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Freshwaters play an essential role in providing ecosystem services worldwide, however, the water 
quality of different water bodies is strongly influenced by human activities such as urbanization, 
industry and agriculture. In this study, water and biofilm samples were collected from the main channel 
of the Danube River upstream and downstream of a metropolitan, from a regulated side arm within an 
urbanized area, and from two differently separated oxbow lakes located in nature conservation areas. 
The taxonomic diversity of bacterial communities was revealed by 16S rRNA gene-based amplicon 
sequencing using Illumina MiSeq platform. The results showed that all samples were dominated by 
phyla Pseudomonadota, Actinobacteriota and Bacteroidota. The bacterial community structures, 
however, clearly differentiated according to planktonic and epilithic or epiphytic habitats, as well 
as by riverine body types (main channel, side arm, oxbow lakes). The taxonomic diversity of biofilm 
communities was higher than that of planktonic ones in all studied habitats. Human impacts were 
mainly reflected in the slowly changing biofilm composition compared to the planktonic ones. Genera 
with pollution tolerance and/or degradation potential, such as Acinetobacter, Pseudomonas and 
Shewanella were mainly detected in biofilm communities of the highly urbanized section of the river 
side arm.
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In the 21st century, the uneven distribution and limited availability of freshwater resources have led to severe 
water scarcity and water quality problems due to the increased water use associated with human population 
growth as well as the effects of climate change1. Water resources are highly sensitive; thus, they can be easily 
degraded2. Due to the multiple benefits of densely populated areas, rivers worldwide have been heavily impacted 
by urbanization3. The main anthropogenic factors include industry, municipal water use, agriculture, and 
construction or alteration of water bodies, furthermore the usage of the river for transportation1. The impact of 
urbanization and anthropogenic factors on the chemical and microbiological properties of rivers has become 
the focus of research nowadays4–8.

Human activities, such as pollution of rivers and construction of dams, can lead to deterioration in water 
quality and to a decrease in water quantity. Thus, the water cannot be used in industrial processes or agricultural 
activities and cannot participate in the drinking water supply6. In addition, contamination of river waters can 
significantly affect human health5,9. At a certain pollution level, water bodies are capable of self-purification, 
whereby physical, chemical and (micro)biological processes occur in complementary and parallel ways1,10. 
Bacterial communities inhabiting freshwaters play a key role in biogeochemical cycles, by transforming and/or 
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degrading various organic materials and toxic compounds11,12. Aquatic environments provide diverse habitats 
for different microorganisms. They can populate water bodies as planktonic communities and form biofilms on 
all underwater biotic and abiotic surfaces. In littoral zones, where the flow rate is low, submerged plant surfaces 
can be an appropriate habitat for bacterial biofilm formation13. These complex plant-microbial consortia allow 
highly efficient self-purification of water bodies through the ability of macrophytes and biofilm-forming bacteria 
to degrade, assimilate and remove contaminants. In heavily polluted water bodies, however, this self-purification 
is insufficient to restore good water quality1. Most of research so far has focused on planktonic communities, 
therefore, our knowledge of riverine biofilm-forming (epiphytic or epilithic) communities is rather limited12,14–17.

The Danube River is the second longest river in Europe. Hungary is in the center of the Danube Basin 
where the river crosses the capital in a north-south direction. In the Budapest metropolitan area, the Danube 
River is exposed to significant anthropogenic effects. The Danube, due to its outstanding importance and 
potential or actual environmental pollution events, has long been the subject of various physical-chemical 
and microbiological studies, along its entire length, in different sections, and in relation to its various water 
bodies14,18–21. These studies, however, have not addressed the impact of different human activities on the overall 
bacterial communities by examining various riverine water bodies and habitat types in parallel.

The aim of this study, therefore, was to compare the planktonic, epilithic, and epiphytic bacterial communities 
of three different riverine water bodies (main river channel, side arm and oxbow lakes) of the Danube River, and 
to assess the potential anthropogenic effects of the metropolitan area on these bacterial communities.

Results
The physical and chemical characteristics of the water samples
The mean values and standard deviations of the measured water physical-chemical characteristics according 
to the sampling sites are presented in the Table 1. Neither the upstream and downstream main river channel 
sites nor the side arm and the downstream main river channel sampling sites differed significantly for most 
of the environmental parameters. However, in the case of the electric conductivity and pH values a significant 
difference was detected between the upstream main river channel and the side arm. The two oxbows differed 
significantly from the main river channel sampling sites. The pH of the side arm and the oxbow lakes was 
comparable. The Nyéki-Danube oxbow and the side arm did not differ based on the electric conductivity and 
phosphate content of the water. The Nyéki-Danube and the Riha lake oxbows clearly separated based on the pH 
values, although further significant differences were not detected (Supplementary Table 1).

The Principal Component Analysis confirmed the findings discussed above. The environmental variables 
contributed differently to the separation of the sampling sites (Fig. 1). Water temperature, electrical conductivity, 

Sampling sites Community SEQ. No. Coverage Chao ACE Sobs Inverse Simpson

Upstream Budapest (DNW) Planktonic 3311 0.98 ± 0.00 283.17 ± 23.02 291.49 ± 26.59 208.95 ± 5.29 23.06 ± 0.58

Downstream Budapest (DSW) Planktonic 3311 0.98 ± 0.00 285.94 ± 22.26 302.53 ± 30.34 207.00 ± 5.02 21.43 ± 0.49

Soroksári-Danube (SW) Planktonic 3311 0.98 ± 0.00 292.25 ± 26.25 313.86 ± 40.76 212.78 ± 6.73 21.99 ± 0.68

Nyéki- Danube (NW) Planktonic 3311 0.99 ± 0.00 187.54 ± 25.13 217.04 ± 39.80 129.49 ± 5.53 17.14 ± 0.43

Riha Lake (RW) Planktonic 3311 0.99 ± 0.00 196.58 ± 21.40 206.26 ± 28.78 146.03 ± 5.37 14.24 ± 0.50

Upstream Budapest (DNB) Biofilm 22689 1.00 ± 0.00 403.04 ± 13.28 396.03 ± 8.14 351.02 ± 3.46 13.16 ± 0.07

Downstream Budapest (DSB) Biofilm 22689 1.00 ± 0.00 368.62 ± 11.83 364.04 ± 7.50 318.06 ± 2.90 15.04 ± 0.09

Soroksári-Danube (SB) Biofilm 22689 1.00 ± 0.00 329.57 ± 5.17 329.69 ± 3.54 313.17 ± 1.81 16.07 ± 0.09

Nyéki- Danube (NB) Biofilm 22689 1.00 ± 0.00 349.18 ± 11.33 348.63 ± 8.25 321.83 ± 4.08 13.33 ± 0.16

Riha Lake (RB) Biofilm 22689 1.00 ± 0.00 362.84 ± 9.70 360.84 ± 6.68 339.83 ± 3.50 13.85 ± 0.16

Table 2. Observed (Sobs) and estimated (Chao1 and ACE) bacterial species richness, and diversity indices 
(Inverse Simpson) calculated from the 16S rRNA gene-based amplicon sequencing data of the planktonic and 
biofilm bacterial communities (sequence numbers were subsampled to the read number of the sample having 
the lowest sequence count).

 

Sampling sites Temperature (°C) Conductivity (mS/cm) pH Dissolved oxygen (mg/L) TOC (mg/L) NO3
− (mg/L) PO4

3− (µg/L)

Upstream Budapest (DNW) 13.57 ± 0.46 a 0.29 ± 0.01 a 7.54 ± 0.17 a 9.74 ± 0.51 a 3.35 ± 1.52 a 6.23 ± 0.9 ab 105.83 ± 56.8 a

Downstream Budapest (DSW) 13.06 ± 1.14 a 0.30 ± 0.01 ab 7.81 ± 0.20 ab 10.02 ± 0.78 a 2.67 ± 0.99 a 6.24 ± 0.86 a 110.83 ± 74.16 a

Soroksári-Danube (SW) 13.32 ± 0.24 a 0.37 ± 0.02 bd 8.07 ± 0.13 bc 9.69 ± 0.63 a 2.88 ± 0.59 a 7.17 ± 0.98 a 53.69 ± 7.07 a

Nyéki- Danube (NW) 17.35 ± 0.46 b 0.37 ± 0.00 cd 7.82 ± 0.07 ab 7.46 ± 0.59 b 8.52 ± 0.51 b 2.15 ± 0.23 b 45.09 ± 14.00 ab

Riha Lake (RW) 17.63 ± 0.23 b 0.64 ± 0.00 c 8.27 ± 0.04 c 7.94 ± 0.34 b 19.12 ± 0.41 b 4.96 ± 0.24 b 5.44 ± 2.25 b

Table 1. Physical and chemical variables of the water samples at the different sampling sites (average ± SD; 
n = 12 per sample) (notes: means followed by different letters in the same row differ significantly in Dunn’s 
post hoc test at 95% confidence interval. Different letters (a–d) in the same line indicate significant statistical 
difference (p < .05, Dunn’s post-hoc)).
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TOC values were higher at the oxbow sampling sites compared to the main river channel and the side arm. 
Conversely, dissolved oxygen and nitrate concentrations were the highest in the main river channel and the side 
arm of the river.

The results of the Spearman’s Rank-Order Correlation analysis (Supplementary Table 2.) indicated negative 
correlations between the dissolved oxygen (DO) concentration in the main river channel and nitrate, phosphate, 
and total organic carbon (TOC) contents. In the case of the downstream sample a stronger negative correlation 
was detected in all the three parameters than in the upstream sample. Furthermore, TOC, nitrate and phosphate 
contents were strongly positively correlated at the two main river channel sampling sites.

The diversity of the planktonic and biofilm bacterial communities
In total 2 755 240 sequences were assigned to 552 OTUs (Operational Taxonomic Unit). Good’s coverage 
indicated high sequencing depth across all sampling sites and habitats (Table  2). Diversity analysis revealed 
higher values in the case of the epilithic and epiphytic communities compared to the planktonic ones, based on 
the predicted number of OTUs (Sobs) and the estimated richness (ACE, Chao1) and diversity (Inverse Simpson) 
indices. The diversity of the planktonic communities was the highest in the side arm, comparing the five sampling 
sites. The main river channel sampling sites had a higher diversity compared to the oxbows (Table 2). In contrast, 
the epiphytic communities of the side arm had the lowest diversity among the biofilm samples.

The taxonomic composition of the planktonic bacterial communities
The dissimilarity of the sampling locations is shown in the Fig. 2A based on the relative abundance of the dominant 
planktonic bacterial phyla. Among the identified bacterial taxa, the phyla Pseudomonadota, Actinobacteriota 
and Bacteroidota were the predominant across all sampling sites with relative abundance values above 10%. 
The relative abundance values of the phyla Pseudomonadota and Actinobacteriota showed opposite trends. The 
Pseudomonadota had the lowest, and the Actinobacteriota had the highest relative abundance in the separated 
Riha lake oxbow. The phylum Verrucomicrobiota exhibited the highest abundance (> 1%) in the at the upstream 
and downstream of the main river channel sampling sites, while the lowest values in the Nyéki-Danube oxbow 
lake.

The separation of sampling sites based on planktonic bacterial orders is shown in Fig.  3A. The water 
samples from the main river channel and the Soroksári-Danube side arm formed an overlapping subgroup, 
while the two oxbow lakes were clearly separated. The orders Burkholderiales (Pseudomonadota), Frankiales 
(Actinobacteriota) and Flavobacteriales (Bacteroidota) were predominant within the planktonic bacterial 
communities at each sampling site. Furthermore, within the phylum Bacteroidota, the orders Chitinophagales, 
Cytophagales, Kapabacteriales and Sphingobacteriales all had a relative abundance higher than 1% at least one 
sampling site. Other abundant orders were identified as Chthoniobacterales (Verrucomicrobiota), Microtrichales, 
and Corynebacteriales (Actinobacteriota) and SAR11_clade (Pseudomonadota) (Supplementary Table 3).

Across all sampling sites, several bacterial genera were abundant, including Flavobacterium (Flavobacteriales), 
Fluviicola (Flavobacteriales), hgcI_clade (Frankiales), NS11-12_marine_group (Sphingobacteriales), 
Limnohabitans (Burkholderiales) and Polynucleobacter (Burkholderiales). Notably, genera Limnohabitans 

Fig. 1. The principal component analysis (PCA) biplot based on the water physical-chemical variables of the 
different sampling sites.
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(Burkholderiales) and Polynucleobacer (Burkholderiales) exceeded 10% relative abundance at least one sampling 
site (Fig. 4A, Supplementary Table 3).

In addition, genera representative of the planktonic community of the sampling sites were Terrimicrobium 
(Chthoniobacterales) for the main river channel, Dinghuibacter (Chitinophagales), Kapabacteriales 
(Kapabacteriales) and the Clade_III (SAR11_clade) for the Riha oxbow lake, and Mycobacterium 
(Corynebacteriales) and Pseudarcicella (Cytophagales) for the Nyéki-Danube oxbow lake (Supplementary Table 
3).

The taxonomic composition of the biofilm bacterial communities
The dissimilarity of the sampling sites is represented in the Fig.  2B based on the relative abundance of 
the dominant biofilm bacterial phyla. The relative abundance of phyla Pseudomonadota, Bacteroidota, 
Verrucomicrobiota, Cyanobacteria, Firmicutes, Acidobacteriota and Nitrospirota were above 1% at least one 
biofilm sample. The phyla Pseudomonadota, Bacteroidota and Verrucomicrobiota were the most abundant at 
each sampling site. The phylum Cyanobacteria was characteristic of the main river channels and the side arm. 
The phylum Firmicutes was the most abundant in the Nyéki-Danube oxbow lake, while the representatives of 
the phylum Acidobacteriota showed the highest abundance in the oxbow lakes. The relative abundance of the 
phylum Nitrospirota reached 1% only in the main river channel samples.

The sampling sites also had a clear separation according to the bacterial orders of the biofilms (Fig. 3B). The 
two epilithic samples from the main river channel and the two epiphytic samples from the oxbow lakes formed 
separated subgroups. The side arm epiphytic samples clearly separated from both subgroups. They were closer to 
the main river channel epilithic than the oxbow epiphytic samples.

Fig. 2.  Percentage distribution of 16S rRNA gene amplicon sequences among the phyla in the planktonic (A) 
and biofilm (B) bacterial communities together with the results of Bray-Curtis similarity index-based cluster 
analysis.
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The orders Aeromonadales, Enterobacterales and Pseudomonadales (Pseudomonadota), and Flavobacteriales 
(Bacteroidota) had a relative abundance above 10% at least one sampling site (Supplementary Table 3). The order 
Enterobacterales (Pseudomonadota) was characteristic of the oxbow lakes (Supplementary Table 3).

At genus level, various taxa were detected above 2% relative abundance at least at one sampling site 
(Supplementary Table 3). Within the identified genera (Fig.  4B), Pseudomonas (Pseudomonadales) was 
predominant in the epilithic communities of the main river channel. Other genera typical of this habitat were 
Acinetobacter (Pseudomonadales), Shewanella (Alteromonadales), Deefgea (Burkholderiales) and Flavobacterium 
(Flavobacteriales). The genera Rhodobacter (Rhodobacterales) and Methylotenera (Methylophilales) were 
present in the highest relative abundance in the epiphytic biofilm of the side arm compared to the other samples. 
The genera Aeromonas (Aeromonadales), Rahnella (Enterobacterales) and Rhodoferax (Burkholderiales) were 
characteristic of the epiphytic communities in the oxbow lakes.

Discussion
This study focused on a detailed comparative analysis of planktonic and biofilm (both epilithic and epiphytic) 
samples, from different sections of the same river system, affected to varying degrees by human activity.

Fig. 3. The non-metric multidimensional scaling (NMDS) ordination of planktonic (A) and biofilm (B) 
bacterial communities based on the relative abundance of orders above 1%.
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The 16S rRNA gene-based amplicon sequencing data indicated significant differences in the composition 
of planktonic and biofilm bacterial communities across all taxonomic levels (from phylum to genus) and 
habitat types (main river channel, side arm and oxbow). Although all sample types were dominated by the 
phylum Pseudomonadota (previously Proteobacteria), like in other freshwater habitats22–26, there was a twofold 
difference in its relative abundance in favor of biofilm samples compared to planktonic ones. The relative 
abundance of the phylum Actinobacteriota (previously Actinobacteria), however, was high only in the planktonic 
communities. Previous studies also reported high relative abundance of the phylum Actinobacteria in freshwater 
planktonic communities22–26. Among the dominant phyla, the relative abundance of Bacteroidota (previously 
Bacteroidetes) was higher in the planktonic bacterial communities compared to biofilms. The presence of this 
phylum could be a possible indication of faecal contamination18,27. In 2007, the Soroksári-Danube side arm was 
found to be a faecal contamination hot spot, however, for 2013 the extent of the pollution decreased18.

At lower taxonomic levels, hitherto uncultivated, typical freshwater bacteria dominated the planktonic 
communities e.g. hgcI clade (Actinobacteriota) and NS11.12 marine group (Bacteroidota). Previously, the 
hgcI clade was a dominant community member, e.g. in pelagic freshwater bacterial communities. Additionally, 
they play an integral role in the nutrient cycle by fixing carbon dioxide and taking up nitrogen-rich and 
phosphate containing compounds. Their genome encodes a high variety of degrading enzymes e.g. lysozymes, 
chitinase28. The occurrence of the NS11-12 marine group was reported from coastal, urbanized and/or polluted 
environments29–31. Despite its typical association with marine and brackish environments, the NS11-12 marine 
group has been increasingly detected in freshwater systems, such as Lake Balaton, Zala River, and Lake Fertő 
in Hungary29,32. This unexpected presence suggests a broader ecological tolerance and potential role in diverse 

Fig. 4.   Non-metric MultiDimensional Scaling (NMDS) ordination of the planktonic (A) and biofilm (B) 
bacterial communities based on the relative abundance of genera above 2%.
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aquatic habitats. While its detection in freshwater is less common, it may be indicative of higher concentrations 
of organic matter from algal blooms or other external sources29,33. The genus Limnohabitans (Pseudomonadota) 
was abundant in all studied planktonic communities. It is known as a ubiquitous member of neutral and 
alkaline planktonic communities, by degrading autochthonous organic matter from algae (e.g. monosaccharides 
and some amino acids)34–36. The growth rate might be positively influenced by the high nutrient content of 
the water37,38. In the Nyéki Danube oxbow lake water, the genera Mycobacterium (Actinobacteriota) and 
Pseudarcicella (Bacteroidota) were abundant. Members of the genus Mycobacterium are highly resistant and 
could live in many different environments, due to their high variation in degrading enzymes and the ability to 
metabolize many different compounds. Fast growing, non-tuberculotic mycobacteria were previously frequently 
isolated from various environmental (e.g. soil and sediment) samples39. Growth of mycobacteria is possible even 
at low nutrient levels; therefore, these bacteria can survive in oligotrophic environments e.g. in the biofilms of 
drinking water systems40–42. A recently published metagenome-based correlation network analysis pointed to 
the possibility of Pseudarcicella being an indicator bacterium of good water quality in freshwater lakes43. In both 
oxbow lakes, other typical freshwater bacterial genera, e.g. Fluviicola (Bacteroidota)15,44 and Polynucleobacter 
(Pseudomonadota)45 were also detected. The Polynucleobacter genus inhabits environments with a high variation 
in physical-chemical parameters, e.g. pH46,47. The genus Candidatus Methylopumilus (Pseudomonadota) is 
commonly found in freshwaters, especially where the water body has a connection with plants or is surrounded 
by different plants48, similarly to the Riha-lake sampling site.

The biofilm bacterial communities, both epilithic and epiphytic ones, showed higher taxonomic diversity than 
the planktonic ones in all Danube riverine water bodies. Similar results were also found previously49–53. Both 
species richness and taxonomic diversity were the lowest in the biofilm of the Soroksári-Duna side arm compared 
to the other sampling sites. Of the sampling sites, this side arm is the most affected by the negative impact of 
urbanization. In the Danube metropolitan area, the sampling sites separated according to the differentiation of 
the phosphate concentration in the main river channel and the nitrate concentration in the regulated side arm. 
Both the nitrogen and phosphorus compounds are plant nutrients known as the main non-point pollutants in 
rivers53,54. The water quality and the contamination of the side arm have already caused serious problems in 
the past decades. Several studies have reported the eutrophication of the water body and the increased nutrient 
content (mainly N and P) since the 1990s55–57. In this densely populated region, several diffuse pollutants of 
anthropogenic origin, such as nitrogen, phosphorus, sulphate, chloride, potassium, and vanadium, were also 
identified through a detailed physical-chemical analysis of the Danube water20. The measured physical-chemical 
parameters can also be related to differences observed in the sequence data.

Bacterial genera (e.g. Acinetobacter, Pseudomonas and Shewanella) capable of degrading pollutants and 
toxic compounds58–60 were found with higher relative abundance in the epilithic than planktonic communities 
in the main river channel. Members of all three genera isolated from a wastewater treatment system showed 
high adhesion during biofilm formation61. Recently, Acinetobacter and Pseudomonas was found to be the most 
abundant genera in microplastic-associated biofilms in the Pearl River Delta (China), as well62. In the epiphytic 
biofilm of the Soroksári-Danube side arm, the genera Methylotenera and Rhodobacter (Pseudomonadota) 
was abundant. Members of the Methylotenera genus can play a role in the nitrogen reduction. Furthermore, 
the genus was identified as a major oil degrading group in Nigeria63. The Rhodobacter species can be used for 
bioremediation and wastewater pollutant removal due to their metabolic versatility64–66. Members of the genus 
is highly abundant in eutrophic freshwaters near the shore; they are not common in a low nutrient content 
environment37. Bacterial genera, e.g. Rhodobacter, Acinetobacter and Pseudomonas are known for their storage 
and production capacity of polyhydroxy-alkanoates (PHA)58,67. The PHA molecule is used for energy storing; 
however, it can also improve the stress resistance of the microbes.

In the epiphytic biofilms of the oxbow lakes, the high relative abundance of genera Aeromonas and Rheinheimera 
(Pseudomonadota) could be a good water quality indicator43. Representatives of both genera are frequently 
isolated from reed periphyton in freshwater environment32,68,69. The genus Rahnella (Pseudomonadota), 
a naturally occurring biofilm forming member of Enterobacteriales70, was also characteristic of epiphytic 
communities in oxbow lakes. The whole genome sequencing of Rahnella aquatilis strain ZF7 revealed its potential 
for plant growth promotion, biocontrol and stress tolerance71, which may have implications for water quality.

Conclusions
In this study, differently regulated river sections of the Danube River were analyzed to explore the impact 
of anthropogenic exposure of different water bodies on the composition of planktonic and biofilm bacterial 
communities using many replicates. The results showed that different abundances of genera Pseudomonas, 
Acinetobacter, Shewanella, Aeromonas and Rheinheimera in both the planktonic and biofilm bacterial 
communities may be indicative of human impacts. The negative effects of anthropogenic activities, however, 
were more evident in the more stable biofilm communities compared to the rapidly changing planktonic ones. 
The differences in the relative abundances of Rhodobacter genus by water type and habitat may reflect this effect. 
The taxonomic composition of biofilm bacterial communities can therefore be useful indicators of long-term 
changes in water quality.

Methods
Description of the sampling locations
Five sampling locations were selected along the Hungarian section of the Danube River with various types and 
degrees of human influence (Fig. 5).

Two sampling sites were designated in the main river channel, upstream (between 1678 and 1674 river km) 
and downstream (between 1607 and 1604 river km) from the Hungarian capital14,15,21,72. Here, the river supplies 
water to about 2.5 million people in the metropolis and its agglomeration area.
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Three additional sampling sites were designated in a side arm of the Danube and two backwaters. The 
Soroksári-Danube (between 1642 and 1586 river km) is the second largest side arm of the Danube in Hungary 
(Fig. 5). It maintains a continuous connection with the main river channel; although, a sluice system regulates 
its flow rate and water level. Due to the Kvassay and the Tass sluices, the flow rate of the side arm decreased 
drastically compared to the main river channel. The riverbed of the Soroksári-Danube becomes wider and 
deeper downstream, and the riparian reed zone becomes more extensive73. The side arm is heavily exposed to 
human activities. Surrounded by a densely populated agglomeration area with significant industrial activities, it 
also offers various recreational activities (e.g. relaxation, water sports, and fishing). Due to the water regulation 
and the resulting decrease in flow rate, sedimentation and pollution have increased in the side arm compared to 
the main river channel72,74.

The Nyéki-Danube (at the 1479 river km) is situated in the Gemenc floodplain area of the Duna-Dráva 
National Park (Fig. 5). This former river sidearm naturally became an oxbow lake more than 200 years ago. 
Although, it is in contact with the main river channel during floods. Its riverine body is surrounded by a wide 
reed belt75. Due to the floodings, its water level fluctuates greatly. Based on the properties of the water body, the 
water renewal is slow, so the high sedimentation results in periodically repeated drying out72,74,76.

Riha lake (at 1447 river km) is a separated oxbow lake (Fig. 5). This water body is also located within the area 
of the Duna-Dráva National Park, but there is a livestock farm in its vicinity. The oxbow lake has completely 
lost its connection with the main river channel and is fed only by groundwater and rainwater. The water body is 
surrounded by a reed belt, the lakebed is uneven and very shallow in some places72,74.

Sample collection and in situ physical-chemical measurements
In the main river channel of the Danube, three transects perpendicular to the shore have been designated 
upstream (between 1678 and 1674 river km) and downstream (between 1607 and 1604 river km) from the 
Hungarian capital as described by21. At the Soroksári-Danube side arm (between 1642 and 1586 river km), 
Nyéki-Danube (at the 1479 river km) and Riha lake (at 1447 river km), 300–500 m long sections parallel to the 
shore were selected as described by72. Water and biofilm samples were collected in May at the beginning of the 
vegetation period.

For microbiological analysis of planktonic bacterial communities and ex situ chemical measurements, water 
samples were collected with twelve replicates from a depth of 50  cm at each of the five sampling sites. The 
samples were collected into sterile 1 l glass bottles and stored at 4–6 °C until laboratory processing within 24 h.

Biofilms were collected from different substrates with 6 replicates per sampling sites. In the main river 
channel, where reeds are absent, biofilm communities develop on the pebble surfaces. Therefore, in the upstream 
and downstream sampling sites, epilithic biofilm samples were taken via from 1, 2, and 5 m water depths at 
the transects using benthic dredging. Samples from different depths were combined as composite samples per 
transect.  A At the Soroksári-Danube side arm, the Nyéki-Danube and the Riha lake, a reed belt lines the shores 
and plays a key role in the water self-purification processes. These water bodies have muddy sediment without a 
gravel bed. Consequently, reed stems were sampled every 25–35 m along the open water edge of the reed stands. 
The biofilm samples were collected into disposable plastic bags and stored at 6–8 °C until laboratory processing 

Fig. 5. Sampling locations of the different riverine water bodies along the Hungarian section of river Danube 
(Abbreviations: upstream (north) from Budapest, DN; downstream (south) from Budapest, DS; Soroksári-
Danube, S; Nyéki-Danube, N; Riha lake, R).
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within 24 h. A total of 90 samples (12 replicates of water samples and 6 replicates of biofilm samples from all 5 
sampling sites) were used for DNA isolation, sequencing and statistical analysis.

In situ measurements were conducted at each sampling site. Temperature (°C), pH, electrical conductivity 
(S cm−1), dissolved oxygen (mg L−1), nitrate-N (mg L−1) were analysed by YSI EXO2 Multi-Parameter Water 
Quality Sonde in situ at the sampling sites. Orthophosphate (mg L−1) was determined by Spekord 210 Plus 
spectrophotometre (Analytik Jena, Germany), following Eaton et al. (2005)77. Total organic carbon (TOC, 
mg L−1) was determined by a Multi N/C 2100  S TC-TN analyser (Analytik Jena, Germany) equipped with 
a nondispersive infrared detector and a chemiluminescent detector, in accordance with the corresponding 
international standards (MSZ EN 1484:1998).

DNA extraction, Illumina MiSeq amplicon sequencing and bioinformatic analysis
For environmental DNA extraction 500 ml of water samples were concentrated by filtration using 0.22 μm pore-
sized polycarbonate filters (Millipore, Billerica, MA, USA). Biofilm from the reed stems and pebbles was washed 
with saline solution using a sterile paintbrush. The samples were centrifugated (10000  rpm for 2  min). For 
DNA extraction, biomass from the water on the filter surface, and approximately 100 mg of biofilm compacted 
by centrifuge were used. DNA extraction was performed using the DNeasy Power Soil Kit (QIAGEN, Hilden, 
Germany) according to the manufacturer’s instructions. The DNA concentration of the samples was measured 
using Qubit 4 fluorometer (Thermo Fisher Scientific, USA).

The V3-V4 region of the 16S rRNA gene was amplified by PCR using the primers Bact 341F (5’-CCT ACG 
GGN GGC WGC AG-3’) and Bact 805R (5’-GAC TAC NVG GGT ATC TAA TCC-3’) designed for the study 
of Bacteria and Archaea during next-generation sequencing78. Before sequencing, the amplicon library was 
assessed using Agilent 2100 Bioanalyzer System (Agilent Technologies, Inc., USA). For sequencing, the Illumina 
MiSeq platform (Illumina, San Diego, California, USA) pair-end, dual-index sequencing technique was used, via 
the MiSeq Reagent Kit v3 providing 300 base long reads. The sequences in fastq format are deposited in NCBI as 
BioProjects PRJNA 838445 and 1119742.

The sequences were analysed using Qiime2 software79. The 500-base long aplicon sequences were achieved 
via the joining of the read pairs using vsearch module of the software. Using the same module, the quality check 
of the read was conducted. For the OTU (Operational Taxonomic Unit) picking a 97% identity threshold was 
used and the OTUs with coverage under 0.005% were filtered out in the vsearch module80,81. The taxonomical 
classification was conducted using SILVA SSU v.138 database (https://www.arb-silva.de/).

Statistical analysis
Prior to the statistical analysis, subsampling was performed using the Mothur v. 1.48.0 software82. For 
subsampling, the lowest sequencing number was selected based on the two sample types (water, biofilm). In 
case of water samples, the lowest read number was 3311 with 498 OTUs, 22,689 read number with 532 OTUs 
was selected for the biofilm samples. For the bacterial community analyses, the relative abundance of the OTUs 
was calculated. The Shannon, the Inverse Simpson diversity indexes, the Chao1 species richness and the Good’s 
coverage were also calculated by Mothur v. 1.48.0 software82. The R 4.2.3 software83 was used for statistical 
analysis and data visualisation. Shapiro-Wilk test was selected to examine the normality of the data, while the 
Bartlett test was used to examine the homogeneity of the data. Kruskal-Wallis and Dunn’s post-hoc tests with 
Bonferroni correction were performed to analyse significant differences between the water samples. principal 
component analysis (PCA), non-metric multidimensional scaling (NMDS), and UPGMA (unweighted pair 
group method using arithmetic averages) analysis were performed. The hierarchical cluster analysis and the non-
metric multidimensional scaling were based on Bray-Curtis distances, and Euclidean distance was used in the 
principal component analysis. In the statistical test, the 0.05 p-value was considered significant. The correlation 
between the environmental parameters and the bacterial taxa was evaluated in R 4.2.3 software83 using envfit 
function within the vegan package.

Data availability
The sequences in fastq format are deposited in NCBI as BioProjects PRJNA 838445 and 1119742.
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