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Abstract
Motivation: Whole-genome bisulfite sequencing is a powerful tool for analyzing chromatin methylation genome-wide, but analysis of whole- 
genome bisulfite data is slow, inflexible, and often inaccurate.
Results: We developed PCBS (Principal Component BiSulfite), a computationally efficient R package for Whole Genome Bisulfite Sequencing 
analysis that demonstrates remarkable accuracy and flexibility compared to current tools. PCBS identifies differentially methylated loci, differen-
tially methylated regions, and offers novel functionality that allows for more targeted methylation analyses. PCBS uses minimal computational 
resources; a complete pipeline in mouse can run on a local RStudio instance in a matter of minutes.
Availability and implementation: PCBS is an R package available under a GNU GPLv3 license on GitHub: https://github.com/katlande/PCBS 
and CRAN: https://CRAN.R-project.org/package=PCBS. Instructions for use are available at: https://katlande.github.io/PCBS/.

1 Introduction
DNA methylation plays important roles in a variety of basic 
biological functions such as gene splicing, transcription, and 
chromosomal stability, as well as in numerous disease states 
including cancer, autoimmune, and neurodevelopmental dis-
eases (Robertson 2005, Jones 2012, Grolaux et al. 2022). 
Whole Genome Bisulfite Sequencing (WGBS) is one of the 
most powerful tools for assessing methylation states ge-
nome-wide.

The current analysis paradigm for WGBS generally 
involves identifying a small number of significantly differen-
tially methylated loci (DMLs) and/or differentially methyl-
ated regions (DMRs) in order to classify the differences in 
methylation between experimental conditions. While these 
sites and regions are useful, focusing on them exclusively 
risks discarding a large amount of biologically relevant infor-
mation and diminishes the flexibility and power granted by a 
whole genome dataset. However, because analyses of WGBS 
data are plagued by slow computational times that root from 
the massive sizes of whole genome data, many researchers 
ultimately opt to focus just on these selected sites. Here, we 
introduce Principal Component BiSulfite (PCBS): a novel, 
user-friendly, and computationally efficient R package for 
analyzing WGBS data holistically.

PCBS is built on the simple premise that if a principal com-
ponent analysis (PCA) strongly delineates samples between 
two conditions, then the value of a methylated locus in the ei-
genvector of the delineating principal component (PC) will be 
larger if that locus is highly different between conditions. 

Thus, eigenvector values, which can be calculated quickly for 
even a very large number of sites, can be used as a score that 
roughly defines how much any given locus contributes to the 
variation between two conditions. This premise has been pre-
viously described for analysis of methylation array data 
(Zheng et al. 2023), but to our knowledge it has never been 
packaged for the analysis of WGBS data. Herein, we provide 
several new tools for analyzing WGBS data under this para-
digm and provide a proof of concept that PCBS matches or 
outperforms other commonly used tools in speed and accu-
racy metrics when used on real and simulated data. While the 
present paper focuses mostly on benchmarking PCBS’s DML 
and especially DMR calling functionality against other soft-
wares, details of its more holistic functionality can be found 
in our vignettes (see: Availability and implementation).

2 Materials and methods
PCBS requires the sequencing depth and percent methylation 
for each locus in each sample, provided in a single data frame 
with two columns per sample. We offer a script that can con-
vert the output of a Bismark (Krueger and Andrews 2011) 
alignment pipeline into PCBS input file format and also pro-
vide an example input file called eigen in the data of the 
PCBS R package.

2.1 Test data
To test the speed and accuracy of PCBS, we used archived 
wildtype mouse WGBS samples from (Cole et al. 2017), rep-
resenting methylation in four young and four old individuals. 
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Separately, we considered three smaller, entirely simulated 
test genomes with differing amounts of true variable sites to 
assess accuracy (Supplementary Fig. S1A and B). Each simu-
lated genome is 24 megabases in total length, with 1.2 million 
measured methylated loci across three chromosomes. The 
simulated genomes have roughly 30x coverage. For the pur-
poses of accuracy testing, we use the simulated genomes as 
these have known true variable sites. For all other purposes 
including measurements of computing time, we use the ar-
chived mouse data aligned to mm10.

2.2 Simulated genomes
Three simulated genomes of equal length were generated 
with different numbers of true variable sites to reflect low, 
medium, and high variation comparisons. 8358, 18 774, and 
37 192 “true” DMLs were added to each genome, respec-
tively. These DMLs were primarily assigned to “true” DMR 
regions of randomly assigned lengths between 100 and 
4000 bp (45, 106, and 192 true DMRs in the low, medium, 
and high variation respectively). 1000, 3000, and 6000 stray 
differential loci were additionally added to each set. These 
stray DMLs reflect real WGBS data, which we have observed 
to contain a substantial amount of differentially methylated 
loci outside of DMRs. In this case, we arbitrarily opted for 
about 15% of our simulated true sites to be stray DMLs. 
Each differential locus was randomly assigned as either hypo- 
or hyper-methylated. They were also randomly assigned a 
25%, 50%, or 75% modifier, representing low-, medium-, 
and high-intensity methylation differences between treatment 
and control samples.

Per simulation, three treatment and three control samples 
were generated for each of the three genome variation levels 
described above, and sites were seeded with a random percent 
methylation across all samples. The values of each locus’ per-
cent methylation were pulled from a normal distribution 
[μ¼0.5, SD¼0.1, max¼ 0.75, min¼0.25] for NS sites, 
[μ¼0.55, SD¼0.1, max¼0.85, min¼ 0.35] for hyper sites, 
and [μ¼ 0.45, SD¼0.1, max¼0.65, min¼0.15] for hypo 
sites. The randomly assigned intensity modifiers were applied 
to each “true” site, so that there was a relatively equal mix of 
high, medium, and low intensity percent methylation differ-
ence represented in each simulated genome.

3 Results
3.1 Differentially methylated loci
Most WGBS analysis software focuses on calling differen-
tially methylated loci (DMLs) by applying statistical tests 
such as beta-binomial distributions (Dolzhenko and Smith 
2014, Feng and Wu 2019) or logistic regressions (Akalin 
et al. 2012) across samples at all sequenced sites. PCBS does 
not do this, and opts simply to rank loci by their eigenvector 
score. While this does not return locus-level P-values, a sim-
ple rank cut-off performs comparably to software using the 
aforementioned methodology when identifying DMLs 
(Fig. 1A), as rank order is strongly correlated to “true” DML 
sites in simulated datasets (Supplementary Fig. S2A). The op-
timal cut-off for DML calling occurs just above the inflection 
point on a plot of locus rank versus absolute locus eigenvec-
tor score (Supplementary Fig. 2B). PCBS offers two modes 
for estimating this cut-off. In most cases, we recommend the 
“intersect” method, where the rank cut-off is defined as the 
intersection between the linear line of best fit for the highest- 

scoring sites (true variation), and that of the lowest-scoring 
sites (background noise). For very low variation datasets, we 
also offer the “strict,” method, which functions similarly, but 
takes the halfway point between PCBS-intersect and the max-
imum rank value of the true variation line of best fit as the 
cut-off instead. Moreover, while DML calling accuracy is 
similar across software including PCBS, PCBS requires the 
fewest computational resources by a large margin (Fig. 1B).

3.2 Differentially methylated regions
DMRs are a cornerstone of WGBS analysis, and are generally 
defined as regions containing a number of DMLs (Campagna 
et al. 2021, Peters et al. 2021). Common DMR callers may 
look for enrichment in genomic bins (Akalin et al. 2012), by 
merging nearby significant loci and identifying regions above 
a certain threshold of percent significant sites (Feng and Wu 
2019), or by using hidden Markov models (Song et al. 2013). 
However, PCBS uses an entirely novel algorithm to identify 
DMRs. It works broadly by taking a user-defined rank cut- 
off, wherein loci above this rank are extracted as “seeds.” It 
then compares the median eigenvector scores of regions 
around these seeds against random local background regions 
in permutations (Supplementary Fig. S3A). Because we ex-
pect many of the loci in a single “true” DMR region to be se-
lected as seeds, seeds that are near each other are collapsed 
into single seed points at their median, and are treated as sin-
gle points called “compressed seeds.” This dramatically 
reduces computing times. From each “compressed seed,” the 
algorithm expands outwards up to a maximum (user-defined) 
DMR size, then identifies the smallest expansion containing 
over 90% of the most variable sites. Following expansion, 
the tails of these DMRs are trimmed to remove stretches of 
sites with eigenvector scores similar to those of the back-
ground. Final DMR significance is calculated by comparing 
the rank of all DMR sites to those in a bootstrapped, ran-
domly selected local background.

This algorithm processes relatively quickly (Fig. 1B). When 
compared to other common DMR calling algorithms in simu-
lated datasets, it shows the greatest accuracy: both in terms 
of total DMRs called, and at the level of individual bases 
within DMRs (Fig. 1C, Supplementary Fig. 3B and C). DMR 
calling in biological datasets also performs as expected 
(Supplementary Fig. S3D).

Notably, we also tried to benchmark the software Metiline 
(J€uhling et al. 2016). However, our testing paradigm involves 
using the default settings of all softwares, but our simulated 
genomes can only be processed by Metiline if its settings are 
altered. Once modified, Metiline does report similar results 
to PCBS in our simulated genomes, showing relative resis-
tance to false positives, and a slight inclination to false nega-
tives. It is also quite fast, though because its speed does not 
scale with genome size as in all the other tested softwares, we 
cannot representatively benchmark its speed. In the true 
mouse data, PCBS and Metiline both produce distinct sets of 
equally robust DMRs, suggesting that in true genomes both 
may be more prone to false negatives than suggested by simu-
lated datasets.

3.3 DMR seeds
Simulations demonstrate that this algorithm is highly resis-
tant to false positives regardless of input seed number 
(Fig. 1D). However, to reduce the number of false negatives, 
some consideration must be given when defining the number 
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of seeds for DMR calling. If too few seeds are queried, DMRs 
around more weakly significant loci will be missed. 
Conversely, if too many seeds are included, seeds can become 
“overcompressed.” Overcompression occurs when seeds 
from multiple nearby DMRs are compressed into a single 
point, causing the algorithm to look for only one DMR in a 
region where multiple are found. In addition, increasing the 
seed number in mouse data appears to increase processing 
time exponentially while increasing the DMR calls logarith-
mically (Supplementary Fig. S3E). Thus, for any dataset, the 
optimal seed number strikes a balance between including too 

few seeds and data overcompression. While we do offer some 
functionality to help safeguard against overcompression, we 
generally recommend using a seed number 1%–3% of the to-
tal filtered loci number to optimize the true-positive call rate 
against computing times.

3.4 Additional functionality
In addition to PCBS’s DML and DMR calling functionality, 
the package offers tools for broader analyses. PCBS contains 
in-built functions that enable users to directly query regions 
of interest for differential methylation by comparing the 

Figure 1. PCBS accuracy and speed testing. (A) DML calling error rates of common WGBS software and PCBS in 127 iterations of 3 treatment versus 3 
control samples for three simulated genomes of high, medium, and low variation; standard error of each call type is denoted with error bars. All DML 
calls use default software parameters. (B) Processing times of DML and DMR calling in common WGBS software and PCBS, on a single CPU with 8 GB 
RAM. All calls use default software parameters, and are run on eight archived mouse samples from Cole et al. (2017) aligned to mm10 at �30X coverage. 
(C) DMR calling error rates of common WGBS software and PCBS in 127 iterations of 3 treatment versus 3 control samples for three simulated genomes 
of high, medium, and low variation; standard error of each call type is denoted with error bars. DMR calls are determined to be true positives if they 
overlap any true DMR region. All DMR calls use default software parameters. (D) PCBS DMR calling accuracy under default parameters as a function of 
input seed number in one iteration of three treatment versus three control samples for three simulated genomes of high, medium, and low variation.

PCBS                                                                                                                                                                                                                                                 3 

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae593#supplementary-data


eigenvector scores of loci within a region to those in the local 
background, taking all methylated loci in the genome into 
consideration without noticeable effects on computing time. 
This allows users to easily and directly assess the exact meth-
ylation levels at regions of interest in a simpler and more fool-
proof manner than looking for overlaps with DMRs. PCBS 
also offers functionality to create metagene plots of input 
regions. Like other PCBS functions, these can be generated re-
markably quickly without the need to remove low- 
variability loci.

4 Conclusion
PCBS has two notable limitations. The first being that it only 
offers single-factor comparisons between two conditions. 
However, nothing about PCBS’s underlying logic precludes 
future development of more complex comparisons, and the 
speed and accuracy of PCBS in its current form is 
very promising.

The second limitation of PCBS is that it does not generate 
significance values at the level of individual loci. However, 
because analysis with PCBS aims to examine the genome ho-
listically, identifying differentially methylated loci is less im-
portant. While a simple rank cut-off performs comparably to 
significance-based DML callers, we primarily include this 
comparison as a proof of concept to show that the eigenvec-
tor scores upon which we base our DMR calling are accurate 
at identifying actual differential sites. Still, for users who 
wish to focus exclusively on DMLs for their analysis, we sug-
gest using DSS if computing resources are a concern, or 
DNMTools’ radmeth function if they are not, as these soft-
wares will give marginally more accurate results in addition 
to locus-level significance values.

In addition, some users may be concerned about the poten-
tial for false negatives with PCBS. In this case, we suggest 
combining DMRs called by PCBS and Metiline, and running 
downstream analyses using PCBS’s user-friendly framework.

Despite these limitations, PCBS demonstrates short compu-
tational times, sensible DMR calling in archived mouse 
WGBS data, and high-fidelity DMR calling in simulated data-
sets. PCBS additionally introduces novel functionality that 
improves the flexibility of WGBS analyses. Altogether, PCBS 
is a powerful new option for bisulfite sequencing analysis.

Supplementary data
Supplementary data are available at Bioinformatics online.
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