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Identifying epitopes, or the segments of a protein that bind to antibodies, is

critical for the development of a variety of immunotherapeutics and diagnostics.

In vaccine design, the intent is to identify the minimal epitope of an antigen that

can elicit an immune response and avoid off-target effects. For prognostics and

diagnostics, the epitope-antibody interaction is exploited to measure antigens

associated with disease outcomes. Experimental methods such as X-ray

crystallography, cryo-electron microscopy, and peptide arrays are used widely

to map epitopes but vary in accuracy, throughput, cost, and feasibility. By

comparing machine learning epitope mapping tools, we discuss the

importance of data selection, feature design, and algorithm choice in

determining the specificity and prediction accuracy of an algorithm. This

review discusses limitations of current methods and the potential for machine

learning to deepen interpretation and increase feasibility of these methods. We

also propose how machine learning can be employed to refine epitope

prediction to address the apparent promiscuity of polyreactive antibodies and

the challenge of defining conformational epitopes. We highlight the impact of

machine learning on our current understanding of epitopes and its potential to

guide the design of therapeutic interventions with more predictable outcomes.
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1 Introduction

Vaccines are among the most successful and cost-effective public health interventions,

particularly to protect against infectious diseases. This was never more evident than during

the COVID-19 pandemic where vaccines were the most valuable intervention to protect

vulnerable populations from hospitalization and death (1, 2). All the SARS-CoV-2 vaccines

were based on the spike protein as the vaccine antigen, either expressed from DNA, mRNA,

or as a recombinant protein, and elicited immune responses against dominant epitopes (or

segments) within the protein. In response, new variants of the virus emerged with different

amino acid sequences in these epitopes, impairing the efficacy of the first-generation

vaccines and requiring the design of new variant-specific ones. The ongoing management

of SARS-CoV-2 depends on our preparedness against emerging variants; this can be
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facilitated by designing vaccines that focus immune responses on

highly conserved epitopes.

Precise mapping of B-cell epitopes is critical beyond vaccine

development for other antibody-based interventions such as

immunotherapeutics and diagnostics (3, 4). Likewise, mapping T-

cell epitopes can improve our understanding of immune responses

to infectious and autoimmune diseases (5) and support the

development of immunotherapeutics with an increased safety

profile by reducing off-target effects (6). The challenge is how to

identify or map these epitopes.

Machine learning algorithms targeted at epitope mapping are

undergoing continual development and immense growth. These

algorithms are improving upon existing in vitro methods by

exploiting the vast reservoir of published experimental data to

find patterns and predict regions of a protein likely to be a part of

an epitope. Here, we discuss how current methods have benefited

from integrating machine learning and explore future applications

to further refine epitope mapping.
2 In vitro epitope mapping methods

What constitutes an epitope varies immensely between two

major types of immune cells in the body: T-cells and B-cells. T-cell

epitopes consist of antigens processed into 8-10 amino acid linear

segments that are recognized by major histocompatibility complex

(MHC) class I molecules and 13-17 amino acid segments for MHC

class II molecules (7). In contrast, B-cell epitopes are typically (90%)

conformational, involving amino acids that are spatially close to one

another due to secondary structure, tertiary structure, or quaternary

structure (8–10). This makes them variable in length and structure.

Further, while antibodies typically interact with 15 to 22 amino

acids on the surface of an antigen, approximately 5 amino acids

contribute most significantly to stabilizing the antibody-antigen

complex (11).

Several experimental methods are used to map epitopes, each

with pros and cons related to accuracy, throughput, and cost (12).

X-ray crystallography, for example, provides accurate information

about the three-dimensional complex between an antibody and the

antigen that can encompass conformational changes and even

highlight dynamics by comparing bound and unbound states.

Epitopes are mapped based on their proximity to crystallized

residues within the paratope of the antibody (13). Analysis tools,

such as PDBePISA, provide information on the interactions of

residues between an epitope and the corresponding paratope based

on distance, participating residues, and orientation (14). Challenges

with this approach are the stability, size, and solubility of the

proteins to form a well-ordered lattice. Post-translational

modifications can also impede crystal formation. Further, there

can be several possible antibody-antigen complexes depending on

the physical parameters used for crystallization (15).

Cryo-electron microscopy (cryo-EM) is another similar

biophysical method for mapping epitopes. Freezing epitopes

bound and unbound to their paratope yields density maps that

compare the two states. These density maps are made by

compositing 2D images from various angles into a 3D map of the
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molecule and the differences between the two density maps indicate

the residues of an epitope (16).

On the other hand, screening peptide arrays provides much

higher throughput, but at the cost of accuracy; the resolution of an

epitope by a peptide array is not as high as the resolution attained

from cryo-EM or X-ray crystallography. Peptide arrays consist of

libraries of synthetic, overlapping peptides (usually 15-20 amino

acids in length) that are screened with an antibody of interest (or

serum) to identify those peptides that bind strongly (17).

Thousands of peptides can be screened at once. The primary

antibody bound to peptides is detected by a secondary antibody

that emits a luminescent signal. Despite epitopes being typically

conformational, peptide arrays are useful for several reasons (9).

They are ideal for mapping linear epitopes and the extent of overlap

among the peptides can reveal residues that are important

components of the epitope. These can be specifically mutated (e.g.

by alanine walking) to confirm their contribution to antibody

binding (18). Thus, it is possible to determine key residues that

dominate the antibody’s affinity for the linear epitope (19).

However, peptide arrays are less informative to identify

conformational epitopes. When screening reveals multiple

peptides recognized by an antibody, the interpretation of these

data relies on 3D models of the protein to map the binding sites. If

the reactive peptides lie in proximity within the 3D protein

structure, this could indicate a conformational epitope (20).
3 Machine learning

Machine learning is a powerful tool that can be used to address

the complexity of data from epitope mapping studies. It is effectively

a subset of artificial intelligence in which previous outcomes of a

task provide an algorithm with experience that allows it to improve

in the same task applied to new data (21). ‘Surviving the Titanic’ is a

common example of machine learning; this problem involves a

dataset containing passenger information that is used to predict the

likelihood of survival of specific passengers (22). Information on

gender, age, cabin class, etc. are studied and used to predict whether

a passenger survived the Titanic disaster. The algorithm identifies

patterns in the data and correlates them to what it is tasked with

predicting (in this case survival). The ‘Surviving the Titanic’

problem is a valuable practice problem to learn the basics of

machine learning and includes many resources and tutorials.
3.1 Datasets – training and testing

Importantly, the performance of an algorithm directly relates to

the breadth and complexity of the datasets it learns from. The more

novel cases and rare ‘edge’ cases in the dataset, the more the

algorithm will learn how to predict similar scenarios in the future.

In this way, machine learning can be used to make accurate

predictions on a variety of tasks. In general, the algorithm

benefits from more data but it is also important to recognize that

curated data may be valuable for developing specialized algorithms.

For example, if a machine learning algorithm is used specifically to
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predict cancer epitopes, it should be trained on a specialized cancer

database, such as CEDAR (Table 1) (23). Adding data for the

prediction of different types of epitopes may improve a machine

learning algorithm’s generalizability but could also mask biological

patterns unique to cancer epitopes. Additionally, data that are very

similar to existing training data do not ‘teach’ an algorithm

anything new.

Many publicly accessible databases are available as sources of

datasets for either T-cell or B-cell epitopes (Tables 1, 2). These

databases provide large, specialized sources of data that algorithms

can study and use for predictions. RCSB PDB, for example, provides

primarily 3D structures of various proteins and multimolecular

complexes, and information relating to their molecular

composition, position, length, chains, etc. AntigenDB, on the

other hand, provides sequence, structure, classifications, etc., of

various experimentally validated antigens. AntiJen contains data on

many topics but, notably, it is a valuable source of data for both B-

cell and T-cell epitopes.

In essence, a machine learning algorithm studies databases to find

patterns that inform the analysis of novel data. The quality of the

algorithm requires careful selection of the appropriate database. For

example, EPSVR is a B-cell epitope prediction algorithm focused on

conformational epitopes and the type of data needed for accurate

conformational epitope prediction is structural (24). Their training

set consisted of structures of curated antigen-antibody complexes and

was tested on a sampling of structures from the Conformation

Epitope Database (CED) (25, 26). By limiting their datasets to a
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particular type of epitope, the algorithm becomes much more

accurate at predicting that type of epitope. In the case of EPSVR,

linear epitopes were excluded because of their poor correlation to

structural data. If linear epitopes were included, they may affect how

the algorithm evaluates structural data and decrease prediction

accuracy on conformational epitopes. For LBTOPE, a model

focused on linear epitope prediction, only the primary sequences of

epitopes for B-cell receptors and non B-cell epitopes are needed (27).

Since these data are more available and less complex, it is easier to

generate a dataset of tens of thousands of entries. In another example,

the BCIpep database contains many linear epitopes and was used to

develop ABCpred to support peptide-based vaccine design and

allergy research (28, 29). Training the dataset specifically on linear

epitopes resulted in a model that can strongly predict these types

of epitopes.

Finally, datasets are further divided into ‘training sets’, ‘validation

sets’, and ‘test sets’. Machine learning models are built from training

sets; a validation sets help determine the optimal parameters or

models for a given problem; and test sets are used to evaluate the

machine learning models. These sets are mutually exclusive.
3.2 Features and labels – how data
are encoded

Even when an algorithm is provided a database robust enough

to characterize the different patterns present in both linear and
TABLE 1 T-cell epitope associated databasesa.

# Name Scope Approximate size Link Ref.

1 IEDB-3D 2.0 Structural T-cell & B-
cell epitopes

410 assays
(T-cell)
1,446 assays
(MHC binding)

https://www.iedb.org/ (81)

2 HIV molecular
immunology database

HIV-associated T-cell & B-
cell epitopes

13,700 entries
(T-cell)

https://www.hiv.lanl.gov/
content/
immunology/index.html

(82)

3 CEDAR Cancer-associated T-cell &
B-cell epitopes

224,000 entries
(B-cell & T-cell)

https://cedar.iedb.org/ (23)

4 IEDB T- cell & B-cell epitopes 1,610,000 entries (B-cell &
T-cell)

https://www.iedb.org/ (83)

5 TANTIGEN 2.0 Cancer-associated T-
cell epitopes

1,000 entries http://projects.met-
hilab.org/tadb/

(84)

6 Protegen Protective antigens 1600 entries https://violinet.org/protegen/ (85)

7 FLAVIdBb Flavivirus associated T-cell
& B-cell epitopes

12,800 entries
(B-cell & T-cell)

http://
cvc.dfci.harvard.edu/flavi/

(86)

8 MHCBN 4.0 Peptides associated with
TAP and MHC

25,000 entries https://webs.iiitd.edu.in/
raghava/mhcbn/

(87)

9 EPIMHC MHC-restricted peptide
ligands and epitopes

4800 entries http://
bio.med.ucm.es/epimhc/

(88)

10 SYFPEITHI Peptide binding MHC I or
MHC II

7,000 entries http://www.syfpeithi.de/ (89)
aAccessibility evaluated on 12-06-2024.
bThis database was found to be inaccessible as of 12-06-2024. Its inclusion depends on two factors: links often migrate or are repaired, and these databases have been used in the development of
tools in the past. The link provided is the last known link used to access the database.
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conformational epitopes, it still requires the tools to make use of

those data. These databases are assembled into datasets with each

datapoint referred to by the term ‘example’. Within each example

there is information relating to ‘labels’ and ‘features’. Labels and

features are the tools an algorithm uses to analyze examples.

Labels are what the algorithm learns to predict (the outcome).

For instance, the label may refer to the strength of peptide-antibody

binding. Machine learning can predict labels based on classification

or regression analysis (30); for B-cell epitope prediction,

classification involves classifying a peptide as a B-cell epitope or

not, while regression analysis would assign a continuous value to

the likelihood of the binding.

Features contain descriptive information about the peptide

(sequence, structure, physico-chemical properties, etc.) or the

parent protein it is derived from. The learning algorithm

effectively learns patterns in the features that relate to a specific

label value. More specifically, several algorithms use surface

accessibility as the feature to predict whether an epitope is likely

to be recognized by B-cells as this feature correlates well with

binding strength (the label) (31, 32). Developing accurate machine

learning models begins with selecting features that correlate

strongly to a label (30). The features that are important depend

entirely on the nature of the question being asked and the success of
Frontiers in Immunology 04
an algorithm depends on the design of features (Figure 1). A good

feature set uses all data that correlate well with the label (what is

being predicted). However, there are many ways to encode the same

feature that are more effective for specific machine learning

algorithms (Table 3).

For example, algorithms EPITOPIA and CBTOPE both use

Grantham polarity and Ponnuswami polarity index to calculate

polarity as a feature, while LBtope cites CBTOPE’s feature set but

excludes polarity entirely (35–37). This may be because LBtope is

trying to predict B-cell epitopes of variable lengths and applies a

feature set called Composition-Transition-Distribution (CTD)

which allows for the comparison of peptides of variable length by

simplifying the residues into categories (38). The CTD divisions

used by LBtope is based on a set proposed by Chinnasamy et al. that

places each amino acid into groups (either 1, 2, or 3) based on

certain physicochemical properties: hydrophobicity, polarizability,

polarity, and Van der Waal’s volume (39). CTD characterizes the

percent frequency of these groups (Composition), their spatial

relationship to one another (Transition), and distribution of each

group across the peptide (Distribution). The CTD feature set

exemplifies an alternate way to encode certain physical features to

allow for expanded function of an algorithm by enabling

predictions on variable length peptides.
TABLE 2 B-cell epitope associated databasesa.

# Name Scope Approximate size Link Ref.

1 IEDB-3D 2.0 Structural T-cell & B-
cell epitopes

4,859 assays
(B-cell)

https://www.iedb.org/ (81)

2 SDAP 2.0 Allergen-associated B-
cell epitopes

4,000 entries https://fermi.utmb.edu/
SDAP/sdap_fas.html

(90)

3 HIV molecular
immunology database

HIV-associated T-cell &
B-cell epitopes

4,200 entries
(B-cells)

https://www.hiv.lanl.gov/
content/
immunology/index.html

(82)

4 CEDAR Cancer-associated T-cell
& B-cell epitopes

224,000 entries
(B-cell & T-cell)

https://cedar.iedb.org/ (23)

5 IEDB T-cell & B-cell epitopes 1,610,000 entries
(B-cell & T-cell)

https://www.iedb.org/ (83)

6 FLAVIdBb Flavivirus-associated T-
cell & B-cell epitopes

12,858 entries
(B-cell & T-cell)

http://
cvc.dfci.harvard.edu/flavi/

(86)

7 Protegen Protective antigens 1600 entries https://
violinet.org/protegen/

(85)

8 CEDb Conformational B-
cell epitopes

225 entries http://immunet.cn/ced/ (91)

9 EPITOMEb B-cell epitopes 142 entries https://www.rostlab.org/
services/
epitome/submit.php

(92)

10 BciPep B-cell epitopes 3,031 entries http://crdd.osdd.net/
raghava/
bcipep/pep_src.html

(28)

11 AntiJen T-cell & B-cell epitopes 24,000 entries
(B-cell & T-cell)

http://www.ddg-
pharmfac.net/antijen/
AntiJen/
antijenhomepage.htm

(93)
aAccessibility evaluated on 12-06-2024.
bThis database was found to be inaccessible as of 12-06-2024. The choice to include it depended on two factors: links often migrate or get repaired and these databases have been used in the
development of tools in the past. The link provided is the last known link used to access the database.
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However, the difference in encoding methodologies between

features can be much simpler than CTD; hydrophilicity can be

calculated using a hydropathy table or a hydrophobicity index for

proximal amino acids (40, 41). Hydropathy plots are frequently

used to estimate hydrophobic and hydrophilic properties over a 20

amino acid window and, as such, may be an appropriate feature

when an algorithm is focusing on predictions of peptides of a

similar length (42, 43). Further, there is some variability between

experimentally determined hydropathy tables, and pH will affect the

hydrophilicity calculations of some amino acids.

Features that describe protein structure may be better at predicting

conformational epitopes but may be unimportant when the algorithm

is predicting a linear epitope. For example, surface accessibility and

flexibility are more impactful features for B-cell epitope prediction

software specializing in conformational epitopes. Sequence-based

features, on the other hand, may be more beneficial in predicting

linear epitopes. Physicochemical features such as hydrophobicity and

polarity would be beneficial to both types of predictions and may not

benefit one type of prediction more than another. In general, adding

more features that provide new information about the data will

improve accuracy but with certain limitations. If every feature

represents a decision that can be made by a machine learning

algorithm, adding noisy features increases the likelihood that a

machine learning model uses a feature that appears effective in the

training set but is inaccurate once extrapolated to the test set or new

cases. This is because every machine learning model assigns a relative

weight to different features. When a poorly correlative feature is used to

make a prediction, it will likely increase the error. Typically, this is not a

major concern unless the dataset is too small; toomany features relative

to the size of the dataset may impact the predictive accuracy of a model.

Further, information provided by databases may limit the features that

will be used to predict the label.
Frontiers in Immunology 05
3.3 Algorithms – how data are processed

Another equally important aspect of a machine learning

algorithm is selecting the algorithm itself. While algorithms can

either be classifiers or regressors, there is much more variety to

algorithms than just this single trait. We consider four common

machine learning algorithms: support vector machine (SVM),

neural networks, decision trees, and language models.

SVM or support vector machine is a classifier model that is

accurate, simple, common, and elegant; it delineates a boundary in N-

dimensional space in which data on one side of the boundary fall into

one classification while data on the other side fall into a different

classification. For example, ifflexibility and net charge are the features

for this model, every datapoint is plotted onto a grid using the

flexibility score on one axis and net charge on the other. After training

on the dataset, SVM algorithms will produce a line that bisects the

data. If the algorithm is intended to predict B-cell epitopes, the

datapoints would be classified as either “B-cell epitopes” or “non B-

cell epitopes” based on this line. SVM is relatively simple

computationally but is sensitive to noisy data and too many

features relative to the dataset size (44, 45).

Neural networks are another common machine learning

algorithm. They process data in a way that mimics how the human

brain functions. Neural networks consist of a series of layers: input

layer, hidden layer(s), and output layer. The input layer consists of

neurons equal to the number of features and the output layer is the

prediction made by the algorithm. The hidden layer(s) is defined by

the programmer and is characterized by a series of weight values. The

sum of all inputs multiplied by the weight values will determine

whether the ‘neuron’ in the hidden layer will activate. Activated

neurons will propagate data to the output layer in the same process;

the hidden layer inputs are multiplied by weight values between the
FIGURE 1

Visualization of protein analysis for feature design. The protein structure of leporine serum albumin was visualized in ‘new cartoon’ with VMD (33).
Coil and loop regions of the secondary structure are colored yellow and helical regions are colored purple. Certain features are derived from the
analysis of the whole protein, smaller subsections, and sequence-based analysis. Features can broadly be categorized as structural, physicochemical,
or sequence-based. The features provided below each of the categories are select examples that belong to each category. The secondary structure
used as referenced PDB ID 4F5V (34).
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hidden layer and output layer. The activations in the output layer will

determine the prediction of the algorithm. During training, a neural

network adjusts weight values between layers to strengthen some

connections and weaken others similar to how neural pathways in

our brain can be reinforced or weakened. Parameters like the optimal

size of the hidden layer and number of hidden layers are generally

found by trail-and-error. The reason why it is difficult to predict the

correct parameters is there is no way to interpret the analysis

performed in these hidden layers, a black box. Two common

neural networks in biological research are deep neural networks

(neural networks with more than four layers) and convolutional

neural networks (a neural network architecture that is effective

at image processing). Convolutional neural networks can be
Frontiers in Immunology 06
‘deep’. Also, neural networks rely on very large datasets and as

such, trial-and-error optimization of hidden layers is very

demanding computationally. While neural networks struggle with

interpretability, they are highly accurate once optimized (46).

Unlike neural networks, decision trees are defined by their

interpretability (47). Decision trees involve a series of nodes that

each split into two ‘child’ nodes continually until they reach their

pre-defined depth limit forming a pyramid shape. At each node, the

algorithm imposes a criterion that splits the data into one of the two

subsequent nodes. For example, if a peptide is being evaluated by

the algorithm, a node could be “net charge ≥3” where all the

datapoints that satisfy this criterion go to one of the child nodes

and all the other datapoints go to the other child node. During

training, the features at each node and the criterion are adjusted to

sort the data accurately. Commonly, decision trees are used in

random forests that consist of many decision trees where the output

is a consensus of a majority of trees (classification), or the mean of

tree outputs (regression).

Lastly, language models function by studying patterns in speech

and language to predict what comes next probabilistically. These

language models are also applied to analyze patterns in protein and

genetic sequences to find patterns common to specific types of

epitopes and produce prediction tools. Language models accurately

represent the data on which they are trained but are very

computationally demanding and require large datasets (48).
4 Applications of machine learning to
epitope mapping

4.1 Machine learning integrated into
prediction of T-cell and B-cell epitopes

Since the early 2000s, the integration of machine learning into

epitope prediction has increased the accuracy of those predictions

and, currently, most modern algorithms use machine learning

methods (Tables 4, 5). These algorithms are provided with

sequence and/or structural information about a protein, and they

use machine learning to predict which epitopes will be recognized

by receptors on B-cells or T-cells (49).

Non-machine learning methods use scoring methods to predict

epitopes. In the case of EpiJen, a 4-step process produces a score and

eliminates datapoints in a stepwise manner using quantitative

matrices. It first determines whether proteasome cleavage would

occur, then whether TAP binding would occur, then whether MHC

binding would occur, and finally whether T-cell recognition would

occur. The output would be a small subsection of the data.

The early B-cell epitope prediction tools focused primarily on

the prediction of linear epitopes despite linear epitopes making up

only a small portion of B-cell epitopes (10). Rapidly, new tools were

developed that boasted higher accuracy on a benchmark dataset or

pioneered new methods of analysis; for example, ABCpred was the

first B-cell prediction server based on recurrent neural networks

(29). Commonly, tools specialized for linear prediction take

sequence files as their input and conformational predictions
TABLE 3 Features employed by machine learning-based B-cell epitope
prediction tools.

Machine
learning
tool

Feature types Year Ref.

ABCpred Amino acid composition
and sequence

2006 (29)

COBEPRO Similarity to other epitopes 2009 (94)

EPITOPIA Amino acid preference,
secondary structure preference,
surface accessibility, surface
structure, evolution rate,
polarity scale, flexibility scale,
antigenicity scale,
hydrophilicity scale

2009 (37)

CBTOPE Amino acid composition,
polarity, flexibility, antigenicity,
hydrophobicity, sequence,
similarity to other epitopes

2010 (36)

LBtope Amino acid composition,
sequence, similarity to other
epitopes, variable epitope
length control

2013 (27)

SEPPA 1.0 (*)
SEPPA 2.0 (**)
SEPPA 3.0 (***)

Amino acid propensity*,
sequence combined with
structure*, solvent accessible
surface areas*, antigenicity
combined with structure **,
glycosylation combined
with structure***

2019 (95–97)

EPCES/EPSVR Amino acid, side-chain energy
score, surface exposure,
antigenicity combined with
surface structure, and
secondary structure

2020 (24)

SCANNET Amino acid composition,
secondary structure, accessible
surface area, coordination
number (van der Waals
interaction), 2D solvent
exposure, backbone and
sidechain depth (distance from
surface), surface convexity
index, amino acid conservation

2022 (32)
Different versions of the SEPPA program have new features added to them, features with '*'
were first included in SEPPA 1.0, while features with '**' and '***' were first included in SEPPA
2.0 and SEPPA3.0 respectively.
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TABLE 4 B-cell epitope prediction toolsa.

Year Name Prediction
specialization

Link Machine
learning

Algorithm
type

Ref.

Require structural data

2024 Discotope 3.0 N/A https://services.healthtech.dtu.dk/
services/DiscoTope-3.0/

Yes XGBOOST (98)

2024 SEMA 2.0 3D Conformational https://
sema.airi.net/prediction_analysis

Yes LM (51)

2022 SCANNET Conformational http://bioinfo3d.cs.tau.ac.il/
ScanNet/download.html

Yes Deep learning (32)

2022 Epitope3D Conformational https://biosig.lab.uq.edu.au/
epitope3d/prediction

Yes Adaboost Classifier (99)

2020 EPCES Conformational http://sysbio.unl.edu/EPCES/ No N/A (24)

2019 SEPPA3.0 Conformational http://www.badd-cao.net/
seppa3/submission.html

Yes Logistic Regression (97)

2014 Epipred Conformational https://opig.stats.ox.ac.uk/
webapps/sabdab-sabpred/
sabpred/more#EpiPred

Yes bespoke (100)

2010 EPSVR Conformational http://sysbio.unl.edu/EPSVR/ Yes Support
Vector Regression

(24)

2008 Ellipro Conformational http://tools.iedb.org/ellipro/ No N/A (101)

Require sequence data

2024 LBCE-BERT Linear https://github.com/Lfang111/
LBCE-BERT

Yes Language model (102)

2024 CLBtope N/A https://webs.iiitd.edu.in/
raghava/clbtope/

Yes Random Forest (103)

2024 SEMA 2.0 1D Linear https://
sema.airi.net/prediction_analysis

Yes Language model (51)

2023 Epitope1D Linear https://biosig.lab.uq.edu.au/
epitope1d/prediction

Yes Explainable
Boost Model

(104)

2022 BepiPred 3.0 N/A https://services.healthtech.dtu.dk/
service.php?BepiPred-3.0

Yes Language model (52)

2021 BCEPS Linear http://imath.med.ucm.es/bceps/ Yes SVM (105)

2021 EpiDope Linear https://github.com/
flomock/EpiDope

Yes DNN (106)

2020 DLBepitope Linear https://bio.tools/dlbepitope Yes DNN (107)

2020 AAPpred Linear https://www.bioinf.ru/
aappred/predict

Yes SVM (108)

2013 Lbtope Linear https://webs.iiitd.edu.in/raghava/
lbtope/protein.php

Yes SVM (27)

2012 SVMTriP Linear http://sysbio.unl.edu/
SVMTriP/prediction.php

Yes SVM (109)

2010 CBTOPE Linear https://webs.iiitd.edu.in/raghava/
cbtope/submit.php

Yes SVM (36)

2009 COBEPRO Linear https://
scratch.proteomics.ics.uci.edu/

Yes SVM (94)

2008 BCPREDS Linear http://ailab-projects2.ist.psu.edu/
bcpred/predict.html

Yes SVM (110)

2006 ABCpred Linear https://webs.iiitd.edu.in/raghava/
abcpred/ABC_submission.html

Yes Neural Network (29)

(Continued)
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require structural inputs, but more recently, tools focus on

predicting both linear and conformational epitopes. In 2017,

BepiPred 2.0 became a benchmark algorithm for the comparison

of newer ones based on its accuracy (for 2017 standards) and

capability to predict both conformational and linear epitopes (50).

Other tools were released since that predict both types of epitopes,

including BepiPred 3.0, SEMA-1D, and SEMA-3D (51, 52). Ideally,

the best tool is one that is specialized to address a given problem and

trained on a dataset containing relevant cases.

The value in predicting T-cell epitopes lies in the characterization

of potential immune responses prior to treatment to avoid side effects

against self-peptides (53). In T-cell epitope prediction, we encounter

the dichotomy of algorithms focused primarily on either MHC class I

or MHC class II binding prediction (Table 5). The open binding

groove of MHC class II molecules makes predictions much more

complex compared to MHC class I. Specifically, this means that the

ligand does not fit cleanly inside the binding groove; there is a

structural element introduced and MHC class II predictive

algorithms have lower accuracy compared to MHC class I

algorithms. There exist several accessible online machine learning

tools for predicting T-cell epitopes and/or MHC class I and class II

peptide binding (Table 5). The review by Peters et al. (54) explores T-

cell epitope prediction and algorithm design more thoroughly.

Since features, datasets, and algorithm selection all define the

specificity of a machine learning model and the type of data it is

predicting, it is difficult to meaningfully compare different T-cell

and B-cell epitope prediction tools. These tools will often compare

themselves to similar contemporary tools based on performance to

benchmark datasets, but there are issues with generalizing the

accuracy of these tools. The first issue is that the test sets used to

compare algorithms to one another are not the same and often

tailored to the specific comparison. For example, comparing linear

B-cell epitope prediction software to conformational software

would be affected by whether the benchmark dataset contained

primarily linear or conformational data. If the benchmark set is

small, neural networks may perform worse and if it is noisy then

SVM algorithms will be disadvantaged. While this makes it difficult

to easily select a single ‘best’ tool, it is important to appreciate that

certain tools are highly specialized to address particular problems,
Frontiers in Immunology 08
and the breadth of tools available should be considered in selecting

which are most appropriate.
4.2 Machine learning integrated into
experimental epitope mapping methods

A significant advance in epitope mapping is the integration of

machine learning to improve the analysis of peptide arrays (Table 6).

For example, Xue et al. demonstrated the utility of machine learning

algorithms to address a common issue for peptide arrays: certain

peptides result in high noise relative to signal in the output data (low

signal-to-noise ratio). This noise ratio results in difficulties for

interpreting array data and affects its utility in defining the

boundaries of an epitope. Often, array data is simplified to

streamline interpretation; a threshold-based approach is used to

convert data into a binary compatible with classification-type

algorithms (20, 55–57). The data are usually sorted into either

binding or not binding. However, machine learning can predict

which peptides will result in a low signal to noise ratio. By training

an algorithm on a small subset of the intended peptides, Xue et al.

demonstrated that their machine learning program succeeded in

accurately predicting which peptides in the larger peptide set would

result in a low signal-to-noise ratio (58). There are several possible

ways to consider predictions of which peptides will result in

significant noise: ‘noisy’ peptides could be eliminated from training

sets for future algorithm development, excluded from testing all

together, or the predictions could be used in interpreting results.

Machine learning is also used in docking software to predict the

discrete interactions between a monoclonal antibody and a protein.

Non-machine learning algorithms like Zdock and Rosetta are

relatively effective and accurate antibody docking software

programs, but they specialize in “local docking” which

necessitates partial epitope knowledge, like relative location of the

epitope within approximately 8 Å (59, 60). Machine learning allows

programs like Mabtope to analyze millions of docking poses and

identify those that are optimal. When compared to other methods

like FRODOCK (another non-machine learning method), Mabtope

reports are more accurate at predicting whether a specific residue
TABLE 4 Continued

Year Name Prediction
specialization

Link Machine
learning

Algorithm
type

Ref.

Require sequence data

2004 BCEpred Linear https://webs.iiitd.edu.in/raghava/
bcepred/
bcepred_submission.html

No N/A (111)

Can use either sequence or structural data

2024 CALIBER N/A https://caliber.math.biu.ac.il/ Yes Multiple c (112)

2009 EPITOPIAb N/A http://epitopia.tau.ac.il Yes Naïve
Bayes classifier

(37)
aAccessibility evaluated on 12-06-2024.
bEpitopia is inaccessible but included because its design is discussed in this review.
cUsers of CALIBER must select a model of Recurrent Neural Network, Graph Convolution Network, or Boosting (a combination of both).
N/A, Not applicable.
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TABLE 5 T-cell epitope prediction toolsa.

Year Name Link Machine learning Algorithm type Ref.

MHC I predictor

2024 TEPCAM
https://github.com/
Chenjw99/TEPCAM

Yes Deep Learning (113)

2023 PANPEP https://github.com/bm2-lab/PanPep Yes Neural Network (114)

2023 TEINET
https://github.com/
jiangdada1221/TEINet

Yes Neural Network (115)

2022 ATM-TCR
https://github.com/Lee-CBG/
ATM-TCR

Yes
Multi-head Self-
attention model

(116)

2021 TITAN https://github.com/PaccMann/TITAN Yes Nearest Neighbour (117)

2020 NETMHCpan 4.1
https://services.healthtech.dtu.dk/
services/NetMHCpan-4.1/

Yes Neural Network b (118)

2020 MHCflurry 2.0 https://github.com/openvax/mhcflurry Yes Logistic Regression (119)

2019 ACME https://github.com/HYsxe/ACME Yes DNN (120)

2013 EPISOPT http://bio.med.ucm.es/episopt.htmL No N/A (121)

2009 PickPocket
https://services.healthtech.dtu.dk/
services/PickPocket-1.1/

No N/A (122)

2007 NetCTL
https://services.healthtech.dtu.dk/
services/NetCTL-1.2/

Yes ANN (123)

2006 EpiJen
http://www.ddg-pharmfac.net/epijen/
EpiJen/EpiJen.htm

No N/A (124)

2005 PEPVAC http://imed.med.ucm.es/PEPVAC/ No N/A (125)

MHC II predictor

2023 MixMHX2pred
https://github.com/
GfellerLab/MixMHC2pred

Yes Neural Networks (126)

2020 NETMHCIIpan4.0
https://services.healthtech.dtu.dk/
services/NetMHCIIpan-4.0/

Yes Neural Network b (118)

2019 MARIA https://maria.stanford.edu/about.php Yes Neural Network (127)

2019 NeonMHC2
https://neonmhc2.org/
neonmhc2/neonmhc2_main/

Yes Neural Network (128)

2017 NNAlign 2.0
https://services.healthtech.dtu.dk/
services/NNAlign-2.0/

Yes ANN (129)

2013 EpiDOCK
http://www.ddg-pharmfac.net/
epidock/index.html

No N/A (130)

MHC I & MHC II predictor

2024 TCRen
https://github.com/antigenomics/
tcren-ms

No N/A (131)

2021 ERGO-II
https://github.com/IdoSpringer/
ERGO-II

Yes Language Model (132)

2021 Vaxign2 https://violinet.org/vaxign/ Yes Custom (133)

2004 Rankpep
http://imed.med.ucm.es/
Tools/rankpep.html

No N/A (134)

1999 SYFPEITHI
http://www.syfpeithi.de/bin/
MHCServer.dll/EpitopePrediction.htm

No N/A (89)
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participates in an epitope (80% accuracy compared to 35%

accuracy) (61, 62). The impacts of machine learning on protein-

ligand docking are discussed in a review by Yang et al. (63).

Docking-based approaches provide the ability to explore specific

antibody-protein interactions in silico.

In X-ray crystallography, machine learning can address the

difficulty with performing this method on large proteins. When

analyzing large proteins, a pre-experimental step can use B-cell

mapping algorithms to focus on specific regions of a protein; testing

a smaller discrete region of a protein would help address the size

issue and improve the throughput. Machine learning can also

predict protein crystallizability which saves time and resources

(64, 65). Moreover, the study of highly variable regions of a

protein is facilitated by algorithms that can predict ‘correctness’

scores (a per-residue estimate of how reliable the crystal structure

is) for residue main chains and side chains to improve

interpretability of crystallographic protein structures (Table 6).

Cryo-EM depends on machine learning integration where a

cryogenically frozen molecule is subjected to electron microscopy to

produce and assemble a 3D reconstruction. Machine learning has

automated particle selection, improved post-processing resolution,

and map reconstruction (Table 6).
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5 Case studies

Several studies of SARS-CoV-2 highlight applications of

machine learning to probe the specificity of immune responses to

the virus. As an example, Hotop et al. applied machine learning to

analyze data from peptide microarrays screened with sera from

patients with disease outcomes of varying severity (55). The analysis

revealed important differences in the antibody responses to SARS-

CoV-2 that correlated with improved clearance of the infection.

Unlike conventional B-cell epitope mapping algorithms that use

regression analysis (providing a continuous variable as an output),

this application applied a random forest in classification analysis

providing an output as a ‘1’ or a ‘0’. More specifically, the machine

learning algorithms labeled each peptide as either correlated (‘1’) or

non-correlated (‘0’) with better disease outcomes. Five different

algorithms were used to select 10 peptides (out of 648) that were

recognized predominantly by sera from patients with milder

infections. This information can now be applied to vaccine design

to focus on neutralizing epitopes. It could also be used as a

prognostic to predict the severity of disease outcomes.

A second example is the application of the algorithm ScanNet

(Table 3) (32) to study the immune response against the receptor

binding site of the SARS-CoV-2 Omicron variant (66). ScanNet is a

geometric model that characterizes the binding surface of a protein

(or protein segment in this case) based on its physical and chemical

properties: shape, charge, depth, surface accessibility, etc. The

algorithm analyzed antigenicity (the likelihood of antibody

recognition) residue by residue of the SARS-CoV-2 receptor

binding domain (RBD) from the original strain compared to the

same region on each of the Delta, Alpha, Beta and Omicron

variants. This analysis suggested that mutations in the RBD

reduced antibody recognition, which could explain why immunity

to previous variants of SARS-CoV-2 may not be as protective

against the Omicron strain. These results were corroborated by

competition ELISAs that showed reduced serological recognition of

the Omicron RBD and supported the need for an Omicron-specific

vaccine. ScanNet’s antigenicity predictions for the variants further

supported the need to design Omicron-specific vaccines.
6 Future applications of machine
learning to epitope mapping
and immunology

Although B-cell epitope prediction algorithms are a common tool,

there is room for tremendous growth in the application of machine

learning to further refine epitope predictions. This is especially relevant

in the interpretation of antibody-binding data that point to multiple

epitopes; rather than recognizing a single discrete epitope, some

antibodies are promiscuous or polyreactive (67, 68). Applying feature

analysis approaches to these types of antibody binding data could

identify features that are shared across epitopes within the same or

related protein. An exciting opportunity is to use machine learning to

extract -with high resolution - the specific features of these epitopes that

are required for an antibody to bind. This information can then
TABLE 6 Machine learning applied to in vitro epitope mapping methods.

Method Brief summary Ref.

Peptide array

De novo binding prediction (135)

Removal of systematic effects,
unreliable measurements, and
non-specific secondary
antibody responses

(136)

De novo prediction of signal-to-
noise ratios

(58)

Cryo-EM

Automated particle selection (137, 138)

Denoising of images (139)

False positive pruning in single
particle analysis (140)

Data pre-processing (141)

Ice thickness determination (142)

Resolution estimation (143)

Atom structure determination (144)

3D model building of
protein backbone

(145)

Resolution determination
improved by Alphafold 2

(146)

X-ray
crystallography

Prediction of crystallizability of
a protein

(147, 148)

Crystallization
outcome classification

(149)

Model correctness (150)

Protein solubility prediction (151)

Data reduction (152)
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inform diagnostics, immunotherapeutics or vaccine design. In the

example of SARS-CoV-2, peptide vaccines could be designed based

on the features of an epitope that are conserved across virus variants to

elicit broadly neutralizing antibodies.

Another application of machine learning is to improve

prediction of conformational epitopes. High throughput mapping

of linear peptide arrays could be integrated with in silico protein

modeling, like AlphaFold, to increase the interpretability of the data

(69). Recently, the release of AlphaFold 3 further improved the

accuracy of predicting biomolecular complexes and overhauled its

training procedure (70). Unfortunately, AlphaFold 3 is closed-

source, which may limit the potential for specialized derivative

models to be developed. For example, AlphaFold-Multimer was

derived from the open-source code of Alphafold 2 and improved

on its ability to predict large protein complexes (71). As discussed

previously, peptide arrays focus on linear epitopes and are

considered less informative with regards to conformational

epitopes. However, mapping binding regions from an array to a

predicted structure may highlight binding clusters that indicate an

epitope. A more granular approach to the same methods could be to

use the large peptide array datasets and train a machine learning

algorithm from which feature data can be extracted. The feature

data would encapsulate physical and chemical characteristics

associated with binding regions (i.e. charge, secondary structure,

etc.) which could also be applied to the 3D structures to identify

binding sites. The impact this would have on vaccine development

and therapeutics is profound. Success of these algorithms may

improve peptide-based vaccines through scaffolded or stapled

peptides that can recapitulate 3D structural components. It would

also provide more accurate characterization of off-target binding.

A paratope-based approach may also have potential to predict

epitopes and play an important role in profiling the safety and

specificity of monoclonal antibodies now widely used as therapeutics.

Sequences of antigen binding sites and/or structural information could

be used to predict the features of a compatible epitope. In this case, the

features would be structural, physicochemical, and sequence-based

descriptions of the binding region of an antibody and the label(s)

would correspond to aspects of an epitope, such as structure, charge,

polarity, etc. Just like B-cell epitope prediction software, there are

promising predictive models for paratope regions on an antibody (72–

74). Additionally, programs like AlphaFold, or faster and higher-

throughput derivatives, can be applied to design and inform

structural features (69, 75, 76). The burgeoning field of paratope-

focused analysis could yield a better understanding of off-target

binding, and potentially increase accuracy and safety. Focusing on

both the paratope and epitope may result in more predictable

outcomes for vaccine design and other therapeutics.

Importantly, machine learning has been integrated into research

beyond epitope mapping, with impacts in the broader field of

immunology. For example, the tool AllerCatPro 2.0 uses machine

learning to predict allergenicity of proteins by predicting potential

immune epitopes (77) and, clinically, machine learning has improved

allergic disease diagnostics (78). To improve resource management

and streamline clinical processes, machine learning-enhanced

prognostic tools are being rapidly developed to analyze patient

data. Specifically, plasma from SARS-CoV-2 infected patients was
Frontiers in Immunology 11
used to produce a cytokine panel that can accurately predict disease

severity (79). Conditions that are difficult to diagnose, such as auto

immune diseases, have benefited significantly from the incorporation

of machine learning models to analyze patient data (80). In future,

machine learning directed to these clinical applications has the

potential to transform personalized medicine.
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