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The roles of sex hormones such as estradiol, testosterone, and sex hormone-binding globulin (SHBG) 
in the etiology of lung and colorectal cancers in women, among the most common cancers after 
breast cancer, are unclear. This Mendelian randomization (MR) study evaluated such potential causal 
associations in women of European ancestry. We used summary statistics data from genome-wide 
association studies on sex hormones and from the Trøndelag Health Study (HUNT) and large consortia 
on cancers. There was suggestive evidence of 1-standard deviation increase in total testosterone levels 
being associated with a lower risk of lung non-adenocarcinoma (hazard ratio 0.60, 95% confidence 
interval 0.37–0.98) in the HUNT Study. However, this was not confirmed by using data from a larger 
consortium. In general, we did not find convincing evidence to support a causal role of sex hormones 
on risk of lung and colorectal cancers in women of European ancestry.
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Lung and colorectal cancers are among the most common cancers in women1. Morbidity and mortality of lung 
cancer have decreased in men but increased among women in many developed countries1. Even though a great 
proportion of the sex difference can reflect changes in smoking habits, factors specific to women may play an 
important role2. All major histologic types of lung cancer are associated with smoking, the association being 
stronger for small-cell lung cancer than for lung adenocarcinoma3. Besides, around 20% of lung cancers in 
European females are not attributable to smoking, and lung adenocarcinoma is the most common histologic 
type among these women4. Unlike lung cancer, there is no single risk factor accounting for the majority of 
colorectal cancer cases1.

Sex hormones have been suggested to contribute to both cancers5,6. Both normal and cancerous lung and 
colonic cells contain estrogen receptors α and β5,7,8. Randomized controlled trials (RCTs) found that the use of 
estrogen plus progestin may confer a protective role against the development of colorectal cancer, particularly 
colon cancer, in postmenopausal women9,10, while estrogen plus progestin may increase lung cancer mortality11. 
Moreover, endogenous estrogen, such as estradiol, may stimulate cellular proliferation and promote lung tumor 
growth5. Recent prospective cohort studies conducted in UK Biobank reported no association between total 
testosterone and colorectal cancer in women12–14, whereas bioavailable testosterone was found to be a protective 
factor for colorectal cancer in a cohort study of postmenopausal women13. While most of the discussion on sex 

1Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway. 
2Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, 
Norway. 3Department of Pathology, Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim, Norway. 4Center 
for Oral Health Services and Research Mid-Norway (TkMidt), Trondheim, Norway. 5Department of Public Health 
and Nursing, K.G. Jebsen Centre for Genetic Epidemiology, Norwegian University of Science and Technology, 
Trondheim, Norway. 6Department of Public Health and Nursing, HUNT Research Centre, NTNU, Norwegian 
University of Science and Technology, Levanger 7600, Norway. 7Clinic of Medicine, St. Olavs Hospital, Trondheim 
University Hospital, Trondheim, Norway. 8Institute for Clinical and Translational Research, Baylor College of 
Medicine, Houston, TX, USA. 9Division of Cancer Epidemiology and Genetics, National Cancer Institute, National 
Institutes of Health, Bethesda, MD, USA. 10Institute for Health Research, Kaiser Permanente Colorado, Denver, CO, 
USA. 11Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA. 
12Service de Génétique Médicale,  Nantes Université, CHU Nantes, Nantes 44000, France. 13Public Health Sciences 
Division, Fred Hutchinson Cancer Center, Seattle, WA, USA. 14Department of Gastroenterology and Hepatology, 
Mayo Clinic, Scottsdale, AZ, USA. 15Centre for Epidemiology and Biostatistics, Melbourne School of Population and 
Global Health, The University of Melbourne, Melbourne, VIC, Australia. email: marion.denos@ntnu.no

OPEN

Scientific Reports |        (2024) 14:23891 1| https://doi.org/10.1038/s41598-024-75305-4

www.nature.com/scientificreports

http://orcid.org/0000-0003-4134-9156
http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-44448-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-44448-1&domain=pdf


hormones and lung cancer has been focused on the role of estrogen, several studies reported the presence of 
androgen receptor in the lung and its role in promoting lung cancer development15. Conversely, a recent case-
control study suggested higher levels of bioavailable testosterone to be associated with a reduced risk of lung 
cancer in 397 case-control pairs of postmenopausal never-smoking women16. However, the sample size of this 
study was too small to draw any convincing conclusions. Sex hormone-binding globulin (SHBG), the protein 
responsible for binding and transporting sex hormones in the bloodstream, influences their action in target 
tissues by regulating their bioavailability. Only 1–2% of sex hormones are unbound and therefore bioavailable17. 
SHBG was not associated with colorectal cancer among women in the recent meta-analysis18. Overall, results 
from conventional epidemiological studies investigating the associations of sex hormones with lung and 
colorectal tumorigenesis are conflicting.

Mendelian randomization (MR) is an analytical method using genetic variants as instrumental variables 
for an exposure to investigate a potential causal relationship between this exposure and an outcome19. This 
approach attempts to overcome limitations of conventional observational studies, such as reverse causation and 
confounding, by using genetic variants that are randomly distributed at conception20. The statistical power and 
precision of MR studies may be enhanced by using two-sample MR, where genetic variant-exposure and genetic 
variant-outcome associations are derived from independent samples and combined to obtain the causal effect 
of the exposure on the outcome19,21. Several MR analyses suggested causal effects of sex hormones on various 
diseases22,23. For instance, Schmitz et al. estimated a causal effect of high estradiol levels on increased bone 
mineral density in women22. Ruth et al. found evidence that higher testosterone had adverse effects on breast and 
endometrial cancers but reduced the risk of ovarian cancer, while SHBG had a protective effect on endometrial 
cancer23. However, few MR studies have investigated the role of sex hormones on risk of lung and colorectal 
cancers. Larsson et al. did not find an association between genetically predicted estradiol levels and risk of lung 
and colorectal cancers in women24. Two other recent MR studies reported that estradiol, total testosterone, 
bioavailable testosterone, and SHBG were unrelated to colorectal cancer14,25. Nevertheless, these MR studies 
either did not analyze subtypes of lung cancer or subsites of colorectal cancer or did not have access to outcomes 
data for women specifically.

In this study, we aimed to apply two-sample MR analysis to investigate the potential causal relationships 
between endogenous estradiol, bioavailable testosterone, total testosterone, SHBG and risk of lung and colorectal 
cancers in women of European ancestry: in The Trøndelag Health Study (HUNT) in Norway, the International 
Lung Cancer Consortium (ILCCO), FinnGen and three large consortia of colorectal cancer.

Results
From publicly available data of genome-wide association studies (GWASs), we derived genetic instruments 
specific to women for sex hormones, including endogenous estradiol, bioavailable testosterone, total testosterone 
and SHBG. These consisted of two sets of genetic instruments for endogenous estradiol: respectively, three 
and one single-nucleotide polymorphisms (SNPs). The genetic instruments for bioavailable testosterone, 
total testosterone and SHBG levels comprised 89, 130 and 189 SNPs, respectively. Summary statistics for the 
associations of genetic variants of sex hormones with lung and colorectal cancers were generated in 36,631 
women from the HUNT Study (Fig.  1). We performed additional MR analyses using the ILCCO, FinnGen 
and three large consortia of colorectal cancer data (Supplementary Fig. 1). Further details on study cohorts are 
provided in Supplementary Table S126. 

Table 1 presents the characteristics of women from the HUNT Study. Among the 36,631 women, 468 women 
had lung cancer including 174 lung adenocarcinoma and 294 lung non-adenocarcinoma, 733 had colon cancer 
and 251 rectal cancer. The mean age was 47.6 years, with 51.7% being ever smokers and 77.9% being ever passive 
smokers. 

In the MR analysis using SNP-outcome association from HUNT, the two datasets were harmonized, leaving 
3 SNPs and 1 SNP for estradiol, 87 SNPs for bioavailable testosterone analyses, 127 SNPs for total testosterone 
analyses and 176 SNPs for SHBG analyses (Fig. 1). There were five genetic instruments in total. The genetic 
instruments for estradiol—proxied by 3 SNPs and 1 SNP—had a combined R2-value of 0.1% and 1.0% and a 
F-statistic of 30.3 and 28.4, respectively. The genetic instruments for bioavailable testosterone, total testosterone 
and SHBG had a combined R2-value of 4.0%, 6.4% and 12.8%, and a F-statistic of 87.6, 120.6 and 146.3, 
respectively. As presented in Table 2, higher estradiol levels proxied by our first genetic instrument of 3 SNPs was 
associated with a decreased risk of colon cancer (hazard ratio (HR) 0.38, 95% CI 0.16–0.88) based on the IVW 
method. Likewise, genetic predisposition to higher bioavailable testosterone was associated with a decreased 
risk for lung non-adenocarcinoma (HR 0.47, 95% CI 0.23–0.96, Table  3). However, the MR estimates using 
the weighted median method did not support the estradiol-colon cancer and bioavailable testosterone-lung 
non-adenocarcinoma associations, with much wider 95% CIs (HR 0.61, 95% CI 0.19–1.92 and HR 0.45, 95% CI 
0.13–1.58, respectively, Table 4). Genetically predisposed higher level of total testosterone was associated with 
a decreased risk of lung non-adenocarcinoma (HR 0.60, 95% CI 0.37–0.98), it was supported by the weighted 
median method (HR 0.43, 95% CI 0.19–0.95). The MR-Egger method showed the same direction of result but 
did not reach statistical significance (Table 4). Figure 2 displays the scatter plot of genetic association between 
total testosterone and lung non-adenocarcinoma using the three methods. The result from leave-one-out analysis 
did not suggest that the effect of total testosterone on risk of lung non-adenocarcinoma was disproportionally 
influenced by a single SNP (Supplementary Fig.  2)26. Nevertheless, none of the above reported associations 
held for multiple testing (p-value = 0.05/4 (number of sex hormones) = 0.0125). The p-values for MR-Egger 
intercepts and Q-statistics were above 0.05 (Table 4), suggesting no strong evidence of horizontal pleiotropy or 
heterogeneity for the associations described. 

Genetically predicted SHBG levels were not associated with the studied cancer types (Table 5). The rs727479 
SNP, used as the second genetic instrument for estradiol levels, was not associated with lung and colorectal 
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cancers (Supplementary Table S2)26. In addition, we found several SNPs associated with more than one sex 
hormone, cholesterol, body mass index, height, and alcohol consumption. 

In our additional analyses using larger datasets such as ILCCO (sex-stratified), FinnGen (sex-combined) and 
the three colorectal cancer consortia (GECCO, CCFR and CORECT) (sex-stratified), we did not find supportive 
evidence for associations of sex hormones with risk of lung and colorectal cancers (Supplementary Tables S3-S5 
and Supplementary Fig. 3)26. The only borderline association was between bioavailable testosterone and rectal 
cancer in the three consortia (HR 1.26, 95% CI 1.00–1.59), but the meta-analysis of the MR estimates from HUNT, 
FinnGen and the three consortia did not support this association (HR 1.04, 95% CI 0.76–1.41) (Supplementary 
Fig.  3)26. The p-values for the Q statistic indicated evidence of heterogeneity for a few associations such as 
estradiol, bioavailable or total testosterone and lung adenocarcinoma in ILCCO (Supplementary Tables S3 and 
S4).

Discussion
In our two-sample MR analysis of the HUNT Study, we found a suggestive causal effect of genetically predicted 
higher level of total testosterone on a decreased risk of lung non-adenocarcinoma, but this was not supported by 
results from the larger ILCCO. Overall, our study did not provide convincing evidence for causal associations of 
sex hormones with risk of lung and colorectal cancers in women of European ancestry.

A limited number of MR studies have explored the potential causal associations between estradiol, bioavailable 
testosterone, total testosterone and SHBG, and lung and colorectal cancer risks in women14,24,25. Similar to the 
MR study of Larsson et al. investigating the effect of estradiol on lung cancer in 198,825 women in UK Biobank24, 
we did not find evidence of a causal association. To our knowledge, the only MR study investigating the causal 
effect of testosterone on lung cancer was performed among men27. In this study, Chang et al. reported no causal 
association of bioavailable testosterone and total testosterone with lung cancer risk in men27. Nevertheless, effects 
of sex hormones are heterogenous between males and females22 and may vary among lung cancer subtypes.

The recent study by Dimou et al. combined both observational analyses including 333,530 participants 
from the UK Biobank and MR analyses using the same GWAS for sex hormones14. They did not find causal 
associations of bioavailable testosterone and SHBG concentrations with colorectal cancer risk14. Although they 
identified a positive causal association between total testosterone and colorectal cancer in women (IVW: OR 
1.09, 95% CI 1.01–1.17), this was not confirmed by their sensitivity analysis (Weighted median: OR 1.08, 95% CI 
0.94–1.25)14. This supported the null findings in our MR study. Similarly, prospective cohort studies conducted 
in UK Biobank by Peila et al. and McMenamin et al. did not report any associations between total testosterone 

Fig. 1.  Flow chart of study methodology.
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or SHBG and colorectal cancer in women12,13, even though McMenamin et al. found a protective effect of 
bioavailable testosterone on colorectal cancer in postmenopausal women13. Traditional observational studies 
may be more prone to confounding than MR studies.

A meta-analysis including four RCTs, eight cohort and eight case-control studies reported evidence of a 
protective role of estrogen therapy (RR: 0.79, 95% CI: 0.69–0.91) and combined estrogen-progestogen therapy 
(RR: 0.74, 95% CI: 0.68–0.81) on colorectal cancer10. Our findings did not support an association between 
genetically predicted estradiol levels and colorectal cancer risk in women, similarly to the MR studies of Larsson 
et al.24 and Cornish et al.25. The inconsistent findings in RCT and MR studies suggest that endogenous and 
exogenous estrogen may exert different effects on colorectal cancer risk. We also note that the genetic variants 
for estradiol levels are weak instruments. Future studies are needed to further investigate the role of endogenous 
estrogens in the prevention of colorectal cancer.

The current study is a thorough investigation of the causal associations of various sex hormones on risk of 
lung and colorectal cancer in women of European ancestry. The main strength of our study is the MR design, 
which reduced potential bias from confounders and reverse causality if the assumptions hold. These assumptions 
were likely satisfied by selecting genetic variants associated with bioavailable testosterone, total testosterone and 
SHBG at a genome-wide significance level and by relatively large F-statistics as well as applying multiple MR 
methods as sensitivity analyses that are more robust to pleiotropy. In addition, we explored the associations 
of sex hormones with lung and colorectal cancer subtypes, which were not investigated in the previous MR 

Cases

Estradiola

HRb (95% CI) p-value Q-statistic p of Q-statistic

Lung cancer 468 0.78 (0.28–2.18) 0.64 10 0.008

   Lung adenocarcinoma 174 0.52 (0.09–2.87) 0.45 3 0.27

   Lung non-
adenocarcinoma 294 1.00 (0.28–3.63) 1.00 7 0.03

Colorectal cancer 984 0.53 (0.26–1.08) 0.08 2 0.38

   Colon cancer 733 0.38 (0.16–0.88) 0.02 3 0.20

   Rectal cancer 251 1.32 (0.32–5.34) 0.70 2 0.43

Table 2.  Mendelian randomization estimates for the association of estradiol level using 3-SNPs with risk of 
lung or colorectal cancer among women in HUNT. CI confidence interval, HR hazard ratio, IVW inverse-
variance weighted, MR Mendelian randomization, SD standard deviation. aTwo-sample MR was performed 
using data on 3-SNPs (rs4764934, rs897797, rs16991615) from Schmitz22 for estradiol level and from HUNT 
for lung or colorectal cancer. b Per one-SD increase in genetically predicted rank-transformed estradiol level, 
based on the IVW method.

 

Variables

Number of subjects 36,631

Age (years) 47.6 ± 17.1

BMI (kg/m2) 26.6 ± 4.7

Number of lung cancer cases (%) 468 (1.3)

   Lung adenocarcinoma cases (%) 174 (0.5)

   Lung non-adenocarcinoma cases (%) 294 (0.8)

Number of colorectal cancer cases (%) 984 (2.7)

   Colon cases (%) 733 (2.0)

   Rectal cases (%) 251 (0.7)

Smoking status, % (never/ever/unknown) 46.6/51.7/1.7

Passive smoking, % (never/ever/unknown) 21.1/77.9/1.1

Alcohol consumption, % (never/ever/unknown) 35.3/60.9/3.8

Physical activity, % (inactive/active/unknown) 21.7/49.1/29.2

Total sitting time daily (hours), % (0–7/≥8/unknown) 59.2/26.5/14.3

Family history of cancer, % (no/yes/unknown) 71.6/27.7/0.7

Reported COPD, % (no/yes) 98.1/1.9

History of diabetes, % (no/yes/unknown) 96.8/3.1/0.1

Table 1.  Characteristics of women with complete information on genetic data in HUNT2 and HUNT3. 
Data are given as mean ± standard deviation for continuous variables. Information on lifestyle factors were 
derived from questionnaires in HUNT. If women participated in both HUNT2 and HUNT3 surveys, data were 
retrieved from HUNT2 if available. BMI body mass index, COPD chronic obstructive pulmonary disease.
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studies24,25. Finally, our study was the first to use sex-stratified genetic summary data from the ILCCO and the 
three colorectal cancer consortia (GECCO, CCFR and CORECT) to study such associations.

Our study had several limitations. First, the three SNPs used as instruments for estradiol in our study were 
nominally associated with estradiol levels at a p-value threshold of 1 × 10⁻⁷ in the UK Biobank, in which only 
a subset of the participants had estradiol levels above the detection limit22. This may result in weak instrument 
bias for estradiol, as also suggested by the small F-statistics for the two genetic instruments. Null associations 
in estradiol analyses might be due to lack of a true causal association but might also be due to weak instrument 
biasand insufficient statistical power to detect small effects. Second, we did not adjust for body mass index in 
estradiol and testosterone SNPs-outcome associations as we did for SHBG. Body mass index was not adjusted 
for in the original GWASs for estradiol and testosterone22,23,28. Two-sample MR analysis requires that the same 
covariates be adjusted for in both the genetic variant-exposure and genetic variant-outcome associations, and 
arbitrary adjustment of covariates may lead to collider bias19. Third, our genetic instruments included SNPs that 
overlapped for bioavailable testosterone, total testosterone and SHBG, and were associated with other traits, 
leading to potential pleiotropy effects. However, we excluded several genetic variants using LD-clumping to 
ensure independent variants and reduce such pleiotropy issues. In addition, there was no evidence of strong 
pleiotropy based on the results of Cochran’s Q and MR-Egger tests for our results in the HUNT Study, even 
though interpretation of MR-Egger estimate and intercept for estradiol levels should be cautious as the instrument 
comprised only 3 SNPs. Fourth, in our additional two-sample MR analyses, summary statistics for sex hormone 
SNPs-colorectal cancer associations from FinnGen were not sex-stratified. This could weaken the results as the 
effects of sex hormones may differ between women and men. However, meta-analysis of results from HUNT 
and the three colorectal consortia, with sex-specific data, would not make differences in the conclusions (data 
not presented). Fifth, the sample size and the number of lung and colorectal cancer cases were relatively small in 
the HUNT Study, making it possible to have a chance finding. To avoid this, our conclusions were drawn based 
on results from both the HUNT Study and the large consortia data. Finally, our analyses included women of 
European ancestry, limiting the generalizability of our findings to other ethnic populations.

By using summary statistics from the largest GWASs, the HUNT Study, data from ILCCO, FinnGen, three 
large consortia of colorectal cancer and multiple MR methods, we did not find convincing evidence for causal 

Method

Estradiol levela on colon cancer
Bioavailable testosteroneb on lung non-
adenocarcinoma

Total testosteronec on lung non-
adenocarcinoma

HRd (95% CI) p-value
Q-statistic/
p-value HRe (95% CI) p-value

Q-statistic/
p-value HRf (95% CI) p-value

Q-statistic/
p-value

IVW 0.38 (0.16–0.88) 0.02 3.25/0.20 0.47 (0.23–0.96) 0.04 84.55/0.52 0.60 (0.37–0.98) 0.04 136.62/0.26

Weighted median 0.61 (0.19–1.92) 0.40 0.45 (0.13–1.58) 0.21 0.43 (0.19–0.95) 0.04

MR-Egger 4.73 (0.16–140.73) 0.37 1.00/0.32 0.38 (0.10–1.37) 0.14 84.40/0.50 0.66 (0.29–1.48) 0.31 135.55/0.24

MR-Egger intercept -0.22 (-0.51–0.07) 0.13 0.008 (-0.03–0.05) 0.70 -0.004 (-0.04–0.03) 0.79

Table 4.  Mendelian randomization estimates and sensitivity analyses for the results in HUNT. CI confidence 
interval, HR hazard ratio, IVW inverse-variance weighted, SD standard deviation, SNP single-nucleotide 
polymorphism. a3 SNPs/b87 SNPs/c127 SNPs were used as instrumental variables for estradiol level22, 
bioavailable and total testosterone23, respectively. dPer one-SD increase in genetically predicted rank-
transformed estradiol level. ePer one-SD increase in genetically predicted bioavailable testosterone level. fPer 
one-SD increase in genetically predicted total testosterone level.

 

Cases

Bioavailable testosteronea Total testosteroneb

HRc (95% CI) p-value Q-statistic p of Q-statistic HRd (95% CI) p-value Q-statistic p of Q-statistic

Lung cancer 468 0.64 (0.36–1.14) 0.13 61 0.98 0.72 (0.50–1.05) 0.09 103 0.94

   Lung adenocarcinoma 174 1.07 (0.41–2.79) 0.88 62 0.98 0.96 (0.51–1.80) 0.91 106 0.91

   Lung non-
adenocarcinoma 294 0.47 (0.23–0.96) 0.04 85 0.52 0.60 (0.37–0.98) 0.04 136 0.26

Colorectal cancer 984 0.90 (0.60–1.34) 0.60 80 0.66 0.94 (0.72–1.23) 0.67 119 0.67

   Colon cancer 733 0.97 (0.61–1.54) 0.88 66 0.95 0.95 (0.70–1.29) 0.73 96 0.98

   Rectal cancer 251 0.68 (0.28–1.64) 0.39 105 0.08 0.89 (0.50–1.59) 0.69 158 0.03

Table 3.  Mendelian randomization estimates for the association of bioavailable and total testosterone levels 
with risk of lung or colorectal cancer among women in HUNT. CI confidence interval, HR hazard ratio, 
IVW inverse-variance weighted, MR Mendelian randomization, SD standard deviation. aTwo-sample MR 
was performed using summary statistics from Ruth23 for bioavailable testosterone level and from HUNT for 
lung or colorectal cancer. bTwo-sample MR was performed using summary statistics from Ruth23 for total 
testosterone level and from HUNT for lung or colorectal cancer. cPer one-SD increase in genetically predicted 
bioavailable testosterone level, based on the IVW method. dPer one-SD increase in genetically predicted total 
testosterone level, based on the IVW method.
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associations of estradiol, bioavailable testosterone, total testosterone and SHBG with lung and colorectal cancers 
in women of European ancestry.

Materials and methods
Genetic instruments
Summary statistics of sex hormones such as estradiol, bioavailable and total testosterone, SHBG were retrieved 
from available GWASs in women of European ancestry22,23,28, as presented in Supplementary Table S626. For 
endogenous estradiol levels, we used two sets of genetic instruments. The main instrument consisted of three 
SNPs previously identified to be associated with estradiol in a recent GWAS conducted in the UK Biobank, 
including rs4764934, rs16991615 and rs1063810122. Four genetic variants were found to be nominally significant 
(p-value < 1 × 10−7) in this GWAS of 163,985 women22. Among them, rs45446698 is located close to CYP3A7, 
a well-known gene involved in metabolizing exogenous hormones29. Therefore, this SNP was not included in 
our first genetic instrument due to potential pleiotropic effects. The second genetic instrument for estradiol 
comprised the SNP rs727479 located in CYP19A1 gene. This gene encodes aromatase, an enzyme that converts 
androgens to estrogens in adipose tissue30. SNP rs727479 appeared to be nominally (p-value < 1 × 10−7) 
associated with estradiol levels in a GWAS of 2767 postmenopausal women28. The two genetic instruments for 
estradiol did not include overlapping SNPs.

Genetic instruments for bioavailable testosterone, total testosterone and SHBG levels were selected at genome-
wide significant level (p-value < 5 × 10−8) from the largest GWAS to date, conducted in the UK Biobank23. To 
obtain independent SNPs for our genetic instrument, SNPs in linkage disequilibrium (LD) were pruned with a 

Fig. 2.  Scatter plot of genetic association between total testosterone and lung non-adenocarcinoma in HUNT.
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stricter clumping R2 cut-off 0.001, as performed by Hayes et al.31. The original GWAS identified 180 SNPs for 
bioavailable testosterone in 188,507 women, 254 SNPs for total testosterone in 230,454 women and 359 SNPs 
for SHBG in 188,908 women23. Following LD-clumping, the number of SNPs was then reduced to 89, 130 and 
189 SNPs for bioavailable testosterone, total testosterone and SHBG, respectively31. Figure 1 and Supplementary 
Fig. 1 display the flow charts for the study methods, and Supplementary Table S1 provides further details on 
study cohorts26.

Data sources for lung and colorectal cancers
We used data from the HUNT Study for lung and colorectal cancers. The HUNT Study is a large population-
based health study in Norway32. The study enrolled participants aged 20 years or older in four surveys: HUNT1 
(1984–1986), HUNT2 (1995–1997), HUNT3 (2006–2008) and HUNT4 (2017–2019). DNA was extracted from 
blood samples and stored at the HUNT Biobank. Genotyping was performed using Illumina HumanCoreExome 
arrays: HumanCoreExome12 v1.0 and v1.1 and UM HUNT Biobank v1.033. A strict quality control was 
performed, and samples were excluded based on specific criteria34. In total, 69,716 genotype samples of European 
ancestry passed the quality control. Imputation was performed in two rounds, using the Haplotype Reference 
Consortium (HRC) and the Trans-Omics for Precision Medicine (TOPMed) reference panels33.

For the current study we included 36,631 women from the HUNT2 and/or HUNT3 surveys, after excluding 
5313 women who did not have information on genetic variants. As the estradiol-SNP rs10638101 was not 
genotyped, the proxy rs897797, in perfect LD (R2 = 1.0) with rs10638101, was included. Using the 11-digit 
personal identification number for all residents, participants’ information was linked to the Cancer Registry of 
Norway (www.kreftregisteret.no) and diagnoses of lung and colorectal cancers were obtained up to December 31, 
2018. The Tenth Revision of the International Statistical Classification of Diseases and Related Health Problems 
codes used for registration of lung, colon and rectal cancers are C33–C34, C18 and C19–C20, respectively. Lung 
cancer histologic types were classified according to the International Classification of Disease of Oncology35. 
They were further categorized into two main subtypes: adenocarcinoma and non-adenocarcinoma including all 
other cell types based on possible difference in etiology4 and the same classification in previous studies36,37 to 
increase statistical power.

Additionally, we obtained genetic summary statistics data for associations of the hormone-related variants 
with lung cancer in women of European ancestry from ILCCO (9332 lung cancer cases and 9118 controls)38. 
Summary data for colorectal cancer were retrieved from FinnGen (4957 colorectal cancer cases and 174,006 
controls)39 and a meta-analysis of GWASs involving 44,117 women (20,381 colorectal cancer cases and 23,736 
controls) within the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO), the Colon Cancer 
Family Registry (CCFR) and the Colorectal Cancer Transdisciplinary Study (CORECT) consortium40. We 
excluded the UK Biobank participants from the three colorectal cancer consortia to avoid overlap with the 
datasets used for estimating SNP-sex hormones associations. Sex-stratified data were available from ILCCO and 
the three colorectal cancer consortia but not from FinnGen. Further information on the contributing studies is 
presented in Supplementary Table S126.

Two-sample MR analysis
MR analysis relies on three key assumptions as follows, the instrumental variable (i) is strongly associated 
with the exposure (relevance assumption), (ii) is unrelated to confounding factors of the exposure-outcome 
relationship (independence assumption) and (iii) only affects the outcome through the exposure (exclusion 
restriction assumption)19. Here, the first two-sample MR analysis was performed using summary statistics 
from available GWASs for sex hormones and summary statistics from the HUNT Study for lung and colorectal 
cancers.

The proportion of variance in each sex hormone explained by the SNPs was estimated by a combined R2-
value, and the strength of each instrument was assessed by the F-statistic41. The instrument is considered as valid 
if F-statistic > 10. We tested for possible pleiotropic association of SNPs with other traits, including potential 

Cases

SHBGa

HRb (95% CI) p-value Q-statistic p of Q-statistic

Lung cancer 468 1.44 (0.71–2.90) 0.31 184 0.31

   Lung adenocarcinoma 174 1.04 (0.34–3.21) 0.95 177 0.44

   Lung non-
adenocarcinoma 294 1.73 (0.70–4.25) 0.23 190 0.20

Colorectal cancer 971 1.14 (0.70–1.84) 0.60 179 0.40

   Colon cancer 723 1.26 (0.73–2.19) 0.41 175 0.49

   Rectal cancer 248 0.87 (0.34–2.27) 0.78 181 0.37

Table 5.  Mendelian randomization estimates for the association of SHBG level with risk of lung or colorectal 
cancer among women in HUNT. CI confidence interval, HR hazard ratio, IVW inverse-variance weighted, MR 
Mendelian randomization, SD standard deviation, SHBG sex hormone binding globulin. aTwo-sample MR was 
performed using summary statistics from Ruth23 for SHBG level and from HUNT for lung or colorectal cancer. 
bAdjusted for body mass index, per one-SD increase in genetically predicted SHBG level, based on the IVW 
method.
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confounders and mediators, at the genome-wide significance level (p-value < 5 × 10−8) using the Phenoscanner 
database and the VEP tool (https://www.ensembl.org/Tools/VEP)42. To obtain SNP-outcome associations from 
the HUNT Study, we generated coefficients (ln(HR)) and standard errors from Cox regression of risk of lung 
cancer overall, its subtypes (adenocarcinoma and non-adenocarcinoma), colorectal, colon and rectal cancers 
on each SNP using individual-level data from the HUNT2 and HUNT3 surveys. The models were adjusted for 
batch and 20 principal components (PCs) to account for population stratification, and additionally adjusted 
for body mass index for SHBG (in the SNP-outcome and SNP-exposure associations) to be consistent with 
the adjustment made in the original GWAS by Ruth et al.23. The effect estimates in the exposure and outcome 
datasets were harmonized to the same effect allele. We applied the inverse-variance weighted (IVW) method41 if 
the instrument consisted of multiple SNPs or Wald method if it consisted of only one SNP43. An IVW estimate 
of the causal effect combines the ratio estimates of each genetic variant in a meta-analysis model41. A fixed-effect 
IVW model assumes that each SNP is a valid instrument, while the random-effect model allows horizontal 
pleiotropy as long as the pleiotropy is balanced between SNPs44. Sensitivity analyses included weighted median 
method and MR-Egger method. The weighted median method can give valid MR estimates even if up to 50% of 
the variants are invalid45. The MR-Egger method gives MR estimates after taking account of pleiotropic effects. 
To assess presence of horizontal pleiotropy, we calculated intercept and p-value of the intercept of the MR-
Egger regression46. We tested for heterogeneity between SNPs using Cochran’s Q statistic for the IVW and MR-
Egger methods47. If the p-value for the Q statistic was lower than 0.05, it indicates the presence of heterogeneity 
and can imply the presence of pleiotropy. Scatter plots were used to visualize consistency between the different 
methods. Leave-one-out analyses were performed to ascertain that the effect was not driven by a single SNP.

Additionally, we ran two-sample MR analyses using summary statistics from the same GWASs for sex 
hormones and from large-scale consortia provided by the ILCCO (sex-stratified), FinnGen (sex-combined) and 
GECCO, CCFR and CORECT (sex-stratified) for lung and colorectal cancers. For colorectal, colon and rectal 
cancers, the two-sample MR estimates from HUNT, FinnGen and the three colorectal cancer consortia were 
meta-analyzed using a random-effect model to increase the statistical power of the analyses and obtain an overall 
estimate. We did not perform meta-analysis of the MR estimates from HUNT and ILCCO for lung cancer as 
the subtypes were classified differently in the two studies. Statistical analyses were performed in STATA/MP 17 
(College Station, TX, USA) and R (version 4.1.3) with packages TwoSampleMR48 and MendelianRandomization49.

The study has been approved by the Regional Committees for Medical and Health Research Ethics (REK 
South-East 2019/337). All participants signed written informed consent on participation in HUNT, with linkage 
to previous HUNT surveys and specific registries in accordance with the Declaration of Helsinki. Ethical 
approval had also been obtained in the original studies22,23,28,38,39.

Data availability
Data from the HUNT Study that is used in research projects will, when reasonably requested by others, be made 
available on request to the HUNT Data Access Committee (hunt@medisin.ntnu.no). The HUNT data access 
information describes the policy regarding data availability (https://www.ntnu.edu/hunt/data).
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