curve remained relatively stable, with minor
fluctuations around the overall accuracy of 97.84%. This
consistency reflected the robustness of the BBRS in rec-
ognizing broiler behaviors across different ages.
Effects of Various Broiler Speeds on BBRS Accura-
cy The performance of BBRS was evaluated under 2
scenarios: slow movement and fast movement of broilers.
Assuming linear movement of broilers within a unit of
time, the average speed of each broiler was calculated
for two 10-s videos (Video 1 and Video 2) using the
tracking results from the Bytetrack tracker, where all

96.74

66.64

Accuracy %

10 20 30 40 50 60 70 80 90 100
Video Observation %

Figure 6. Behavior recognition results using incomplete image
sequences.
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Table 8. The average speed of each broiler tested in 2 videos.

ID 1 2 3 4 5 6 7 8 9 10
Average speed (mm/s) Video 1 27.5 26.7 4.2 16.9 0.9 5.6 13.0 10.3 16.3 1.5
Video 2 95.0 81.0 26.4 4.5 44.8 9.5 14.4 8.1 75.6 19.8

broilers moved at a slow and fast pace, respectively. The
results of the average speed for each broiler in both vid-
eos are shown in Table 8. All broilers moved slowly in
Video 1, whose average speed did not exceed 27.5 mm/s,
and BBRS provided satisfactory behavior recognition
results within each time window. In contrast, the
broilers with IDs 1, 2, and 9 in Video 2 exhibited rapid
movements, whose average and maximum speeds
reached 95.0 and 987.3 mm/s, 81.0 and 632.3 mm/s, and
75.6 and 1,045.5 mm/s, respectively. BBRS also suc-
ceeded in tracking these rapidly moving broilers and cor-
rectly identified their behavior as ’activity’. The results
demonstrated that BBRS was capable of recognizing the
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behaviors of both slow-moving and fast-moving broilers.
A demo video showcasing the recognition results of
BBRS in both “Move slowly” and “Move fast” scenarios
can be found at: https://www.bilibili.com/video/
BV1Z7421K7sA / or https:/ /youtu.be/6W2z9XBvJHk.
Effects of Broiler Behavior Changes Within 32
Frames on BBRS Accuracy The decision to use a 32-
frame time window for behavior recognition in the
BBRS was based on experimental observations. The 5
broiler behaviors—activity, spreading wing, resting,
feeding, and drinking—can be effectively expressed
within this time window. During the training of the
behavior recognition component, the 3D-ResNet50-
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Figure 7. Visualization of the BBRS inference results within a time window.
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TSAM model, all video segments used featured consis-
tent behavior within the 32-frame window. However,
maintaining consistent behavior during this period was
not a strict requirement for the BBRS to function prop-
erly. The 3D-ResNet50-TSAM component was designed
to learn spatiotemporal features from continuous image
sequences, meaning that even if a broiler behavior
changed within the 32-frame window, the model can still
capture this change through its spatiotemporal atten-
tion module. According to the design logic of BBRS, the
system processes each broiler video sequence in 32-frame
increments, and even if a behavior change occurs within
these frames, the system outputs a single behavior recog-
nition result for the entire sequence, rather than separats
results for before and after the behavior change.

Considering that 32 frames correspond to 1.28 sec-
onds, it is possible for a broiler’s behavior to change once
within this brief period, such as transitioning from feed-
ing to activity. A test was conducted to determine how
BBRS responds when behaviors change within this time
window and each behavior has sufficient time for com-
plete expression before and after the change. The results
indicated that if a broiler behavior transitioned from
resting to activity or spreading wing, the BBRS output
the initial behavior (resting). Similarly, if a broiler
behavior transitioned from activity to resting, spreading
wing, drinking, or feeding, the system output the initial
behavior (activity). For transitions from spreading wing
to resting or activity, the initial behavior (spreading
wing) was recognized. However, if a broiler behavior
transitioned from feeding or drinking to activity, the sys-
tem output the final behavior (activity). These results
demonstrated the influence of the TSAM in the model’s
decision-making process. Specifically, for the behaviors
activity, spreading wing, and resting, the model tended
to focus more on the first 8 frames of the image sequence,
while for drinking and feeding, it concentrated more on
the last 8 frames. It is crucial to emphasize that the like-
lihood of behavior changes occurring within such a short
time window is inherently low, considering the nature of
broiler behaviors and their actual expression patterns.
Therefore, this does not undermine the effectiveness of
BBRS in performing end-to-end spatiotemporal behav-
ior recognition tasks.

Figure 7 presents the behavior recognition results of
the BBRS for a continuous 32-frame image sequence.
For clarity of demonstration, frames numbered 8, 16, 24,
and 32 from the sequence had been specifically illus-
trated. The behaviors of broilers in this sequence
included activity, spreading wing, resting, feeding, and
drinking, allowing for a clear visual representation of dif-
ferent behaviors expressed by broilers with correspond-
ing IDs.

To effectively deploy the BBRS on mini computers
with limited computational power (e.g., edge devices) in
the future, 2 avenues of optimization have been pro-
posed in this research. Firstly, enhancing the tracker’s
long-range tracking capability in complex scenes to
reduce the number of ID switches during tracking, and
optimizing the behavior recognition model architecture

to develop models capable of processing different effec-
tive video durations. Secondly, the conception of a light-
weight model should help improve its overall efficiency,
reduce the computational power demands, and result in
lower deployment costs.

CONCLUSIONS

The study proposed an end-to-end method for auto-
matically and accurately recognizing multiple simulta-
neous behavioral events of cage-free broilers in videos by
Broiler Behavior Recognition System (BBRS) based on
spatiotemporal feature learning. The BBRS consisted of
3 main components: the improved YOLOvS8s detector,
the Bytetrack tracker, and the 3D-ResNet50-TSAM
model. The improved YOLOvS8s detector exhibited an
outstanding performance in multi-broiler detection tasks
by integrating the MPDIoU to identify varying sizes and
postures of broilers in the same frame of videos. The F'1

score, Precision, Recall, and mAP@Q.5 of the improved

YOLOvVSs detector reached 99.77%, 99.73%, 99.81%,
and 99.50%, respectively. The Bytetrack tracker could
stably track each identified broiler and acquire its image
sequence of 32 continuous frames as input for the 3D-
ResNet50-TSAM model. The mean MOTA and IDF1 sc
ore of the Bytetrack tracker were 93.89% and 87.55% at
different occlusion levels. The 3D-ResNet50-TSAM
model demonstrated high stability by integrating a tem-
poral-spatial attention module, which was used to learn
the spatiotemporal features from its image sequence and
enhance inference ability in the case of its image
sequence less than 32 continuous frames due to its
tracker ID switching. The Accuracy, Precision, Recall,
and F1 score of the 3D-ResNet50-TSAM model were
97.84, 97.72, 97.65, and 97.68%, respectively. The BBRS
showed satisfactory inference ability with an Accuracy
of 93.98% when the tracker ID switched and 26 continu-
ous frames of the tracked broiler were received by the
3D-ResNet50-TSAM model. Furthermore, BBRS was
capable of recognizing the behaviors of broilers across
various ages and speeds. These results indicated that the
BBRS was accurate and reliable in the task of end-to-
end cage-free multi-broiler behavior recognition.
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