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Roboticized AI-assisted microfluidic
photocatalytic synthesis and screening
up to 10,000 reactions per day

Jia-Min Lu 1,2,7, Hui-Feng Wang1,2,7, Qi-Hang Guo1,2,3,7, Jian-Wei Wang2,
Tong-Tong Li1,3, Ke-Xin Chen4,5, Meng-Ting Zhang1, Jian-Bo Chen1,
Qian-Nuan Shi2, Yi Huang2, Shao-Wen Shi2, Guang-Yong Chen 4 ,
Jian-Zhang Pan 1,2 , Zhan Lu 1,3 & Qun Fang 1,2,6

The current throughput of conventional organic chemical synthesis is usually a
few experiments for each operator per day. We develop a robotic system for
ultra-high-throughput chemical synthesis, online characterization, and large-
scale condition screening of photocatalytic reactions, based on the liquid-core
waveguide, microfluidic liquid-handling, and artificial intelligence techniques.
The system is capable of performing automated reactantmixture preparation,
changing, introduction, ultra-fast photocatalytic reactions in seconds, online
spectroscopic detection of the reaction product, and screening of different
reaction conditions. We apply the system in large-scale screening of 12,000
reaction conditions of a photocatalytic [2 + 2] cycloaddition reaction including
multiple continuous and discrete variables, reaching an ultra-high throughput
up to 10,000 reaction conditions per day. Based on the data, AI-assisted cross-
substrate/photocatalyst prediction is conducted.

How many chemical synthesis reactions can an organic synthesizer
complete in a day? In most organic synthesis laboratories around the
world, the numbers are usually no more than 10 reactions per day.
Chemical synthesis, especially for many organic synthesis reactions,
are often time-consuming and take hours or even days to complete.
Therefore, the optimization and screening of organic synthesis often
requires a significant investment of time and effort by researchers1.
Recently, various automated and high-throughput organic synthesis
and screening techniques have been developed based on automated
robotics and microfluidic chemistry techniques. Flow microreactors
have advantages of fast reaction speed and high reaction efficiency
due to the scale effect of high mass and heat transfer efficiency in
microfluidic channels2–4. Photocatalytic reactions are a type of

reactions frequently-performed in organic synthesis that use light
irradiation to excite reactant molecules or catalysts to promote the
reaction, converting light energy into chemical energy5,6. Compared
with the conventional batch photocatalytic reactors, the flow photo-
catalytic microreactors could reduce the reaction time from several
days or a few hours to several hours or even minutes7,8. However, in
spite of the significant improvement in reaction speed of the current
flow photocatalytic systems, their throughputs are still much lower
than what is needed for the application of the big data-based artificial
intelligence (AI) technique to the field of chemical synthesis9–14, which
has become one of the current hotspots of chemical research as it is
considered to have the potential to transformationally improve the
efficiency of chemical synthesis research and development15–18. The
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lack of a large amount of reliable andhigh-quality data is also themajor
factor currently hindering the application of AI technique in chemical
synthesis19–25. To address this challenge, we developed an automated
high-throughput system that can complete ultra-fast photocatalytic
reactions in the seconds scale and ultra-large scale screening up to
10,000 reactions per day, using themicrofluidic liquid-corewaveguide
(LCW)26,27, automated microfluidic liquid-handling and AI techniques.

Results
Ultra-fast photocatalytic synthesis and characterization
We designed and constructed a new type of microfluidic photo-
catalytic microreactor using the LCW technique to introduce high-
intensity laser light into the microfluidic photocatalytic reaction
channel to significantly increase the speed of photocatalytic reaction
(Fig. 1A). We used four 450-nm lasers as light sources and coupled a
total of ca. 4.6W of light into the reaction area through four optical
fibers. The light transmitted by multiple total reflections in the 5-cm-
long reaction channel based on the LCW principle, resulting in a laser
luminousfluxover 3.5 × 104mW/cm2 through the channel cross section
within a channel length range of 3 cm (Fig. 1B). Such a light irradiation
intensity is ca. 10,000 times more than those in conventional batch
photocatalytic systems28,29. In the microfluidic LCW microreactor, the
laser light was reflected multiple times in the photocatalytic micro-
reactor, resulting in a more uniform high-intensity light distribution in
the 3-cm-lengthmiddle part of the 530-μm-diameter reaction channel,
which was 15 times more than the ca. 2mm irradiation depth in con-
ventional batch photocatalytic systems. However, we observed that
the use of the high-intensity laser irradiation caused a significant
increase in temperature in the capillary reactor, resulting in an increase
in side reactions and a decrease in reaction yield. To address this
problem, we designed the microfluidic LCW photocatalytic micro-
reactor as a cannula configuration with an inner reaction capillary and
an outer capillarywith the circulating cooling solution flowing through
to control the temperature of the reaction channel, for
instance, 25 ± 2 °C.

We applied the LCW photocatalytic microreactor to a typical
organic photocatalytic synthesis, photocatalytic [2 + 2] cycloaddi-
tion reaction30, which has gained extensive attention because
cyclobutane obtained through this reaction has been frequently
found in a variety of natural products with biological activity31–33.
Using the LCW photocatalytic microreactor, the photocatalytic
[2 + 2] cycloaddition reaction of substrate S-1 could be completely
converted with a residence time of only 3.3 s in the microreactor
channel, while the reaction yield and diastereomeric ratio (d.r.)
were comparable to those of conventional batch photocatalytic
systems. As a comparison, the time consumption of this photo-
catalytic [2 + 2] cycloaddition reaction in a conventional batch
photocatalytic reactor was up to 4 h with the same photocatalyst
and substrate species, concentration and photocatalyst ratio con-
ditions. Our LCW photocatalytic microreactor could shorten the
reaction time by 4300 times with the aid of ultra-high light intensity,
uniform and long-length light irradiation, stable reactor tempera-
ture control and microfluidic scale effect. To the best of our
knowledge, this is the first report of shortening a photocatalytic
reaction from several hours to a few seconds, reaching the fastest
photocatalytic reaction speed reported in the literature.

In addition to high synthetic reaction speeds, the character-
ization speed of the reaction products or reactants needs to match
the reaction speed to achieve real high-throughput screening.
Currently, the routine analysis of organic synthesis products is
usually performed by chromatography, mass spectrometry and
nuclear magnetic resonance spectroscopy (NMR), most of which
are difficult to achieve high-throughput and rapid analysis at the
second level34. Spectroscopic analysis has the advantages of non-
destructive, rapid and easy to implement online detection.

Although its weaknesses in qualitative analysis capability and
selectivity limit the application for accurate analysis of reaction
products, it is well suited inmany systems for onlinemonitoring the
changes of unsaturated groups in the synthetic reaction process to
provide decisive data for the initial high-throughput screening.
Before and after the cycloaddition reaction performed in this work,
there was a significant change in the UV spectrum of the reaction
solution (caused by the consumption of the substrate) in the region
of 280 nm–320 nm, thus the reaction solution could be online
detected by coupling a capillary flow cell to the LCW photocatalytic
microreactor and using a UV-Vis spectrometer with a detection
response time of 0.1 s. We also examined the reliability of the UV-Vis
detection method in reaction monitoring using the routine char-
acterization methods for organic synthesis reactions—gas chroma-
tography (GC) and NMR.

High-throughput photocatalytic synthesis and screening
In addition to the ability of rapid synthesis and online character-
ization, a practical high-throughput system must have the ability to
automatically change both continuous variables (e.g., reaction
temperature, time, pressure, light intensity, and reactant con-
centration, etc.) and discrete variables (e.g., substrate, photo-
catalyst and solvent species, etc.) for performing meaningful high-
throughput screening of synthesis conditions. In many cases, much
attentions are usually paid to achieving rapid organic synthesis
reactions under specific conditions, the ability to achieve rapid
screening of a large number of different conditions is frequently
overlooked. In the present system, we used a liquid handling
module consisted of a selective valve and a syringe pump to achieve
automated multistep liquid handling operations, including rapid
introducing, changing, mixing and driving of different reaction
solutions with adjustable flow rates. We uniquely used a combina-
tion of a 1-mL and a 5-mL syringes to perform multi-step reciprocal
aspirating-dispensing operations for rapidly achieving automated
mixing of mL-scale of reactants (substrate, photocatalyst and sol-
vent) within 2min. We designed a LabVIEW-based program to
control the operation of the whole modules of the system (Fig. 1C),
allowing the on-demand automated changing of photocatalyst and
substrate species, concentration, photocatalyst ratio, laser light
intensity and flow rate to achieve the fully-automated operations of
the large-scale screening of reaction conditions (>10,000 reactions)
without the need of any manual operation and intervention. This
photocatalytic synthesis and screening system also served as one of
multiple functional islands of the iChemFoundry (IC) platform. The
IC platform is a large-scale automated platform for molecular
manufacturing which consisted of various functional islands for
realizing a series of automated operations of chemical synthesis
from reactant preparation, pre-treatment, chemical synthesis
reactions, post-treatment, characterization and data analysis. By
combining the functional islands of the photocatalytic synthesis
and screening system, the reactant preparation system, an orbital
robot and an on-island robotic arm of the IC platform, complete
automation of all operations could be achieved, including solid
reagent weighing, liquid reagent metering, preparation of reagent
stock solutions, transferring and aspirating of reagent stocks, pre-
paration and introduction of reactant solutions, on-line flow pho-
tocatalytic reactions, UV spectroscopic reactionmonitoring, as well
as cyclic screening of different conditions (Fig. 1D).

With the present system, we performed a comprehensive
screening for the photocatalytic [2 + 2] cycloaddition reaction with a
total number of up to 12,000 conditions, including two discrete vari-
ables of the photocatalyst and substrate species and four continuous
variables as the laser light intensity, concentration, flow rate, and
photocatalyst ratios (Fig. 2). Each of the six variables had 4–6 levels or
species, resulting in a total orthogonal combination number of
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12,000 screening conditions (i.e., photocatalytic synthesis and analysis
experiments). In our system, the average time required to obtain the
data for each photocatalytic [2 + 2] cycloaddition reaction was only
32 s, which enabled the system to reach a screening throughput of
2600 conditions per day.

AI-assisted ultra-high-throughput photocatalytic synthesis and
screening
Although the above throughput of 2600 conditions per day with a
single flow-reactor format was higher than the highest throughputs
(e.g., 1500 reactions per day) in the automated synthesis and screening
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Fig. 1 | Flow manifold and setup of the automated ultra-high throughput
photocatalytic synthesis and screening system. A Schematic diagram of the
system flowmanifold. B Structure and light distribution of the LCW photocatalytic
microreactor. (B1) Schematic diagram of the LCW photocatalytic microreactor and
online UV-Vis absorption spectroscopic detection device; (B2) Cross-sectional light
intensity distribution in the reaction channel of the LCW photocatalytic

microreactor obtained using TracePro software. C Photographs of the system. (C1)
Overview of the system. (C2) Light sourcemodule, consisting of four 450-nm lasers
and four optical fibers. (C3) Liquid handling module with a 10-port selective valve
and a syringe pump. (C4) LCW photocatalytic microreactor. (C5) Online UV-Vis
absorption spectroscopic detection module. D Schematic diagram (D1) and pho-
tograph (D2) of the iChemFoundry platform.
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systems reported so far35–37, we noticed that it had the potential to be
improved further.

Steady-state and non-steady-state experimental mode. During the
high-throughput screening experiments for different reaction condi-
tions, when the synthesis and characterization of the previous condi-
tion experiment were completed in the flow system, a new reaction
solution needed to be introduced into the reactor and detection flow-
cell channels. Due to the convection and molecular diffusion effects
existed in the flow system, the previous reacted solution and the
newly-introduced unreacted solution would mix with each other at
their junction region, and the absorbance signals detected by the UV-
Vis detector exhibited a dynamically-changing format (Fig. 3A1) during
the switching process of different solutions. The conventional method
is towait for the newly-introduced unreacted reaction solution to flush
all of the previous reacted solution out of theflow system to enable the
detector to obtain a stable plateau-type steady-state absorbance signal
for data reading. However, such a steady-state experimental mode
requires much longer waiting time for obtaining the steady-state sig-
nals. In the above photocatalytic screening experiment under the
steady-statemode, the lasers kept irradiating themicroreactor channel
and the system spent most of the time (27 s of the 32 s of one
experimental cycle time) in switching the different experimental con-
ditions and waiting for a steady-state detection signal to be obtained
(for example, as shown in Fig. 3A2). Such a waiting time far exceeded
the actual time (<4 s) for photocatalytic synthesis and characterization

for a reaction solution, severely limiting the screening throughput for
different reaction conditions. In fact, this is one of the major limiting
bottlenecks in the application of current flow chemistry systems to
high-throughput screening.

To increase the efficiency of time utilization and screening
throughput, we proposed the strategy of non-steady-state experi-
mental mode instead of the steady-statemode by using the laser pulse
irradiationmethod to turn the irradiation laser on andoff for achieving
the rapid switching between the reacted and unreacted solutions,
producing a series of non-steady-state continuous peak-shaped signals
as shown in Figure 3A3. Under the non-steady-state mode, the waiting
time for reaction solution switching was shortened to 6 s and the
average time for each experimental cycle was shortened to 8.5 s,
achieving an ultra-high throughput up to 10,000 reaction conditions
per day (Fig. 3A3, A4, B).

However, these non-steady-state peak signals included the
combined absorbance information of the reactants and products
from the previous reacted and the newly-introduced unreacted
reaction solutions, which were influenced by multiple factors
related to the convection and molecular diffusion effects, such as
the reaction solution flow rate, the inner diameters and lengths of
the reactor and the detection flow-cell channels, and the reactants
and products molecular weights. Therefore, it was a great chal-
lenge to acquire the corresponding steady-state absorbance data
from the non-steady-state peak signals for evaluating the reaction
progress.
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Fig. 2 | High-throughput condition screening for photocatalytic [2 + 2] cycloaddition. List of variables and conditions screened in the photocatalytic [2 + 2]
cycloaddition reaction.

Article https://doi.org/10.1038/s41467-024-53204-6

Nature Communications |         (2024) 15:8826 4

www.nature.com/naturecommunications


AI-assisted absorbance prediction. For achieving this complex and
challenging task, we developed the AI-assisted absorbance prediction
method by using the AI method to analyze the influencing factors
related to the convection and molecular diffusion effects and decou-
pling the non-steady-state data of the adjacent reaction solutions

mixed with each other, to predict the corresponding steady-state
absorbance data of the respective reaction solutions.

In order to obtain accurate prediction results, we attempted to
use 10 regression models based on the principles of linear models,
decision tree, neural networks and integrated learning, to process the
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large numbers of the non-steady-state absorbance data and to predict
the corresponding steady-state absorbance data under the same
reaction condition, from which we searched for the best-performing
model. In thesemodels, the non-steady-state absorbance data (i.e., 40
absorbance data points recorded for each non-steady-state signal
peak, Fig. 3A4) as well as the all corresponding 8 variables (i.e., flow
rate, laser light intensity, wavelength, substrate concentration, pho-
tocatalyst ratio, photocatalyst concentration, substrate species, and
photocatalyst species) of the present flow photocatalytic system were
set as the inputs of the models (Fig. 4A). The corresponding steady-
state absorbance data obtained experimentally using the steady-state
modewith the same conditions (i.e., real steady-state absorbancedata)
were set as the targets of the models, and the predicted steady-state
absorbance data were set as the outputs of the models. The substrate
and photocatalyst species were input to the models in the form of
relative molecular weights instead of chemical structures, since they
are directly related to the molecular diffusion effect. On the basis of
the massive amounts of the output and target data of the 12,000
reaction conditions (Fig. 4B1), we evaluated the performance of the 10
regressionmodels based on the R2 and RMSE values of the test set. The
RMSE values were calculated based on the targets (i.e., real steady-
state absorbance data) and the outputs (i.e., predicted steady-state
absorbance data) of the models. Among these models, the XGB
regression model demonstrated the best prediction performance
(Fig. 4B2), which had the smallest RMSE of 0.0140 and the largest R2 of
0.991 with the 70: 30 proportion of the training and test set. We tried
to use less data to predict more data (such as 2.5% of the data as the
training set and 97.5% of the data as the test set) to further test the
predictive performance of the XGB regression model. Pretty good
result was still obtained where 300 conditions data were used to
predict the remaining 11,700 conditions with a RMSE of 0.0550 and R2

of 0.859 (Fig. 4B3).
These results showed that with the use of the non-steady-state

mode and the AI-assisted absorbance prediction method, the long-
standing challenge limiting the improvement of screening throughput
of flow chemical screening systems caused by inefficient and time-
consuming condition switching could be solved. Correspondingly, the
screening throughput for the photocatalytic [2 + 2] cycloaddition
reaction conditions increased from2600 to 10,000 conditions per day
using the non-steady-state experimental mode, which is the highest
level reported in the field of organic synthesis so far. If the manual
mode of conventional batch photocatalytic organic synthesis experi-
ments is used to complete the same workload, it would require 2000
organic synthesizers to work one day or a synthesizer to work
2000 days, assuming that each person could complete 5 condition
screening experiments per day. What’s more, we repeated all the non-
steady-state experiments 3 times to ensure the repeatability, and all
36,000peak signals are shown in Fig. 3. In addition, in termsof reagent
consumption, only 4.0mmol of each substrate and 0.05mmol of each
photocatalyst were required to complete the whole screening
experiment.

We used 10% of the non-steady-state absorbance data as the
training set of the XGB model to predict 12,000 steady-state absor-
bancedata, and a 10-fold cross-validation studywasperformedand the
results are shown in Supplementary Information (Table S9). All the

absorbance data were converted into product yields (Fig. 4C1). There
are 25 data squares in the heatmap, each of which consists of the data
of 1 substrate and 1 photocatalyst condition with different con-
centrations, photocatalyst ratios, flow rates, and laser light intensities
(Fig. 4C2). These data squares show different profiles of the product
yield distribution, indicating that the photocatalyst and substrate
species have significant impact on the product yields. Among the four
variables, although all of them show effects on the product yields, the
effects of the flow rate and laser light intensity are more obvious.
Therefore, we further present the 12,000 data using multidimensional
bubble plots with the x-axis of the flow rate and the y-axis of laser light
intensity.

Factors influencing photocatalytic [2+ 2] cycloaddition
reaction
In the largemajority of experiments, the yield of the reaction products
significantly increased with the increase of the laser light intensity
(Fig. 5A), indicating that sufficient high light intensity is a necessary
prerequisite for the high-efficient photocatalytic [2 + 2] cycloaddition
reaction in the LCW photocatalytic microreactor.

As shown in Fig. 5A, the product yield increased as the flow rate of
the reaction mixture decreased. A higher flow rate means a higher
throughput while a shorter residence time (i.e., light irradiation time)
of the reaction solution in the photocatalytic microreactor, which
results in a lower reaction yield (Fig. 5A). The present high-efficiency
LCW photocatalytic microreactor could overcome the contradiction
between the throughput and product yield, with which the photo-
catalytic reaction speed could be dramatically increased compared to
the batch synthesis methods38–41, while a high level of product yield
and selectivity could also be ensured. For example, in the experiment
for S-1, a residence time of 3.3 s in the photocatalytic microreactor
(corresponding to theflow rate of 200μL/min)was sufficient to ensure
that the substrate S-1 was completely and selectively converted to the
target product.

As shown in Fig. 5B, the optimal photocatalyst for each of the five
substrates was quite distinct, which reflects the significance of the
high-throughput screening. For S-1, S-4 and S-5, Ir-1 was the optimal
photocatalyst with the highest yields, while the photocatalyst Ir-5 was
the optimal photocatalyst for S-2 and the photocatalyst Ir-3 was the
optimal photocatalyst for S-3.

For the effect of the photocatalyst ratio, generally, the higher the
photocatalyst ratio, the faster the reaction speed and the higher pro-
duct yields (Fig. 5A). Formeeting the requirements of green chemistry,
1mol% photocatalyst is an optimal cost-efficiency choice under a suf-
ficient light intensity.

For the effect of the substrate concentration, in most of the plots
(Fig. 5C), we did not observe an evident correlation between the pro-
duct yields and the substrate concentrations of S-1, S-2, S-3, S-4, and S-5
in the tested rangeof 0.005M to0.02M,which are frequently adopted
in conventional photocatalytic reaction experiments. The reason for
this phenomenon may be that our system has an ultra-high catalytic
capacity which did not show a significant difference in product yield in
the tested range of the substrate concentrations.

In the conventional batch photocatalytic systems, how to
increase the substrate concentrations while ensuring sufficiently

Fig. 3 | Recordings of the typical and total absorbance signals obtained in the
large-scale screening experiment. A Typical recordings of the steady-state and
non-steady-state absorbance signals obtained in the screening for S-5, with a
photocatalyst ratio of 2mol% and a S-5 concentration of 0.01M. (A1) Typical
absorbance recordings of 6 different reaction conditions under the steady-state
screening mode. (A2) Enlarged view of the absorbance recordings for the first two
conditions of the 6 reaction conditions in (A1). It took an average time of 27 s in
each condition cycle to obtain the steady-state absorbance signal, which was cal-
culated from the difference between the reacted steady-state plateau absorbance

and the unreacted blank absorbance. (A3) Typical absorbance recordings of 30
different reaction conditions under the non-steady-state screening mode. (A4)
Enlarged view of the absorbance recordings for the 17th and 18th conditions of the
30 reaction conditions in (A3). Each condition cycle took an average time of ca. 4 s,
with a non-steady-state signal peak containing 40absorbance data points, obtained
using the laser pulse irradiationmethod.BRecordings of the non-steady-state peak
signals obtained in the screening experiment of the total 12,000 reaction condi-
tions, which was replicated three times to test the repeatability.
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high yields has been a critical challenge and has not been well
addressed so far. For example, in the photocatalytic [2 + 2]
cycloaddition reaction reported by Yoon et al. using a conventional
batch photocatalytic reactor, when the substrate concentration
increased from 0.01M to 0.05M, the product yield reduced from
89% to only 33%30. We further increased the concentration of

substrate S-1 using 50 μL/min flow rate (i.e., 13.2 s residence time) in
the present system, the results showed that the product yield
decreased slightly from 91% to 85% when the substrate S-1 con-
centration increased from 0.01M to 1.0M, and further reduced to
67% when the substrate S-1 concentration reached its solubility limit
of 2.0M (Fig. 5D). Compared with that (0.01M) of the conventional
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Fig. 4 | AI-assistedpredictionof steady-state absorbance data fromnon-steady-
state absorbance data for condition screening of photocatalytic [2 + 2]
cycloaddition. A Composition of the large dataset used in the AI-assisted steady-
state absorbance prediction, including the 12,000 absorbance data with 48
eigenvalues (8 reaction variables and 40 data points for each non-steady-state
signal peak) and 1 target (steady-state absorbance data). B AI-assisted prediction
models for predicting the steady-state absorbance data from the non-steady-state
absorbance data. (B1) Predicted and real steady-state absorbance as the outputs
and targets of the models, respectively. (B2) 10 different regressionmodels for the
prediction of the steady-state absorbance data from the non-steady-state absor-
bance data, including partial least squares regression (PLSR), linear regression,
adaptive boosting (AdaBoosting) regression, extremely randomized trees (Extra-
Tree) regression, support vector regression (SVR), k-nearest neighbor (KNN)
regression, multi-layer perceptron (MLP) regression, random forest regression,

cascade forest regression, and extreme gradient boosting (XGB) regression mod-
els. Thedashed line is the y = x line, and the solid line is a linearfit curve between the
predicted and the true steady-state absorbance values. The two metrics, R2 and
RMSE values, were calculated using the corresponding functions within sklearn.-
metrics. (B3) Performance of the test set of the XGB regression model. The pre-
diction accuracy of the test set gradually decreases as the proportion of randomly
selected training set data decreases from 70% to 2.5%. C Screening results of the
total 12,000 reaction conditions obtained using the AI-assisted steady-state
absorbance prediction method. (C1) Predicted steady-state absorbance data out-
put from the XGB model with training set: test set = 10: 90 were converted to
product yields. (C2) Heatmap showing the screening results of a total of 12,000
reaction conditions, including the orthogonal combination of 5 substrate species, 5
photocatalyst species, 4 concentrations, 4 photocatalyst ratios, 5 flow rates, and 6
laser light intensities under the non-steady-state mode.
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batch system, the substrate concentration could have a 100-fold
increase without evidently affecting the reaction yield. We further
reduced the flow rate of the 2.0M substrate reaction solution, the
yield could reach 89% at 15 μL/min (i.e., 44 s residence time) (Fig. 5E).
The high yields obtained at high substrate concentrations could be
attributed to the high light intensity and the fast mass transfer effect
in the present photocatalytic microreactor. Such a breakthrough
result is of great significance to the application of the photocatalytic
cycloaddition reaction in the industrial production of related drugs.

AI-assisted cross-species prediction
To further utilize the above 12,000 data and preliminarily explore the
potential possibility of applying AI technique to intelligent chemical
synthesis screening, we used the XGB algorithm to performAI-assisted
prediction of product yields cross-substrate and cross-photocatalyst.
For cross-species prediction of product yields, the inputs of the
models were the reaction conditions (i.e., the 8 reaction variables), the
targets were the product yields obtained experimentally, and the
outputs were the predicted product yields (Fig. 6A). Differing from the
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Fig. 5 | Screening results of 12,000 reaction conditions. A Multidimensional
bubble plots of the 12,000 data, showing the effects of different variables on the
product yield, including the species, concentrations, and ratios of the substrates
and photocatalysts, laser light intensity, and flow rate of the reaction solutions.
Each 6-dimensional bubble plot in (A1) contains 2400 product yield data of 1 sub-
strate specie and 5 photocatalyst species. Each 5-dimensional bubble plots in (A2)
contains 480 product yield data of 1 photocatalyst and 1 substrate specie, corre-
sponding to a data square in the heatmap shown in Figure 4C2. In each
5-dimensional bubble plot, the colors of the contour lines of the bubbles represent
different photocatalyst species, the colors filled in the bubbles represent different
photocatalyst ratios, and the sizes of the bubbles represent different substrate

concentrations. B Box plot showing the effect of the photocatalyst species on the
product yields of the 5 substrates. The three horizontal lines of each box from top
to bottom represent the first, median, and third quartiles of the product yield data,
respectively.CBoxplot showing the effect of the concentrations of the 5 substrates
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AI-assisted absorbance prediction, the cross-species prediction
required detailed chemical structure information of the substrate and
photocatalyst species, which were described, digitized, and input to
the models using the SMILES strings to generate Modred descriptors
(Table S1). The Mordred descriptor dimensions of each substrate and
photocatalyst species were reduced to 2 in order to match the
dimensions of the other variables and facilitate visualization in sub-
sequent study, as described in Methods. The inputs consisted of 10
dimensions, with 2 representing the substrate species, 2 representing
the photocatalyst species, and the remaining 6 representing the other
variables (Fig. 6A).

Both the results of the cross-species prediction with different
training set ratios and the cross-validation studies are described in the
Supplementary Information (Fig. S11, Table S10, S11). The 12,000
experimental data were divided into training and test sets with different
ratios for AI-assisted cross-species prediction. As a typical result of the
cross-substrate prediction, we used the data of S-1, S-2, and S-4 as the
training set to predict the yields of S-5, achieving MAE=0.0698 and
RMSE=0.0878 (Fig. 6B1). The distinct effects of the 5 photocatalyst

species on S-5 were accurately predicted and Ir-1 was predicted as the
optimal photocatalyst, which is consistent with the experimental results
(Fig. 6B2).With a smaller training set of S-1 and S-2, the prediction for S-4
and S-5 achieved with MAE=0.0772 and RMSE=0.0999 (Fig. 6B3, B4).
For the cross-photocatalyst prediction, the data of Ir-1, Ir-2, Ir-4 and Ir-5
could be used to predict the yields of Ir-3, with MAE=0.0364 and
RMSE=0.0497, which presented similar results to the real product
yields (Fig. 6C1, C2). When the training set was reduced to include
three photocatalysts of Ir-2, Ir-4 and Ir-5, pretty good prediction for Ir-1
and Ir-3 could still be obtained with MAE=0.0667 and RMSE=0.0898
(Fig. 6C3, C4). These surprising results exemplarily demonstrated the
attractive possibility of utilizing AI algorithms for cross-substrate and
cross-photocatalyst prediction of organic synthesis reactions.

Discussion
In summary, we developed a fully-automated and integrated system
for high-throughput chemical synthesis, online characterization, and
large-scale of condition screening of photocatalytic reactions.With the
LCW, microfluidic liquid-handling, and AI techniques, the present

Entry Photocatalyst Substrate Absorbance 
wavelength (nm)

Substrate 
concentration (M)

Photocatalyst 
ratio (mol%)

Photocatalyst 
concentration (M)

Reaction flow 
rate (μL/min)

Laser 
intensity (mW)

Predicted 
yield (%)lr_0 lr_1 s_0 s_1

1 0 0.90758 0 0.026131 293.3 0.005 0.5 0.000025 600 772 11.7

2 0 0.90758 0 0.026131 293.3 0.005 0.5 0.000025 600 1459 16.0

…… …… …… …… …… …… …… …… …… …… …… ……
5955 0.37390 0.42933 0.19517 1 285.4 0.01 1.5 0.00015 400 2297 7.2

5956 0.37390 0.42933 0.19517 1 285.4 0.01 1.5 0.00015 400 3082 12.2

…… …… …… …… …… …… …… …… …… …… …… ……
11999 1 0 0.25776 0.56653 293.3 0.02 2 0.0004 200 3868 72.0

12000 1 0 0.25776 0.56653 293.3 0.02 2 0.0004 200 4642 73.3

0 20 40 60 80 100

0

20

40

60

80

100

R
ea

l y
ie

ld
 (%

)

Predicted yield (%)

MAE=0.0364
RMSE=0.0497

Training set: Ir-1,2,4,5
Test set: Ir-3

S-1 S-2 S-3 S-4 S-5

0

20

40

60

80

100

Yi
el

d 
(%

)

Predicted / real yields of Ir-3
Predicted S-1
Real S-1
Predicted S-2
Real S-2
Predicted S-3
Real S-3
Predicted S-4 
Real S-4
Predicted S-5
Real S-5

0 20 40 60 80 100

0

20

40

60

80

100

R
ea

l y
ie

ld
 (%

)

Predicted yield (%)

MAE=0.0667
RMSE=0.0898

Training set: Ir-2, 4, 5
Test set: Ir-1, 3

S-1 S-2 S-3 S-4 S-5 S-1 S-2 S-3 S-4 S-5

0

20

40

60

80

100

Yi
el

d 
(%

)

Predicted / real yields Ir-3Ir-1
Predicted S-1
Real S-1
Predicted S-2
Real S-2
Predicted S-3
Real S-3
Predicted S-4 
Real S-4
Predicted S-5
Real S-5

C1 C2 C4
Prediction of Ir-3 from data of Ir-1, 2, 4, 5 Prediction of Ir-1, 3 from data of Ir-2, 4, 5

C3

Typical results of AI-assisted cross-photocatalyst prediction

0 20 40 60 80 100

0

20

40

60

80

100

Predicted yield (%)

R
ea

l y
ie

ld
 (%

)

MAE=0.0698
RMSE=0.0878

Training set: S-1, 2, 4
Test set: S-5

Ir-1 Ir-2 Ir-3 Ir-4 Ir-5

0

20

40

60

80

100

Yi
el

d 
(%

)

Predicted / real yields of S-5
Predicted Ir-1
Real Ir-1
Predicted Ir-2
Real Ir-2
Predicted Ir-3
Real Ir-3
Predicted Ir-4 
Real Ir-4
Predicted Ir-5
Real Ir-5

0 20 40 60 80 100

0

20

40

60

80

100

R
ea

l y
ie

ld
 (%

)

Predicted yield (%)

MAE=0.0772
RMSE=0.0999

Training set: S-1, 2
Test set: S-4, 5

Ir-1 Ir-2 Ir-3 Ir-4 Ir-5 Ir-1 Ir-2 Ir-3 Ir-4 Ir-5

0

20

40

60

80

100

Yi
el

d 
(%

)

Predicted / real yields S-5S-4
 Predicted Ir-1 
 Real Ir-1 
 Predicted Ir-2
 Real Ir-2
 Predicted Ir-3
 Real Ir-3 
 Predicted Ir-4 
 Real Ir-4
 Predicted Ir-5
 Real Ir-5

Typical results of AI-assisted cross-substrate prediction

Prediction of S-5 from data of S-1, 2, 4
B1 B2 B3 B4

Prediction of S-4, 5 from data of S-1, 2

Settings in AI-assisted cross-species prediction

Input: 10 dimensions (8 variables) TargetA

Fig. 6 | AI-assisted cross-species prediction. A Settings used for AI-assisted cross-
species prediction, including inputs and targets of the models. B Typical results of
the AI-assisted cross-substrate prediction, including prediction of S-5 from data of
S-1, S-2, and S-4 (B1), andprediction of S-4, S-5 fromdata of S-1 and S-2 (B3) with box
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(C3) with box plots showing product yields results (C2, C4), respectively. The
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Article https://doi.org/10.1038/s41467-024-53204-6

Nature Communications |         (2024) 15:8826 9

www.nature.com/naturecommunications


system achieved fast photocatalytic cycloaddition reaction in only a
few seconds, and reached a high-throughput screening of 10,000
reaction conditions per day that has never been reached before. It can
producemassive amount of high-quality data with extremely-low time
and reagent consumption, which is difficult to accomplish using con-
ventional systems, providing a powerful platform to facilitate the
application of AI techniques in chemical synthesis and to help
researchers explore the unknown chemical space more efficiently. As
we initially demonstrated in AI-assisted cross-species prediction, such
a large amount of data from the same experimental system could
provide a solid data base for AI applications. In the future, it would be
meaningful tomake full use of the 12,000 data and further incorporate
AI techniques, such as Bayesian optimization method, for rapid opti-
mization of new products.

In addition, the systemcanbe further improved tomeet the needs
of different types of photocatalytic reactions, for instance, changing
the light source with other wavelengths or trying other types of reac-
tions such as photocatalytic cross-coupling reactions to extend its
application scope. For the scale-up of photocatalytic reactions for
industrial production, the present system showed a unique potential
for increasing the concentration of photocatalytic substrates. In
addition to organic synthesis, the application of the system can also be
extended to other synthesis fields such as photoinduced material
synthesis or biological molecule synthesis in the future.

Methods
Building of the robotic system
The robotic system consisted of a LCW photocatalytic microreactor
module, a liquid handling module, and an online UV-Vis absorption
spectroscopymodule, which is capable of achieving rapid synthesis and
high-throughput condition screening of photocatalytic synthesis reac-
tions. We designed a new photocatalytic microreactor based on the
LCW principle, which could significantly increase the irradiation light
intensity inside the flow microreactor and realize rapid photocatalytic
synthesis. In the LCWphotocatalyticmicroreactormodule, light from 4
lasers was coupled into flow microreactor with 4 optical fibers to pro-
vide high and uniform light irradiation, while the reaction mixture
temperaturewas under control of the cannula-shaped circulating-water
temperature control device in order to ensure the selectivity of target
products. The inlet and outlet of the LCW photocatalytic microreactor
module were connected to the liquid handling module and the online
UV-Vis absorption spectroscopy module by capillaries, respectively,
allowing the reaction mixture to flow through. The liquid handling
module utilized a syringe pump and a 10-port selective valve for liquid
handling in the system, including automated introducing of different
reactants, preparing reactionmixtures and delivering them through the
LCW photocatalytic microreactor and UV-Vis detection module at set
flow rates. In order to realize high-throughput detection that could
match the efficiency of high-throughput synthesis, the absorption
spectra of the reaction mixture after synthesis were recorded in real
time by the online UV-Vis absorption spectroscopy module. The
operation of all the modules of the robotic system was automatically
controlled by a self-written program without human intervention.

LCW photocatalytic microreactor module
In order to realize the LCW-based light illumination and temperature
control of the reaction mixture, the LCW photocatalytic microreactor
was designed as a cannula configuration with an inner fused-silica
capillary (530μm i.d. and 690μm o.d., Refined Chromatography Co.,
Yongnian, China) and an outer glass capillary (1.5mm i.d. and 2.5mm
o.d., Jingke, Guangzhou, China). The inner fused-silica capillary served
as the reaction channel with the reaction mixture solution flowing
through, and the outer glass capillary acted as the temperature control
channel with the circulating cooling solution flowing through
(Fig. S1A). The inner and the outer capillary were installed with two

polypropylene tees (3.2mm, 1/8, Jieliante Technology Co., Beijing,
China). The inlet and outlet of the reaction channel were connected
with a PFA capillary (1512 L, IDEX, Northbrook, USA) and the detection
capillary (250μm i.d. and 375μm o.d., Refined Chromatography Co.,
Yongnian, China), respectively, using unions (P-702, IDEX, North-
brook, USA) or tees (P-712, IDEX, Northbrook, USA).

To provide sufficiently high laser light intensity, the light source
consisted of 4 lasers (5.5W, λmax= 450nm, Oxlasers, Shanghai, China),
from which 4 laser beams were coupled and conducted in the LCW
photocatalyticmicroreactor through4opticalfibers (400-μmdiameter,
Lanwin Technology, Zhongshan, China), respectively (Fig. S1B). Each
laser beam with a focused spot diameter of ca. 400μm could be fine-
tuned by an x-y-z translation stage to couple as much light as possible
into theopticalfiber. The 1-meter-longopticalfibers consistedof a core/
cladding/coating three-layer structure made of quartz/quartz/acrylic
with a diameter of 400/440/700μm and a refractive index of 1.446/
1.43/1.51, respectively. With one end of the optical fiber connected with
the laser for optical coupling, the other end of the optical fiber was
placed between the inner and outer channels to introduce the laser
light, and therewere twoopticalfibersbothon the left and right sides of
the LCW photocatalytic microreactor for providing uniform light illu-
mination (Fig. S1C). The light emitted from the optical fibers spread out
naturally according to thenumerical aperture (NA)of0.22, andcouldbe
uniformly distributed in the microreactor by multiple total reflections,
based on the LCW principle. With the aid of the TracePro software
(7.4.3, Lambda Research Co., Littleton, USA), we simulated the light
intensity distribution in the cross-section of the reaction channel of the
LCW photocatalytic microreactor, which showed that the main section
of the reaction channel was under the illumination of strong and uni-
form laser light (Fig. S1D).

In order to deflect the unwanted heat caused by the high-intensity
laser light and to perform the synthesis at set temperature, the cooling
solution was circulated in the outer capillary using a diaphragm pump
(KVP004, Kamoer Fluid Technology Co., Shanghai, China), and the
temperature of the circulating cooling solution was monitored in real
time by a digital temperature controller (XH-W3002, Xinghe Electronic
Technology Co., Suqian, China). The on and off of the semiconductor
chilling plate (TEC1-12706, Xinghe Electronic Technology Co., Suqian,
China) was controlled by the digital temperature controller to maintain
the temperature of the reaction mixture (Fig. S1E). When the tempera-
ture of the cooling solution was set at 20–21 °C, the actual temperature
of the reaction mixture in the reaction channel could be maintained in
the range of 22.4–27.2 °C measured by an ultrafine thermocouple.

Liquid handling module
In the liquid handling module, the reaction mixture was prepared
using a syringe pump (20738325 Cavro XCalibur Pump, Tecan, Man-
nedorf, Switzerland) and a 10-port selective valve (C5-3000EUTA, VICI,
Schenkkan, Switzerland). In order to ensure the data quality of the
condition screening, the stock solutions of different reactants need to
be freshlyprepared every day,whichweremade in 20mLvials as 0.2M
substrates and 0.0035M photocatalysts in DMSO. For performing
automated liquid handling, 7 positions of the 10-port selective valve
were utilized to select the stock solutions of different reactants for
condition screening,with position 4 connected to the solvent, position
3 connected to the substrate, and the remaining 5 positions (i.e.,
position 1, 2, 5, 6, 7) connected to different photocatalyst species. For
the syringe pump, the valve position 1 was connected to the 10-port
selective valve for introducing the reactants, and the valve position 2
was connected to a 5mL syringe that worked in conjunction with
another 1mL syringe for automated dispensing and rapid mixing
(Fig. S2A). With the innovative use of these two syringes of different
volumes, the reactants could be mixed thoroughly by quickly aspir-
ating and mixing at a rate of more than 50mL/min for several times
according to the mixture volume. Subsequently, the reaction mixture
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was introduced into the reaction channel of the LCW photocatalytic
microreactor through valve position 3 of the syringe pump.

During the reagent sampling process, the solvent DMSO was
sampled in the first step and was used to rinse the reaction channel in
the last step. The stock solutions of the substrates and photocatalysts
were sampled in the intermediate steps to facilitate the homogeneous
mixing of the reaction mixture. In order to save time in preparation
and ensure high throughput, the volume of reactionmixture prepared
each time shouldbe sufficient to complete the screening for a set of 30
conditions with different flow rates and laser light intensities
(5 × 6 = 30). In the screening for each set of 30 steady-state conditions,
at least 15 reciprocal aspirating-dispensingoperationswere required to
achieve the complete mixing of 5mL of reaction mixture solution,
which took 2min 30 s. In the screening for each set of 30 non-steady-
state conditions, at least 10 reciprocal aspiration-dispensing opera-
tionswere required to achieve the completemixing of 3mLof reaction
mixture solution, which took 1min 15 s. After screening conditions of 6
different laser light intensities at the same flow rate, the reaction
channel was rinsed with the unreacted mixture solution to allow the
absorbance signal back to the baseline before changing the flow rate.
When changes in substrate concentration, photocatalyst ratio, pho-
tocatalyst or substrate species were required, it was necessary to
thoroughly clean the reaction channel and the detection flow-cell
channel with solvent DMSO to avoid cross-contamination. In addition,
we tested the performance of the system by alternatively performing
condition screenings on reaction mixture of S-1 (0.01M) catalyzed by
Ir-1 (1mol%) and reaction mixture of S-1 (0.01M) catalyzed by Ir-4
(1mol%), using operations of changing the stock solutions with the 10-
port selective valve. Each set of experiments was repeated 3 times. The
results showed good reproducibility with RSD below 5% (Fig. S2B).

Online UV-Vis absorption spectroscopy module
In the online UV-Vis absorption spectroscopy module, a 6 cm-long
fused-silica capillary (250μm i.d. and 375μm o.d., Refined Chromato-
graphy Co., Yongnian, China) was connected to the LCW photo-
catalyticmicroreactormodule as a detection flow-cell with an effective
detection path length of 240μm, and the protective layer was
removed to allow UV-Vis light to pass through. UV-Vis spectra were
recorded on a spectrometer (QEPro, Ocean Optics Co., Dunedin, USA)
using a light resource (250-2500 nm, DT-MINI2-GS, Ocean Optics Co.,
Dunedin, USA) and 2 optical fibers placed on both sides of the detec-
tion capillary for light output (OP600-2-UV-VIS, Ocean Optics Co.,
Dunedin, USA) and acquisition of the absorbance signal (OOS-003946-
13, Ocean Optics Co., Dunedin, USA), respectively.

In order to verify the feasibility of this online UV-Vis absorption
spectroscopymethod, the absorption spectra of carmine pigment as a
standard sample were compared in a conventional 10mm cuvette and
in the present 250μm detection capillary, and the result showed a
good fit between the two ones at the wavelengths longer than 260nm
(Fig. S3A). However, when the wavelength was less than 260 nm, the
absorbance measured in the detection capillary was slightly shifted
compared to those measured in the 10mm cuvette, which may be
related to the relatively weak intensity of the light source in the deep
UV wavelength range. Considering that most of the organic synthesis
mixture solutions have significant absorption at the wavelengths
longer than 260nm, it is feasible to use this kind of capillary as a
detection cell for online UV-Vis absorption spectroscopy detection.

Subsequently, we measured the absorption spectra of each com-
ponent of the photocatalytic [2 + 2] cycloaddition reaction with the
detection module, and there was obvious absorption change of the
substrate compared to theproducts (Fig. S3B). Taking substrate S-1with
the correspondingproducts P-1 as an example, the products had almost
no absorption at the measured wavelength of 293.3 nm. Since the
amount of photocatalystswould not consume as the reactionproceeds,
theoretically the absorption of the photocatalyst should be constant

(Fig. S3C). Catalyzed by photocatalyst Ir-1, the absorbance of the reac-
tion mixture at 293.3 nm gradually decreased as the flow rate
decreased, which could indicate the consumption of substrate S-1 and
the generation of the products P-1 (Fig. S3D). In the actual experiments,
all theUV-Vis absorption spectra information at thewavelength rangeof
200–1100nm was recorded to retain as much information as possible,
and all absorption spectra were smoothed five times to ensure data
quality. For the S-2, S-3, S-4 and S-5 systems, the appropriate wave-
lengths for absorbance observation were also selected, with 293.3 nm
for S-2 and S-5, 285.4 nm for S-3 and 310.7 nm for S-4, respectively.

Basic operation and synthesis procedure of the robotic system
Based on the conditions to be screened, an automated program was
written with LabView (8.0, National Instruments, Austin, USA) to con-
trol the operation of the 10-port selective valve, syringe pump, adjus-
table power supply for controlling the laser light intensity and the
operation of the on-line UV-Vis spectrometer. In the liquid handling
module, different substrates and photocatalyst species were selected,
and the desired volumes of the stock solutions were aspirated using
the 10-port selective valve and the syringe pump to prepare the reac-
tion mixtures according to the set conditions. After fast and homo-
geneous mixing, the reaction mixture was delivered into the reaction
channel of the LCW photocatalytic microreactor module for rapid
synthesis. Unless otherwise mentioned, the photocatalytic [2 + 2]
cycloaddition reaction was performed in the LCW photocatalytic
microreactor at ambient temperature, with automatic control of the
reaction temperature (e.g., 25 ± 2 °C) and uniform light irradiation
from the 450nm lasers. After synthesis, the product yields were eval-
uated based on the absorbance data obtained by the online UV-Vis
absorption spectroscopy module. For the representative conditions,
and the GC chromatogramdata of the reactionmixture after synthesis
was measured with a GC system (7890A, HP-5 column, Agilent Tech-
nologies, Santa Clara, USA) with a flame ionization detector (FID). The
detailed procedures followed for each compound and characteriza-
tion are shown in Supplementary Information (Fig. S8).

AI-assisted prediction of the steady-state absorbance data from
the non-steady-state absorbance data
We attempted to use AI technique to process the large numbers of the
non-steady-state peak signals and predict the corresponding steady-
state absorbance data. First, the non-steady-state absorbance data
were aggregated into a large dataset with 12,000 samples, each of
which contained 48 eigenvalues (8 reaction variables and 40 absor-
bance values of a non-steady-state signal peek) and 1 standard output
value (steady-state absorbance) (Fig. 4A3).

We tried 3 different principal component analysis (PCA) to
downscale the original eigenvalues, and normalized the eigenvalues to
improve the model performance. In PCA scheme 1, the 40 non-steady-
state absorbance values were downscaled to 1 parameter and then
combined with the remaining 8 reaction variables to form new 9
eigenvalues. In PCA scheme 2, we directly downscaled the 48 eigen-
values, while in PCA scheme 3, the 48 eigenvalues were directly used
without dimensionality reduction. Taking the XGB model as an
example, the model trained with eigenvalues form PCA scheme 1 had
the best performance (Fig. S4A).

On the basis of the massive amounts of the data of the 12,000
reaction conditions, using the principles of linearmodels, decision tree,
neural networks and integrated learning, we evaluated 10 regression
models including partial least squares regression (PLSR), linear regres-
sion, adaptive boosting (AdaBoosting) regression, extremely rando-
mized trees (ExtraTree) regression, support vector regression (SVR),
k-nearest neighbor (KNN) regression, multi-layer perceptron (MLP)
regression, random forest regression, cascade forest regression, and
extreme gradient boosting (XGB) regression (Fig. 3A2). Python (Version
3.6.8) and Microsoft Visual Studio Professional 2017 were used as the
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development environments. The Python packages including sklearn
(Version 0.22), xgboost (Version 1.5.2), and deepforest (Version 0.1.5)
were used to train the regression models and to predict the results of
the test set. To compare the model performance, the dataset was ran-
domly divided into training and test sets with a proportion of 70% and
30%, respectively. The training set was subjected to k-fold cross-vali-
dation, and the hyperparameter combinations of the models were
optimized by grid search to improve the model performance. The
model performance evaluation metrics RMSE and R2 were calculated
using the corresponding built-in functions within sklearn.metrics.

Using the XGBmodel which showed the best performance among
all 10 AI regression models, we respectively used 10% and 30% of non-
steady-state data as the training sets to predict the steady-state
absorbance data. Then, all the 12,000 absorbance data (including
5 substrate species, 5 photocatalyst species, 4 substrate concentra-
tions, 4 photocatalyst ratios, 5 reaction flow rates, and 6 laser light
intensities) were converted to product yields, and the absolute error
between the non-steady-state and steady-state product yields are
shown in the heatmaps (10% in Fig. S4B, 30% in Fig. S4C).

Descriptor and algorithms used in AI-assisted cross-species
prediction
In order to conduct the cross-substrate and cross-photocatalyst pre-
diction, Mordred descriptor was employed to represent different
substrates and photocatalysts, which is a popular choice of molecular
descriptor calculation software in cheminformatics studies. Mordred
descriptor is a combination of known structural and functional prop-
erties, such as topological indices and adjacency matrix, and its
robustness and comprehensive descriptor calculation capabilities
make it well-suited for our prediction task.

With the SMILES string of eachmolecule as part of the inputs of the
models (Table S1),Mordred could generate both 2D and3Ddescriptors,
encompassing a list of more than 1800 descriptors. However, such a
dimension of the Mordred descriptors was very high compared with
other numerical variables (i.e., laser light intensity, flow rate, substrate
concentration, photocatalyst ratio, photocatalyst concentration, and
absorbance wavelength), which may hamper the predictive capabilities
of themodel. Given the specificity of our problem,where the number of
Mordred descriptors far exceeded those of other numerical variables,
we did not perform feature selection. Instead, we reduced the dimen-
sion ofMordred descriptor of each substrate and photocatalyst species
from more than 1800 to 2 with T-distributed stochastic neighbor
embedding (TSNE) algorithm, which is a widely used unsupervised
dimension reduction technique owing to its advantage in capturing
local data characteristics and revealing subtle data structures. Given the
large number of Mordred descriptors, the TSNE algorithm is preferable
due to its ability to manage high-dimensional data. The reduced Mor-
dred descriptors were then concatenated with other 6 numerical vari-
ables to construct the final reaction fingerprints.

We used the XGB algorithm for cross-substrate and cross-
photocatalyst prediction, which was a highly efficient and flexible
machine learning algorithm based on the gradient boosting frame-
work. It is renowned for its outstanding performance and high effi-
ciency, which are optimized through parallel processing and tree-
pruning. Additionally, the XGB’s regularization method could prevent
overfitting, thereby improving the model’s generalizability.

Data availability
Source data are provided with this paper. All data are available from
the corresponding author upon request.

Code availability
The source code and dataset are available at GitHub https://github.
com/LJM-1997/NCOMMS-24-15301-T and Zenodo https://doi.org/10.
5281/zenodo.1373869942.
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