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A B S T R A C T

Despite reported influences of the intratumoral microbiome on cancer progression, its role in this
subtype remains unclear. This study aimed to characterize the microbial landscape and signatures
of kidney renal clear cell carcinoma using RNA-Seq data from The Cancer Genome Atlas.
Following microbial decontamination, differential microbial analysis was conducted between
tumorous and adjacent non-tumorous samples. Compared to non-tumorous samples, tumorous
microbiota exhibited reduced α and β diversity and distinct phylum-level communities. Differ-
ential microbial analysis between patients exhibiting long and short overall survival revealed ten
significant differential microbial genera, with six genera correlating with a positive prognosis
(Plasmodium, Babesia, Toxoplasma, Cytobacillus, Alicyclobacillus, Verrucomicrobium) and four with
a negative prognosis (Colletotrichum, Leuconostoc, Gluconobacter, and Parabacteroides). Employing
Cox regression analysis and support vector machines, a prognosis-related microbiome risk
signature was developed, achieving an AUC of 0.809. Based on this risk signature, two
microbiome-based subtypes were found to be significantly associated with distinct clinical
prognoses and immune microenvironments. These findings were corroborated by significant
correlations between prognostic-relevant microorganisms and 30 immune-related differentially
expressed genes. Specifically, microbial genera associated with a negative prognosis were linked
to a pro-tumor acute inflammatory immune response, whereas genera related to a positive
prognosis were associated with an anti-tumor adaptive immune response. In conclusion,
microbiome-based subtyping revealed correlations between tumor microbiome, clinical prog-
nosis, and tumor microenvironment, indicating intratumoral microbiota as a promising prog-
nostic biomarker for kidney renal clear cell carcinoma.
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1. Introduction

To date, cancer remains a major global health issue, with renal cell carcinoma (RCC) being the tenth most prevalent of all cancer
types [1]. Approximately 30 percent of patients with RCC are diagnosed at advanced stages, and the five-year (5 y) survival rate is only
10 percent [2]. Owing to the lack of sensitivity to conventional radiotherapy and chemotherapy, patients with metastatic kidney renal
clear cell carcinoma (KIRC), the most common RCC subtype, are treated with immunotherapy and targeted therapy as a first line of
treatment [3–5]. Despite the clinical benefits of these therapies, a deeper understanding of RCC pathogenesis is crucially needed to
improve survival rates [6]. The microbiome, which is defined as all the microorganisms and their genomes within a specific envi-
ronment, profoundly influences the metabolic, immunologic, and homeostatic functions of the host. Recent studies have shown that
microbiotas play important roles in the progression and treatment responses of multiple cancers, including RCC [7,8].

The intratumoral microbiota, including bacteria [8,9], fungi [10], and viruses [11], plays an influential role in cancer initiation,
tumor progression, and responses toward cancer therapies [12]. However, the importance of the tumor microbiome and its association
with carcinogenesis remain controversial [13]. On the one hand, as a crucial component of the tumor microenvironment (TME), the
tumor microbiome can facilitate tumorigenesis by inducing the suppression of innate and adaptive immunity [14]. On the other hand,
intratumoral microorganisms can suppress carcinogenesis by altering immune cell activation [15]. This intricate interplay underscores
the close relationship between tumors and their microbiomes, which is influenced by specific microbial species and individual tumor
status, potentially affecting the sensitivity of the cancer cells to immunotherapy [16,17]. Given the potential strategy of improving
patient prognosis by manipulating the composition of the intratumoral microbiota, further exploration of the interplay between the
tumor microbiome and tumor immunology and treatment prognosis is needed.

Although intratumoral microbiomes have already been characterized in various cancers, those specifically associated with RCC
remain understudied [18]. Urinary tract infections have been identified as a modifiable risk factor for RCC development [19]. A 2022
study revealed an inverse correlation between bacterial load and PU.1 macrophages, providing insights into how bacteria influence the
phenotypes of RCC-related immune cells [20,21]. Although several attempts have been made to investigate the microbiomes within
RCCs, the reliability of the results remains questionable owing to the small sample sizes and inadequate decontamination procedures
used [22]. Moreover, the correlations among the intratumoral microbiomes, immune landscape of RCC, and prognostic implications
require further exploration [23].

In this study, KIRC transcriptome sequencing data and patient clinical data was obtained from The Cancer Genome Atlas (TCGA)
database. Subsequently, differentially abundant microorganisms were identified between patients with long-versus short-term overall
survival (OS) and constructed a Cox regression-based risk score signature. Further analyses, including differential gene expression and
gene set enrichment, were performed to elucidate the underlying immunogenic mechanisms by which these risk-associated micro-
organisms affect the tumor immune response and disease prognosis.

2. Material and methods

2.1. Design of the study

The primary objective of this study was to elucidate the impact of the intratumoral microbiota on tumor immunity and prognosis in
KIRC. To achieve this, intratumoral microbial profiles, tumor transcriptome characteristics, and patient survival data need to be
obtained simultaneously. A comprehensive analysis was conducted using RNA-Seq data from 532 patients with KIRC referenced on
TCGA. First, the intratumoral microbiota information was extracted from the RNA-seq data. To ensure microbial profile extraction
accuracy and minimize contamination, a validated analytical pipeline [9] was employed. Subsequently, patients were stratified into
two groups based on OS and compared between patients with long and short survival for the differential intratumoral microbiota.
Then, a survival-associated microbial score based on Cox regression modeling was constructed to categorize patients into two distinct
risk groups. By analyzing the differences in tumor transcriptomes between groups, performing functional enrichment, and analyzing
immune infiltration, we aimed to elucidate the specificmechanisms underlying how differential microbiota influence tumor immunity.
The study was conducted between October 2022 and August 2023 at Peking Union Medical College, Beijing, China.

2.2. TCGA-sourced kidney renal clear cell carcinoma raw sequencing data

The Genomic Data Commons database provides gene sequencing data for 890 patients with RCC from the TCGA project, including
532 with KIRC, 290 with kidney papillary cell carcinoma, 66 with chromophobe RCC, and 2 with sarcomas. All 532 KIRC samples were
selected, and 613 raw transcriptome sequencing data (binary alignment/map (bam) files) were downloaded. Of these, 541 cancerous
(Tumor) and 72 paracancerous (Normal) samples were included.

2.3. TCGA-sourced kidney renal clear cell carcinoma RNA-seq data

The KIRC RNA-Seq data were obtained from raw sequencing data after comparison using STAR software (version 2.5.3a) [24]. The
basic workflow of STAR is divided into two steps: generating a genome index file and posting the read segments back to the genome.
This completed the alignment of the transcriptome data. The comparison generated gene expression data in count form, which can be
read using the TCGAbiolinks package in R (version 4.1.1) [25].
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2.4. Patient information and clinical characteristics

The basic information and clinical data of the 532 patients with KIRC that were downloaded from TCGA are presented in Table 1. Of
the 532 patients participating in the study, 64.8 percent were male, and the median age was 61 y (the oldest patient was 90 y and the
youngest was 26 y). In term of race, 86.7 percent were White, 10.5 percent were Black or African American, 1.5 percent were Asian,
and 1.3 percent had no recorded race. Regarding clinical characteristics, the numbers of patients with tumor node metastasis (TNM)
stage I, II, III, and IV disease were 266 (50.3 %), 57 (10.8 %), 123 (23.3 %), and 83 (15.7 %), respectively. In total, 285 (53.6 %)
patients received chemotherapy and 247 (46.4 %) received radiation therapy, and the data did not show any patients who received
other therapies (e.g., targeted therapy or immunotherapy). Based on the observed endpoints, 357 (67.1 %) patients survived and 175
(32.9 %) died (of various reasons). According to the computation based on length of observation, 96 (18.0 %) patients would survive
for less than 1 y, 289 (54.3 %) would survive for 1–5 y, and 147 (27.6 %) would survive for over 5 y overall.

2.5. Microbial extraction

The original bam files were converted to fastq format using SAMtools software (version 1.3.1) [26] and the data were subsequently
classified into microorganisms using Kraken2 software (version 2.0.8) [27]. Microbial read counts were extracted from the fastq files.
The results of the Kraken2 were read at the “Species” level, yielding 9886 reads in total.

2.6. Microbial contamination removement

Rigorous filtration and decontamination were performed. Microbial reads with low expression (i.e., those that did not meet the
“expressed in ≥10 individuals” or “the total expression of a microorganism >100” criteria) as well as Human and Archaea reads were
filtered out. Consequently, 42.2 percent of the reads were removed, leaving 5716 reads. Then, the decontam package in R (version
1.6.0) [28] was used to remove microorganisms with nonlinear variation in expression, resulting in 1181 remaining reads, with 88.1
percent of the original reads removed.

2.7. Microbial diversity analysis

The microbial read counts were read at the “Species” level, and each microorganism was identified as an operational taxonomic
unit (OTU). The OTU table of patients with KIRC was analyzed using the vegan package in R (version 2.5–6) (https://cran.r-project.
org/package=vegan); that is, the sequences of all samples were randomly selected to a uniform amount of data to ensure their ho-
mogeneity. The α-diversity indices were also calculated using vegan, and theWilcoxon test was used to analyze the differences between
groups. In this study, vegan was used to calculate the Bray–Curtis distance and Jaccard index distance using a weighted and an un-
weighted algorithm, respectively. Additionally, principal coordinate analysis was performed to demonstrate the differences in bio-
logical β-diversity between subgroups of KIRC samples and the significance of differences between groups was tested using the Adonis
test. Linear discriminant analysis effect size (LEfSe) was performed using the online tool accessible at http://www.bic.ac.cn/BIC.

Table 1
Information of patients with KIRC and the clinical features
from TCGA data.

Patient information Number (%)

Gender
Male 345 (64.8)
Female 187 (35.2)
Age (median), y 61 (26–90)
TNM staging
I 266 (50.3)
II 57 (10.8)
III 123 (23.3)
IV 83 (15.7)
Treatment
Chemotherapy 285 (53.6)
Radiotherapy 247 (46.4)
Survival status ​
Deceased 175 (32.9)
Surviving 357 (67.1)
Overall survival
<1 y 96 (18.0)
1–5 y 289 (54.3)
>5 y 147 (27.6)

Abbreviations: KIRC, kidney renal clear cell carcinoma;
TCGA, The Cancer Genome Atlas; TNM, tumor node metas-
tasis; y, year.
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2.8. Analysis of variance by rank-sum test

The filtered and decontaminated microbial readings were standardized using VOOM and SNM and subsequently submitted to the
Wilcoxon rank-sum test to search for differential microorganisms.

2.9. Survival analysis

Univariate and multivariate regression analyses with the Cox proportional hazards regression model were performed using the
survival package in R (version 3.3-1) (https://CRAN.R-project.org/package=survival). The risk values were obtained on the basis of
the scores of significant variables and used for survival prediction, and the survminer package in R (version 0.4.7) (https://cran.r-
project.org/web/packages/survminer/index.html) was used to plot the Kaplan–Meier curves.

2.10. Support vector machine and receiver operating characteristic curves

A support vector machine (SVM) model was used to predict the survival of patients with KIRC based on the screened core mi-
croorganisms. Receiver operating characteristic (ROC) curves were plotted and the area under the ROC curve (AUC) values were
calculated based on the predicted results.

Fig. 1. Overall profile of the comparison between cancerous and paracancerous tissue microbiotas
Abbreviations: Tumor, cancerous samples; Normal, paracancerous samples; PCoA, principal coordinate analysis; KM curve, Kaplan–Meier survival
curve; Cox analysis, Cox’s proportional hazards regression model analysis.
(A) Overlay of the microbial compositions at the phylum and genus levels. The vertical coordinates represent the relative abundance, and colors
represents the top 10 microorganisms. (B) Box plots showing the α-diversity (Shannon and Observed species indices) of cancerous and para-
cancerous samples, Wilcoxon test. (C) PCoA plots showing the β-diversity of cancerous and paracancerous samples, Adonis test. (D) Cladistic map of
microbial taxa in cancerous and paracancerous tissues, marked with significantly different genus. (E) KM curves based on risk level. P values were
determined using the Cox proportional hazards risk model.
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2.11. Differential gene expression analysis

DESeq2 (version 1.32.0) [29] with patient gene counts was used as the input matrix. The data were normalized to compare gene
expression in the two different groups of patients.

2.12. Correlation analysis

The Pearson and Spearman coefficients were used for establishing the correlation between microbial abundance and gene
expression.

2.13. Gene functional enrichment analysis

The clusterProfiler package in R (version 4.0.5) [30] was used for gene functional and pathway enrichment analyses on the Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases and for gene set enrichment analysis (GSEA).

2.14. Immune infiltration analysis

Immune infiltration analysis was performed using the xcell (version 1.1.0) [31] and CIBERSORT (version 0.1.0) packages in R [32].

3. Results

3.1. Microorganism profile of patients with KIRC

Using the filtered and decontaminated microbial readings, we mapped the tumor microbiomes of patients diagnosed with KIRC.
Each microorganism was represented as an OTU, which is a measure of microbial diversity based on genetic similarity (Fig. 1A). This
comparison allowed visualization of the microbial profiles of the cancerous (Tumor) and adjacent noncancerous (Normal) tissue
samples. Among the identifiedmicrobial phyla, Firmicutes, Actinobacteria, Uroviricota, and Proteobacteria were present at the highest
relative abundance. The microbial genera with the highest relative abundances wereMycobacterium, Gorganvirus, Bacillus, and Preistia.

To reveal the differences in microbial diversity between the tumorous and adjacent non-tumorous samples,α- and β-diversity
analyses were performed. The results showed that microbial diversity was significantly reduced in the tumor samples (Fig. 1B) and a
significant difference was observed in microbial composition between the tumorous and adjacent non-tumorous samples (Fig. 1C).
These results suggest that the TME of KIRC harbors distinct microbial communities compared with the surrounding non-tumorous
tissue.

To mitigate the impact of sequencing depth and batch effects on the LEfSe analysis, VOOM normalization together with SNM was
performed [9]. Subsequently, the corrected results were tested with the Wilcoxon rank-sum test, leading to the identification of 10
differentially abundant genera between the tumorous and adjacent non-tumorous samples. These genera were Colletotrichum,
Arthrobacter, Tumebacillus, Leuconostoc, Thermus, Azoarcus, Pseudochrobactrum, Gluconobacter, Parabacteroides, and Leptospirillum
(Fig. 1D).

To further investigate the impact of these 10 KIRC-associated microbial genera on patient survival, a univariate Cox proportional
hazards regression analysis was conducted for each genus. Initially, the cutoff values for microbial expression were determined and the
optimal cutoff point was obtained using the surv_cutpoint function of the survminer package in R. On the basis of the cutoff point, data
above the threshold were defined as high expression (high) and those below the threshold were defined as low expression (low).
Univariate Cox regression analysis indicated that five of the 10 genera significantly affected survival. After excluding those not
associated with human diseases, four genera (Colletotrichum, Leuconostoc, Gluconobacter, and Parabacteroides) remained significant
predictors of patient survival (Table 2). The significance of these four genera persisted after the multifactorial Cox analysis. We

Table 2
Univariate Cox statistics for the most differentially abundant microorganisms between cancerous and paracancerous KIRC samples.

Microorganism Beta HR (95 % CI) Wald test ap Value

Colletotrichum − 0.51 0.6 (0.41–0.88) 6.9 0.0088
Arthrobacter − 0.22 0.81 (0.58–1.1) 1.6 0.21
Tumebacillus 0.25 1.3 (0.94–1.8) 2.5 0.11
Leuconostoc − 0.42 0.66 (0.46–0.94) 5.4 0.02
Thermus 0.45 1.6 (0.91–2.7) 2.6 0.11
Azoarcus 0.29 1.3 (0.87–2.1) 1.8 0.18
Pseudochrobactrum − 0.35 0.7 (0.45–1.1) 2.5 0.11
Gluconobacter − 0.37 0.69 (0.51–0.93) 5.9 0.015
Parabacteroides − 0.86 0.42 (0.21–0.86) 5.6 0.017
Leptospirillum 0.57 1.8 (1.2–2.6) 8.3 0.0039

Abbreviations: KIRC, kidney renal clear cell carcinoma; Cox, Cox’s proportional hazards regression model; HR, hazard ratio; CI, confidence interval.
a p Values of Wilcoxon rank sum tests. The significance threshold was p<0.05.
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calculated the risk score based on the scores of the significant variables and stratified the patients with KIRC into high- and low-risk
groups according to the median risk value. As shown in Fig. 1E, patients with high-risk scores had significantly shorter survival
outcomes than those with low-risk scores. These findings suggest that the unique microbial signature of KIRC has the potential to
predict patient outcomes, providing a basis for the further stratification of patients into long- and short-term survival groups and
subsequent analysis of their differential microbiotas.

3.2. Patients with distinct survival outcomes in KIRC possessed different intratumoral microbiotas

Data from 532 patients with KIRC were downloaded from TCGA. With regard to the OS of these patients, 96 patients (18.0 %)
survived for less than 1 y, whereas 147 patients (27.6 %) survived for more than 5 y. To exclusively analyze the intratumoral
microbiotas, we selected 541 cancer samples on the basis of the availability of microbiota data and categorized them into two groups
according to survival outcomes: “Short” survival for patients with an OS of less than 1 y, and “Long” survival for patients with an OS of
more than 5 y. In total, 201 samples fit the categories, with 53 classified as “Short” and 148 as “Long.” These two groups were chosen to
explore the potential associations between microbiota composition and patient outcomes. Detailed sample characteristics and survival
data are presented in Table 3.

Fig. 2A displays the intratumoral microbial profiles of patients in the different survival groups. In contrast to the previous analysis
that compared cancerous tissue with adjacent noncancerous samples, no significant difference in the overall composition of intra-
tumoral microorganisms was found between patients with different survival outcomes. To gain a deeper understanding of the mi-
crobial diversity, α- and β-diversity analyses were conducted. According to the α-diversity values, which quantify the species diversity
within a sample, samples in the short survival group tended to exhibit lower diversity, although the difference did not reach statistical
significance (Fig. 2B). The β-diversity indices, which compare the diversity between different samples, provided additional insights
into the microbial variation between the patient groups; however, still did not reach statistical significance (Fig. 2C).

Further analysis was conducted to identify the microbial genera that showed significant differences between the two groups. After
standardization using VOOM + SNM, a Wilcoxon rank-sum test was performed on the basis of the normalized microbial signatures.
Fifteen genera showed significant differences between the long and short survival groups. Of these, five genera not relevant to humans
were excluded from the study. The remaining 10 genera were Plasmodium, Babesia, Toxoplasma, Luteimicrobium, Cytobacillus, Alicy-
clobacillus, Rhodomicrobium, Paludibacter, Verrucomicrobium, and Pajaroellobacter (Fig. 2D and E). Plasmodium, a common human
pathogen transmitted by mosquitoes, causes malaria [33]. Babesia is the most common parasite associated with human babesiosis in
North America and Europe, and infection by this pathogen is now classified as an emerging zoonotic disease [34]. Toxoplasma, an
intracellular protozoan parasite of global importance, can infect various mammalian cells [35]. Cytobacillus is a human intestinal
isolate with notable probiotic potential for promoting animal and human health [36].

3.3. Microorganisms associated with long or short survival in patients with KIRC can act as potential prognostic factors

To investigate the impact of the 10 genera associated with long or short survival on patient outcomes, univariate Cox regression
analysis was performed for each microbial genus. We performed independent prognostic predictions using univariate Cox analysis on a
7:3 randomized split dataset of the significant microbial genera. The results showed that all 10 genera significantly affected patient
survival (Table 4). Therefore, the predictive value of these genera was demonstrated, reaffirming their potential as reliable prognostic
indicators of patient survival in KIRC (Fig. 3A). According to this classification, the genera beneficial to patient survival were Plas-
modium, Babesia, Toxoplasma, Cytobacillus, Alicyclobacillus, and Verrucomicrobium, as patients with higher levels of these microor-
ganisms had longer survival periods. By contrast, the genera that were detrimental to patient survival were Luteimicrobium,
Rhodomicrobium, Paludibacter, and Pajaroellobacter.

To further validate the predictive value of these microorganisms, an SVM model was used to predict the survival of patients with
KIRC. The data were divided into training and prediction sets in a 7:3 ratio and patient survival was dichotomized according to
previous classification criteria. All 10 significant genera were included in the training model and the input data were replaced with
previously determined cutoff values. The model was trained with data from the training set and the data from the prediction set were
predicted on the basis of the training results. The AUC value was 0.809 (95 % confidence interval: 0.588–0.909), indicating that the
model constructed using these 10 genera effectively predicted patient survival (Fig. 3B). Additionally, glm and rpart were used for
performing predictions and the results were consistent with those of SVM (Fig. 3C). The robust performance of the 10 microbial

Table 3
Survival classification of patients with KIRC.

Classification Standard Number (%)

Total ​ 613 (100)
Tumor Cancerous samples 541 (88.3)
Normal Paracancerous samples 72 (11.7)
Survival analysis samples ​ 201 (100)
Short (OS < 1 y) and (death) 53 (26.4)
Long OS > 5 y 148 (73.6)

Abbreviations: Long, long survival samples; Short, short survival samples; OS, overall survival; KIRC, kidney renal
clear cell carcinoma; y, year.
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signatures across multiple methods underscores their influence on survival outcomes.
To directly investigate the association between the microbial signatures and survival outcomes in patients with KIRC, the dataset

was randomly divided into a 70 percent training set and a 30 percent prediction set and performed a multifactorial Cox regression
analysis on the basis of the genera mentioned above. This analysis revealed that three genera (Luteimicrobium, Cytobacillus, and Pal-
udibacter) were significant and mutually independent predictors of survival. The Cox regression model was used to derive a value-at-
risk score that categorized patients into high- and low-risk groups. Kaplan–Meier survival curves (Fig. 3D) revealed a significant as-
sociation between the risk scores and survival outcomes, with patients in the high-risk group exhibiting shorter survival times than
those in the low-risk group. These findings validate the effectiveness of microbial risk scores in predicting the survival of patients with
KIRC.

3.4. Identified prognostic-relevant microorganisms have a significant correlation with immune-related genes

To investigate the association between the risk class and gene expression, DESeq2 assessed the differential gene expression patterns
between patients stratified by risk class. In total, 882 differentially expressed genes were screened, 760 of which were upregulated and
122 were downregulated. A volcano plot illustrating the differential expression of the genes is shown in Fig. 4A.

By specifically focusing on immune-related genes, 30 genes of interest were identified. Among these, 24 genes were upregulated in
the high-risk group and were primarily associated with antimicrobial function, inflammation, and natural immunity. Examples include
PI3, LBP, IFNG, and the chemokine-related genes CXCL5, SAA1, and SAA2, which may play pivotal roles in driving inflammatory
responses and tumor development. Conversely, six genes were downregulated in the high-risk group and predominantly related to
adaptive immunity. Notable examples are immunoglobulin family genes, such as IGKV1-16, IGKV1D-17, and IGKV2D-24, which may
be involved in the adaptive immune response against tumors (Fig. 4B).

To further investigate the relationship between microorganisms and immune genes, Spearman correlation analysis was performed
between the 10 differentially expressed microorganisms and 30 immune-related genes. The results were visualized using bubble plots
(Fig. 4C). Notably, the correlation analysis revealed significant concordance with previous findings linking differentially expressed
immune-related genes to microorganisms. Specifically, most microbial-associated genes were negatively correlated with the identified
immune-related genes and were involved in antibacterial responses, inflammation induction, innate immunity, and tumor promotion.
Conversely, microbial-associated genes that correlated positively with immune-related genes primarily exhibited functions related to
antibody binding, adaptive immunity induction, and tumor suppression. This suggests that microorganisms with negative correlation
to immune-related genes may contribute to poorer patient prognosis by promoting antibacterial responses, inflammation, and natural
immunity, whereas microorganisms with positive correlation to such genes could potentially enhance adaptive immunity, leading to
better patient outcomes.

3.5. Microorganism-based risk scores could stratify patients into two distinct groups characterized by different immune cell functions

To further clarify the functions of the risk class-based differential genes, GO functional enrichment analysis was performed on 882
differentially expressed genes. The results revealed that the upregulated genes were enriched in functions related to acute response,

Fig. 2. Analysis of differential microbial groups between patients with different survival times
Abbreviations: Long, samples from long-survival patients; Short, samples from short-survival patients; KIRC, kidney renal clear cell carcinoma;
PCoA, principal coordinate analysis; *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001.
(A) Overlay of the microbial compositions at the phylum and genus levels. The vertical coordinates represent the relative abundance, and colors
represents the top 10 microorganisms. (B) Box plots showing the Shannon α-diversity of KIRC samples with differences in long- and short-term
survival, Wilcoxon test. (C) PCoA plots showing the Jaccard index β-diversity of the KIRC samples with survival differences, Adonis test. (D)
Heat map showing the differential expression of microorganisms between different survival groups. (E) Box plots showing the differential expression
of microorganisms between different survival groups, Wilcoxon test.

Table 4
Univariate Cox statistics for the impact of long and short survival-associated microorganisms on outcomes in patients with KIRC.

Microorganism Beta HR (95 % CI for HR) Wald test ap Value

Plasmodium 0.9 2.5 (1.3–4.8) 7 0.0082
Babesia 1.4 3.9 (1.4–11) 7 0.0082
Toxoplasma 0.75 2.1 (1.3–3.4) 10 0.0013
Luteimicrobium − 0.83 0.43 (0.28–0.69) 13 0.00035
Cytobacillus 0.85 2.3 (1.2–4.7) 5.7 0.017
Alicyclobacillus 0.7 2 (1.2–3.3) 7.5 0.0063
Rhodomicrobium − 0.89 0.41 (0.22–0.76) 8 0.0048
Paludibacter − 0.75 0.47 (0.3–0.75) 10 0.0013
Verrucomicrobium 0.46 1.6 (1–2.5) 3.8 0.05
Pajaroellobacter − 0.86 0.42 (0.25–0.72) 10 0.0016

Abbreviations: KIRC, kidney renal clear cell carcinoma; Cox, Cox’s proportional hazards regression model; HR, hazard ratio; CI, confidence interval.
a p Values of Wilcoxon rank sum tests. The significance threshold was p<0.05.
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inflammatory response, antimicrobial immunity, and epidermal cell differentiation, which are associated with tumor growth, whereas
the downregulated genes were associated with immunoglobulin complexes and ion transport processes (Fig. 5A and C). After ranking
all KIRC genes that underwent a log2 fold change with DESeq2 and then submitting them to GSEA for pathway enrichment, significant
pathways associated with the upregulated and downregulated genes were identified. The upregulated gene pathways were those
involved in epidermal growth, nuclear division, chemokines, antimicrobial responses, and acute inflammation, whereas the down-
regulated gene pathways were involved in antibody binding, ion transport, and adaptive immune responses (Fig. 5B and D). These
GSEA results aligned with the findings of the GO enrichment analyses.

Combined with the previous correlation analyses, the microbes specific to the two risk groups were associated with different
physiological pathways (Fig. 5E). Previous studies have demonstrated that microorganisms exhibiting negative survival correlation
can trigger inflammation and immunosuppression, thereby promoting tumor development [14]. Microbes with negative survival
correlation were associated with natural immune and inflammatory responses, potentially through the activation of
antimicrobial-associated innate immunity, leading to acute inflammation and poorer prognosis. By contrast, microorganisms that

Fig. 3. Survival risk scores based on differentially abundant microorganisms
Abbreviations: KM curve, Kaplan–Meier survival curve; Cox analysis, Cox’s proportional hazards regression model analysis; ROC, receiver oper-
ating characteristic; SVM, support vector machine; AUC, area under the ROC curve; glm, generalized linear model; rpart, decision-making tree.
(A) KM curves showing univariate Cox regression analysis results (Plasmodium, Babesia, Toxoplasma, Cytobacillus, Alicyclobacillus, and Verrucomi-
crobium). p values were determined using Cox proportional hazards risk models. (B) ROC curve demonstrating SVM training for 10 differential
microorganisms. (C) ROC curves from three prediction methods: SVM, glm, and rpart. (D) KM curve showing multiple Cox analyses, in which the
dataset was randomly divided into training and prediction sets at a 7:3 ratio.
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correlated positively with survival may hinder carcinogenesis by modulating immune cell activation [15]. The microbes with positive
survival correlation appear to be associated with adaptive immune responses, possibly through adaptive immune processes such as
antibody binding, leading to a more favorable prognosis.

Given the correlation of the long- and short-term survival-associated microorganisms with specific immune-related genes and
pathways, we hypothesized that these microbes may also be correlated with the corresponding immune cells. To investigate this, xcell
package in R calculated the scores for 64 immune cells on the basis of the gene expression profiles of patients with KIRC. Twenty-three
major immune cells were selected and Pearson correlation analysis was used to calculate their correlation scores with the 10 genera
that differed between the long and short survival groups. The heat map generated from the correlation analysis revealed that the

Fig. 4. Differentially abundant microorganisms were related to immune function genes
Abbreviations: High: patients in a high-risk group; low: patients in a low-risk group; p-adj, adjusted p value.
(A) Volcano plot showing differential gene expression in patients with different risk group. Threshold: log2 fold change >1, p-adj <0.05. (B) Heat
map showing 30 differential immune gene expression (24 upregulated and 6 downregulated) in patients with different risk groups. (C) Bubble plots
showing the correlation between 30 differential immune gene expression and 10 differential microorganisms. Spearman correlation significant (p <

0.05) coefficients are labeled in the figure.

H. Xu et al. Heliyon 10 (2024) e38310 

10 



(caption on next page)

H. Xu et al. Heliyon 10 (2024) e38310 

11 



genera were correlated with immune cells (Fig. 5F). Specifically, the negative prognosis-related microorganisms were associated with
monocyte, macrophage, and mast cell activities, which play crucial roles in inducing innate inflammatory responses. Conversely, the
positive prognosis-related microorganisms correlated with B and T cells, which are key players in adaptive immune responses. These
findings are consistent with those of previous studies and provide further insights into the complex interactions between microor-
ganisms and the KIRC immune microenvironment.

4. Discussion

With the rapid development of high-throughput sequencing technology and the continuous updating of data analysis tools, the role
of tumormicrobiomes in cancer has been further revealed [37,38]. Kidney renal clear cell carcinoma, the predominant subtype of RCC,
exhibits high metastatic and mortality rates, marked tumor heterogeneity, and robust immune cell infiltration [2,39]. The tumor
immune microenvironment has become the focus of KIRC research [40], particularly the immunosuppressive state which poses
challenges for antitumor treatment [41]. Recent decades, extensive research has revealed the potential role of microorganisms in
cancer, including its diagnosis, pathogenesis, and treatment of malignant diseases [7]. As research advances, organs and tissues that
were previously assumed to be sterile have been found to host diverse microbial populations [17]. Extensive research on tumor
microbiomes has revealed notable insights. A recent study on patients with liver cirrhosis identified a higher abundance of Strepto-
coccus mutans in the tumor microbiome, potentially promoting hepatocellular carcinoma through the TLR1/NF-κB/NLR family
pathway and IL-3β secretion [42]. Another recent study explored fungal communities across 17 cancer types, highlighting correlations
among specific fungi and tumor immune therapy responses [43]. A study in 2023 confirms the presence of a microbiota in adreno-
cortical carcinoma, revealing its prognostic and biological roles [44]. Consequently, characterizing the microbial communities within
KIRC and understanding their relationships with the immune system has become a pivotal research area [8].

This study departed from the conventional 16S rRNA-based approach and instead used amplicon analysis to directly extract mi-
crobial information from transcriptomic data, using Kraken2 software for classification. Differentially abundant microorganisms be-
tween the cancerous and paracancerous samples were discovered via LEfSe analysis and concluded that KIRC has unique intratumoral
microorganisms with a potential impact on patient survival. Subsequently, we analyzed the microbial compositions in patients
stratified by long- and short-term survival and further constructed risk value scores using Cox regression and survival analyses. Multi-
omics analysis between the microbiome and transcriptome was performed to thoroughly investigate the connections among the
microbiota, tumor transcriptome, and tumor-infiltrating immune cells. Microorganisms that contributed to a negative prognosis were
linked to natural immune activation. This activation leads to acute inflammation, which in turn is associated with tumor growth and an
unfavorable prognosis. Conversely, microorganisms associated with a positive prognosis were linked to the activation of adaptive
immune responses. This activation is associated with antitumor effects and a favorable prognosis. Further exploration is required to
elucidate the specific mechanism by which microorganisms influence tumor growth. In subsequent studies, it would be beneficial to
conduct screenings for specific microorganisms suitable for cultivation, followed by the application of quantitative polymerase chain
reaction (qPCR), protein blotting, and other methodologies to validate the impact of microorganisms on tumor progression.

Currently, drugs that benefit patients with KIRC are scarce, underscoring the need for novel biomarkers [45]. This study revealed
the significant impact of the tumor microbiota, suggesting valuable biomarkers for enhanced treatment and prognosis. KIRC manifests
a correlation between microbiota and immune cells, hinting at two potential mechanisms. One involves activating oncogenic path-
ways, such as direct or indirect modulation of factors such as interleukin 6 and tumor necrosis factor-alpha, promoting tumor pro-
gression [46]. High-risk microbes, such as Luteimicrobium, were found to be associated with macrophages and inflammation,
potentially promoting tumor progression [14]. The other mechanism involves reducing T cells, B cells, and natural killer cells in the
TME, suppressing antitumor immune responses, regulating local immune surveillance, and weakening tumor-killing effects. Low-risk
microbes, like Cytobacillus, activate adoptive immunity involving multiple T cell subsets, hindering tumor progression by modulating
immune activation [15]. Although the correlation through immune microenvironment and pathway analyses has been confirmed, the
specific mechanisms by which the microbiota affects tumor growth require further exploration. Future investigations could explore
single-cell phenotypic changes and considering the unique metabolic features of KIRC.

Some limitations must be acknowledged. First, this study only encompassed KIRC samples. Second, contaminations were inferred
from the sequencing data, which limited the reliability of the dataset. Third, the analysis was only assessed in silico. In vitro experi-
ments are still needed to validate the interplay between tumors and their microbiotas.

In summary, microbiome-based subtyping uncovered associations between tumor microbiota, clinical prognosis, and tumor
microenvironment. As an increasing number of microbiotas are being implicated in various types of malignant diseases, including
liver, ovarian, and bladder cancers [47–49], importance of our findings may extends beyond KIRC. However, the potential challenges
that lie ahead must be addressed crucially and the molecular mechanisms underlying the role of microbiotas in cancer development

Fig. 5. Survival risk scores distinguished high- and low-risk patients with distinct immune-related characteristics
Abbreviations: p-adj, adjusted p value; GO, Gene Ontology; GSEA, gene set enrichment analysis; NES, normalized enrichment score; FDR, false
discovery rate.
(A) GO functional annotation pathways of significant upregulated genes (p < 0.05). (B) GSEA graph illustrating the results of upregulated genes in
the high-risk group. Screening thresholds: |NES| > 1, p value < 0.05, and FDR (p-adj) < 0.25. (C) GO functional annotation pathways of significant
downregulated genes (p < 0.05). (D) GSEA graph illustrating the results of downregulated genes in the high-risk group. (E) GSEA ridge plot with
NES as the horizontal coordinate. (F) Heat map showing correlations between survival-related microorganisms and immune cells. Pearson corre-
lation significant (p < 0.05) coefficients are labeled.
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must be explored [16]. This study has laid the groundwork for understanding the characteristics of the RCC microbiome; however,
specific mechanisms must be explored further, and clear molecular targets must be identified [50,51]. This will be the focus of future
research efforts and the contribution of microbiotas to cancer biology may well become a pivotal area of cancer research in the coming
decade [52]. We anticipate revealing more tumor-associated microbiotas as biomarkers, elucidating their intricate relationships with
the immune microenvironment, and ultimately enabling more cancer patients to benefit from these groundbreaking findings.

5. Conclusion and future aspects

Our findings suggested several key insights. Firstly, a comparative analysis with adjacent non-tumorous tissues showed that the
tumor microbiota had decreased alpha and beta diversities along with distinct microbial compositions. Furthermore, ten microbial
genera that were significantly different between patients with long and short overall survival were identified and used for crafting a
microbiome-based risk signature for prognosis. Worth noticing, this signature facilitated the identification of two distinct microbiome-
driven subtypes that correlated with distinct clinical outcomes and immune microenvironments: four high-risk microbes were linked
to pro-tumor acute inflammation while six low-risk microbes activate adoptive immunity to hinder tumor progression. In summary,
associations between microbiota, prognosis and tumor immunity highlight the potential of utilizing intratumoral microbiota as a
prognostic biomarker. Key future aspects include elucidating the fundamental mechanisms of intratumoral microbiota interactions
with the tumormicroenvironment and identifying keymicrobes as potential therapeutic targets. Besides, real-world clinical studies are
needed to confirm the practical utility of these microbial biomarkers in predicting patient outcomes and optimizing immunotherapy
responses.
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[15] O. Foresto-Neto, B. Ghirotto, N.O.S. Câmara, Renal sensing of bacterial metabolites in the gut-kidney Axis, Kidney360 2 (9) (2021) 1501–1509, https://doi.org/
10.34067/kid.0000292021.

[16] L. Yang, A. Li, Y. Wang, Y. Zhang, Intratumoral microbiota: roles in cancer initiation, development and therapeutic efficacy, Signal Transduct Target Ther 8 (1)
(2023) 35, https://doi.org/10.1038/s41392-022-01304-4.

[17] L. Sun, X. Ke, A. Guan, B. Jin, J. Qu, Y. Wang, X. Xu, C. Li, H. Sun, H. Xu, G. Xu, X. Sang, Y. Feng, Y. Sun, H. Yang, Y. Mao, Intratumoural microbiome can predict
the prognosis of hepatocellular carcinoma after surgery, Clin. Transl. Med. 13 (7) (2023) e1331, https://doi.org/10.1002/ctm2.1331.

[18] M.C. Markowski, S.A. Boorjian, J.P. Burton, N.M. Hahn, M.A. Ingersoll, S. Maleki Vareki, S.K. Pal, K.S. Sfanos, The microbiome and genitourinary cancer: a
collaborative review, Eur. Urol. 75 (4) (2019) 637–646, https://doi.org/10.1016/j.eururo.2018.12.043.

[19] R. Dhote, N. Thiounn, B. Debré, G. Vidal-Trecan, Risk factors for adult renal cell carcinoma, Urol Clin North Am 31 (2) (2004) 237–247, https://doi.org/
10.1016/j.ucl.2004.01.004.

[20] O.V. Kovaleva, P. Podlesnaya, M. Sorokin, V. Mochalnikova, V. Kataev, Y.A. Khlopko, A.O. Plotnikov, I.S. Stilidi, N.E. Kushlinskii, A. Gratchev, Macrophage
phenotype in combination with tumor microbiome composition predicts RCC patients’ survival: a pilot study, Biomedicines 10 (7) (2022), https://doi.org/
10.3390/biomedicines10071516.

[21] Y. Guo, H.I. Tsai, L. Zhang, H. Zhu, Mitochondrial DNA on tumor-associated macrophages polarization and immunity, Cancers 14 (6) (2022), https://doi.org/
10.3390/cancers14061452.

[22] K. Wu, Y. Li, K. Ma, W. Zhao, Z. Yao, Z. Zheng, F. Sun, X. Mu, Z. Liu, J. Zheng, The microbiota and renal cell carcinoma, Cell. Oncol. (2023), https://doi.org/
10.1007/s13402-023-00876-9.

[23] S.A. Whiteside, H. Razvi, S. Dave, G. Reid, J.P. Burton, The microbiome of the urinary tract–a role beyond infection, Nat. Rev. Urol. 12 (2) (2015) 81–90,
https://doi.org/10.1038/nrurol.2014.361.

[24] A. Dobin, C.A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski, S. Jha, P. Batut, M. Chaisson, T.R. Gingeras, STAR: ultrafast universal RNA-seq aligner,
Bioinformatics 29 (1) (2013) 15–21, https://doi.org/10.1093/bioinformatics/bts635.

[25] A. Colaprico, T.C. Silva, C. Olsen, L. Garofano, C. Cava, D. Garolini, T.S. Sabedot, T.M. Malta, S.M. Pagnotta, I. Castiglioni, M. Ceccarelli, G. Bontempi,
H. Noushmehr, TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data, Nucleic Acids Res. 44 (8) (2016) e71, https://doi.org/
10.1093/nar/gkv1507.

[26] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, R. Durbin, The sequence alignment/map format and SAMtools,
Bioinformatics 25 (16) (2009) 2078–2079, https://doi.org/10.1093/bioinformatics/btp352.

[27] D.E. Wood, J. Lu, B. Langmead, Improved metagenomic analysis with Kraken 2, Genome Biol. 20 (1) (2019) 257, https://doi.org/10.1186/s13059-019-1891-0.
[28] N.M. Davis, D.M. Proctor, S.P. Holmes, D.A. Relman, B.J. Callahan, Simple statistical identification and removal of contaminant sequences in marker-gene and

metagenomics data, Microbiome 6 (1) (2018) 226, https://doi.org/10.1186/s40168-018-0605-2.
[29] M.I. Love, W. Huber, S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol. 15 (12) (2014) 550, https://

doi.org/10.1186/s13059-014-0550-8.
[30] T. Wu, E. Hu, S. Xu, M. Chen, P. Guo, Z. Dai, T. Feng, L. Zhou, W. Tang, L. Zhan, X. Fu, S. Liu, X. Bo, G. Yu, clusterProfiler 4.0: a universal enrichment tool for

interpreting omics data, Innovation 2 (3) (2021) 100141, https://doi.org/10.1016/j.xinn.2021.100141.
[31] D. Aran, Z. Hu, A.J. Butte, xCell: digitally portraying the tissue cellular heterogeneity landscape, Genome Biol. 18 (1) (2017) 220, https://doi.org/10.1186/

s13059-017-1349-1.
[32] A.M. Newman, C.L. Liu, M.R. Green, A.J. Gentles, W. Feng, Y. Xu, C.D. Hoang, M. Diehn, A.A. Alizadeh, Robust enumeration of cell subsets from tissue

expression profiles, Nat. Methods 12 (5) (2015) 453–457, https://doi.org/10.1038/nmeth.3337.

H. Xu et al. Heliyon 10 (2024) e38310 

14 

https://doi.org/10.1016/j.xcrm.2022.100884
https://doi.org/10.3322/caac.21551
https://doi.org/10.1016/j.eururo.2016.06.009
https://doi.org/10.1038/onc.2016.4
https://doi.org/10.1200/jco.2005.03.206
https://doi.org/10.1016/j.semnephrol.2019.12.004
https://doi.org/10.1016/j.semnephrol.2019.12.004
https://doi.org/10.1371/journal.pbio.1002533
https://doi.org/10.1371/journal.pbio.1002533
https://doi.org/10.1126/science.aay9189
https://doi.org/10.1038/s41586-020-2095-1
https://doi.org/10.1038/s41586-019-1608-2
https://doi.org/10.1038/ncomms3513
https://doi.org/10.1126/science.aar6918
https://doi.org/10.1038/s41586-020-2541-0
https://doi.org/10.1038/s41586-020-2541-0
https://doi.org/10.1158/2159-8290.Cd-17-1134
https://doi.org/10.34067/kid.0000292021
https://doi.org/10.34067/kid.0000292021
https://doi.org/10.1038/s41392-022-01304-4
https://doi.org/10.1002/ctm2.1331
https://doi.org/10.1016/j.eururo.2018.12.043
https://doi.org/10.1016/j.ucl.2004.01.004
https://doi.org/10.1016/j.ucl.2004.01.004
https://doi.org/10.3390/biomedicines10071516
https://doi.org/10.3390/biomedicines10071516
https://doi.org/10.3390/cancers14061452
https://doi.org/10.3390/cancers14061452
https://doi.org/10.1007/s13402-023-00876-9
https://doi.org/10.1007/s13402-023-00876-9
https://doi.org/10.1038/nrurol.2014.361
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1093/nar/gkv1507
https://doi.org/10.1093/nar/gkv1507
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1186/s13059-019-1891-0
https://doi.org/10.1186/s40168-018-0605-2
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1016/j.xinn.2021.100141
https://doi.org/10.1186/s13059-017-1349-1
https://doi.org/10.1186/s13059-017-1349-1
https://doi.org/10.1038/nmeth.3337


[33] D.K. Kochar, V. Saxena, N. Singh, S.K. Kochar, S.V. Kumar, A. Das, Plasmodium vivax malaria, Emerg. Infect. Dis. 11 (1) (2005) 132–134, https://doi.org/
10.3201/eid1101.040519.
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