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A B S T R A C T

Introduction: Single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing 
(snRNA-seq) provide valuable insights into the cellular states of kidney cells. However, the 
annotation of cell types often requires extensive domain expertise and time-consuming manual 
curation, limiting scalability and generalizability. To facilitate this process, we tested the per-
formance of five supervised classification methods for automatic cell type annotation.
Results: We analyzed publicly available sc/snRNA-seq datasets from five expert-annotated studies, 
comprising 62,120 cells from 79 kidney biopsy samples. Datasets were integrated by harmonizing 
cell type annotations across studies. Five different supervised machine learning algorithms 
(support vector machines, random forests, multilayer perceptrons, k-nearest neighbors, and 
extreme gradient boosting) were applied to automatically annotate cell types using four training 
datasets and one testing dataset. Performance metrics, including accuracy (F1 score) and rejection 
rates, were evaluated. All five machine learning algorithms demonstrated high accuracies, with a 
median F1 score of 0.94 and a median rejection rate of 1.8 %. The algorithms performed equally 
well across different datasets and successfully rejected cell types that were not present in the 
training data. However, F1 scores were lower when models trained primarily on scRNA-seq data 
were tested on snRNA-seq data.
Conclusions: Despite limitations including the number of biopsy samples, our findings demon-
strate that machine learning algorithms can accurately annotate a wide range of adult kidney cell 
types in scRNA-seq/snRNA-seq data. This approach has the potential to standardize cell type 
annotation and facilitate further research on cellular mechanisms underlying kidney disease.
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1. Introduction

The human kidney is a highly complex organ composed of various cell types with distinct functions. Recent advancements in single- 
cell (sc) and single-nucleus (sn) RNA sequencing (RNA-seq) have provided researchers with the ability to examine the transcriptome of 
individual cells [1,2]. This technological breakthrough enables a detailed understanding of the components and functional processes of 
distinct kidney cell types and presents opportunities for targeted therapeutic interventions aimed toward these [3]. Consequently, the 
field of kidney medicine is poised to undergo a transformative shift towards a data-driven, precision-based approach.

Despite the improvements in the clustering of cell types made possible by these sophisticated techniques, the task of annotating the 
resulting data remains predominantly manual [4–9]. Researchers typically rely on a combination of personally identified biomarkers 
to identify specific cell populations, a laborious and non-standardized process that necessitates expertise in navigating the intricate 
transcriptomic diversity of the human kidney [4–9]. Consequently, this manual annotation introduces subjectivity into an otherwise 
data-driven analysis and restricts the ability of researchers to conduct cross-study and validation analyses and scale up these in-
vestigations due to inconsistent ontologies [4–10].

Modern machine learning tools offer a potential solution for addressing the challenge of cell type annotation. Various algorithms 
have been developed specifically for cell type annotation by leveraging scRNA-seq data. For instance, in one study, researchers suc-
cessfully employed an extreme gradient boosting (XGBoost) algorithm as part of a machine learning pipeline to classify and predict 
cardiac developmental cell types [11]. Another comprehensive study conducted by Abdelaal et al. (2019) compared several supervised 
machine learning algorithms, such as linear discriminant analysis, nearest mean classifiers, support vector machines (SVM), random 
forests (RF), and k-nearest neighbors (KNN), across 27 distinct scRNA datasets encompassing brain, pancreas, and peripheral blood 
mononuclear cells from both human and mouse samples [4]. The results demonstrated that all the algorithms exhibited high median 
F1 scores and low rejection rates. Notably, the SVM classifier with a linear kernel demonstrated the most optimal performance in their 
analysis [4]. However, it is important to note that the study conducted by Abdelaal et al. (2019) did not specifically examine kidney 
cell types, leaving the applicability of machine learning algorithms for accurately predicting kidney cell types uncertain [4]. 
Furthermore, there are relatively fewer studies that compare machine learning methods for cell type annotations using snRNA-seq data 
[12].

In this study, we aimed to assess and compare the effectiveness of various machine learning algorithms for automating kidney cell 
type annotations. To achieve this, we utilized five publicly available scRNA-seq and snRNA-seq datasets that had been previously 
annotated by experts. We pooled author-identified cell types into harmonized cell types, applied five different machine learning al-
gorithms to predict harmonized cell type annotations, and evaluated the performance of the different machine learning models using 
F1 scores and the rate at which models labeled cells as “unknown.” Findings from our study build on ongoing efforts focused on the 
development and implementation of standardized cell type ontologies, and more broadly serve to improve our understanding of kidney 
physiology.

2. Results

2.1. Harmonization of cell type annotations across datasets reveals 16 harmonized cell types

Our dataset encompasses a diverse collection of kidney cell-specific transcriptomic data, consisting of a total of 62,120 cells ob-
tained from 79 kidney biopsy samples originating from 44 healthy donors across 5 different studies. We deliberately included data 
from donors of varying ages, spanning the cortex and medulla, and obtained through multiple sequencing technologies, as outlined in 
Table 1.

The age range of the donors spanned from under 30 to over 70 years old. 29 samples consisted only of cortical tissue, 14 samples 
consisted only of medullary tissue, 7 samples consisted of both, and the sampling location of the remaining 29 samples were either 
unknown (n = 28) or from ureteral tissue (n = 1). As shown in Fig. S1A, among cells of known sampling location, 8698 (44.7 %) were 
from the cortex alone, 7742 (39.8 %) were from the medulla alone, 2050 (10.5 %) were from the corticomedullary junction, and 962 
(4.95 %) were from the ureter. Among the five datasets incorporated, three utilized the 10X single-cell technology, one used the 
InDrops single nucleus technology, while the remaining one employed Drop-Seq single nucleus technology as illustrated in Fig. S1B
[13–15]. Additionally, our dataset consisted of at least 22 males and 13 females, which contributed to 31,838 (51.2 %) and 15,753 
(25.4 %) cells, respectively, as shown in Fig. S1C. For comprehensive details regarding the donors, we refer readers to the original 
publications associated with each dataset [5–9].

To ensure the quality of our dataset, we performed quality control measures by leveraging published data and code from each 
study. We pre-processed each study dataset individually, including performing pertinent transformations and dropping of samples 
and/or cells as described in Methods. We validated the original author cell type annotations using the uniform manifold approximation 
and projection for dimension reduction (UMAP) visualization technique. The UMAP visualizations for each of the five datasets can be 
found in Fig. S2.

Overall, we identified a total of 84 unique cell type annotations across all five cohorts. It is important to note that all these cells were 
derived from healthy, adult human kidneys. To consolidate the annotations and establish a unified cell type nomenclature, we 
leveraged the transcriptomic data and observed high correlations between individual study annotations with respect to expression of 
marker genes. Consequently, cell type annotations that exhibited strong correlation patterns were grouped together into harmonized 
cell types. Fig. 1 illustrates the results of this analysis, revealing 16 distinct harmonized kidney cell types based on transcriptomic data. 
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Table 1 
Metadata from the 5 different sc/snRNA datasets analyzed in this study.

Study (PMID) Number of Cells Number of Donors Number of Samples Donor Age Range Donor Sex Sampling Locations Sequencing Method

M F Not Reported Cortex Medulla Both Unknown/Other

Menon (32107344) 22,264 22 24 <50 = 2 
≥50 = 13 
Unknown = 7

7 6 9 NA NA NA 24 (sc) 10X

Young (30093597) 6197 5 17 49–72 3 2 0 14 0 1 2 (sc) 10X
Liao (31896769) 16,145 2 2 59–65 1 1 0 NA NA NA 2 (sc) 10X
Wu (29980650) 4259 1 1 70 1 0 0 NA NA NA 1 (sn) InDrops
Lake (31249312) 13,255 14 35 <50 = 4 

≥50 = 7 
Unknown = 3

10 4 0 15 14 6 0 (sn) Drop-Seq

Total 62,120 44 79  22 13 9 29 14 7 29 
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For instance, annotations from different studies that included the term “podocyte” were highly correlated with each other, leading us 
to assign them to a single harmonized cell type referred to as “Podocyte.” This consolidation approach was applied consistently across 
the remaining 15 harmonized cell types.

The number of individual cells included in each harmonized cell type varied across studies. As depicted in Fig. S3A the “Proximal 
Tubule” harmonized cell type encompassed the largest number of cells, totaling 23,177. On the other hand, the “Mast” harmonized cell 
type had the smallest cell count, with only 22 cells identified. Rare cell types, such as “Fibroblasts” and “B, Plasma, & Plasmacytoid” 
benefitted from the inclusion of multiple studies in our dataset, compensating for their low cell counts in individual studies (Fig. S3B). 
By combining multiple datasets, we were able to overcome the limitations of each individual study regarding the inclusion of specific 
cell types. This was observed even among harmonized cell types that contained a substantial number of cells. For instance, although 
Lake et al. had only 16 cells in the “Monocytes, Macrophages, & Other Myeloid” cell type, the inclusion of these cells from three of the 
other datasets compensated for this omission, resulting in 2429 “Monocytes, Macrophages, & Other Myeloid”-labeled cells in our final 
integrated dataset (Table S1). In a few cases, certain cell types were only present in a single study, as exemplified by the “Neutrophil,” 
“Mast,” and “Urothelium” harmonized cell types. This highlights the significance of incorporating multiple studies in our data to 
complement one another and achieve a comprehensive coverage of healthy, adult human kidneys in our training dataset.

Fig. 1. Heatmap of correlations between cell types across all 5 cohorts per the authors’ original annotations. Axes are a symmetrical layout of 
annotations and annotations are grouped according to dendrogram and boxed by harmonized cell types, which are defined as groups of annotations 
with a high degree of correlation.
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Prior to integrating all five datasets, we examined the combined UMAP visualization of the datasets and observed the presence of 
batch effects, as shown in Fig. S4A. To address this issue, we employed rPCA from the Seurat package to mitigate the batch effects, 
resulting in a batch-corrected UMAP plot illustrated in Fig. S4B. Following batch correction, we observed a more even distribution of 
harmonized cell types across the different studies, as depicted in Fig. S4C. However, it’s important to note that despite the batch 
correction, we encountered instances where certain cells did not align perfectly with the harmonized cell types based on the original 
authors’ annotations. To address this discrepancy, we trained a support vector machine (SVM) model using all 62,120 cells. When we 
applied the trained model on the same data, it predicted the wrong harmonized cell type label for a subset of 4256 cells (6.9 %). 
Consequently, we categorized these 4256 cells as low-quality and excluded them from further analyses, as illustrated in Fig. S5. The 
choice of SVM for cell type classification was based on its demonstrated high performance in previous studies [4,16–20]. Our final 
integrated dataset included 57,864 cells that were not identified as low-quality cells. The distribution of these cells by harmonized cell 
type can be found in Table S1. Metadata regarding each cell and sample can be found in our Zenodo as described in Methods.

2.2. Machine learning algorithms were predictive of harmonized cell types

Next, we employed five distinct supervised learning methods to predict the harmonized cell type annotations in our integrated 
dataset. These methods included a support vector classifier (SVC), a random forest classifier (RF), a multilayer perceptron (MLP), a k- 
nearest neighbors classifier (KNN), and an extreme gradient boost (XGB) model. To evaluate the performance of these models, we 
adopted an inter-dataset evaluation scheme. This involved utilizing combinations of four out of the five datasets as the training data 
and using the remaining fifth dataset as the testing data. By employing this approach, we aimed to reduce the risk of overfitting by 
ensuring that the testing data was not used during the training process of the model. Fig. 2A demonstrates that all the employed al-
gorithms exhibited a median F1 score of 0.92 or higher when tested on each of the individual datasets. These high median F1 scores 
indicate the strong performance of the algorithms in accurately identifying harmonized cell type annotations using transcriptomic 
data.

Fig. 2. Heatmaps demonstrating for each testing dataset, the performances of each classification algorithm as defined by (a) median F1 score or (b) 
median percent of cells classified as unknowns. (c) Heatmap of each classification algorithm’s rejection rate on when Young et al. was used as the 
testing dataset.
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Fig. 3. Heatmap of each classifier’s F1 score on (a) Menon et al., (b) Lake et al., (c) Wu et al., and (d) Young et al. with respect to each harmonized 
cell type.
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2.3. Feature importance analysis

In order to better understand which genes contributed most significantly to the classification of kidney cell types, we extracted the 
feature importance scores from all five machine learning models and generated a comparative analysis (Fig. S10). Using the Menon 
dataset as the testing dataset, we observed that certain genes, such as SPP11, consistently ranked highly across all five models, 
indicating that these genes play a key role in distinguishing specific kidney cell types. This variation in feature importance highlights 
the strengths of different algorithms in identifying cell type–specific markers and underlines the value of using multiple models to 
obtain a more comprehensive view of key gene markers.

2.4. Performance of different classifiers varied across sequencing methods and harmonized cell types

Upon comparing the performance of each algorithm across all datasets, we observed that the median F1 scores varied depending on 
the specific dataset used for testing. For instance, the XGB algorithm achieved the highest median F1 score across cell types when the 
Menon dataset was used for testing. On the other hand, the KNN algorithm achieved the highest median F1 score across cell types when 
the Wu dataset was used for testing and the lowest median F1 score across cell types when the Young dataset was used for testing, and 
the MLP algorithm attained the highest median F1 score when the Lake dataset was used for testing (Fig. 2A). However, it is note-
worthy that none of the five machine learning algorithms significantly outperformed the others across the five testing sets. This 
observation is supported by the results of Kruskal-Wallis tests showing that the p-values for the Menon, Lake, Liao, Wu, and Young 
datasets were 0.62, 0.97, 0.94, 0.85, and 1, respectively (Table S2).

In some instances, certain harmonized cell types were only present in a specific study, such as “Neutrophil,” “Mast,” and “Uro-
thelium” in the Young dataset. When the Young dataset was used as the testing dataset, models trained on the other four datasets were 
unable to predict these cell types, resulting in an F1 score of 0. Consequently, we also compared the rejection rates, which represent the 
percentage of cells labeled as “Unknown,” across the different machine learning algorithms and datasets to assess their effectiveness 
(Fig. 2B). Interestingly, none of the five machine learning algorithms significantly outperformed each other in terms of rejection rates 
across the five testing sets. The results of the Kruskal-Wallis tests yielded Holm-adjusted p-values of 0.178, 1, 0.178, 1, and 1 for the 
Menon, Lake, Liao, Wu, and Young datasets, respectively (Table S2). However, it is worth noting that SVC exhibited the lowest 
rejection rate across all five testing datasets, although this difference was not statistically significant compared to the other machine 
learning algorithms.

When considering the Young dataset as the testing dataset, the best model is one that accurately rejects cells in the “Neutrophil,” 
“Mast,” and “Urothelium” cell types as these cell types are not present in the training data. Fig. 2C demonstrates that the RF model had 
the highest rejection rate for cells in the “Urothelium” type, while the MLP model had the highest rejection rate for cells in the 
“Neutrophil” type and the KNN model had the highest rejection rate for cells in the “Mast” type when the Young dataset was used as the 
testing dataset.

The performance of the machine learning algorithms also varied across different harmonized cell types. For instance, when Menon 
was used as the testing dataset, the “Distal Convoluted Tubule and Connecting Tubule” harmonized cell type exhibited lower F1 scores 
across the machine learning algorithms compared to harmonized cell types such as “Natural Killer & T,” “Monocytes, Macrophages, & 
Other Myeloid,” “Proximal Tubule,” or “Endothelium,” which had higher F1 scores across the algorithms (Fig. 3A). Specifically, the 
XGB model incorrectly labeled 208 out of 745 (27.9 %) cells belonging to the “Distal Convoluted and Connecting Tubule” harmonized 
cell type as belonging to the “Ascending Loop of Henle” harmonized cell type (Table S3). It is worth noting that the “Distal Convoluted 
and Connecting Tubule” and “Ascending Loop of Henle” harmonized cell types exhibited a high degree of correlation, as depicted in 
Fig. 1.

The lowest F1 scores across machine learning algorithms were observed when Lake and Wu were used as the testing datasets 
(Fig. 3B and. C). The harmonized cell types with the lowest F1 scores when tested on the Lake dataset were “Fibroblasts,” “Parietal 
Epithelium, Late Proximal Tubule, & Descending Loop of Henle,” and “Proximal Tubule” (Fig. 3B). Notably, in the Menon dataset, the 
F1 scores for the “Fibroblast” cell type exceeded 0.97 across machine learning algorithms (Fig. 3A), whereas in the Lake et al. dataset, 
the F1 scores for this cell type ranged from 0.65 to 0.8, indicating misclassification of cells of this type (Fig. 3B). For instance, the KNN 
model misclassified these cells as belonging to the “Perivascular & Mesangium” harmonized cell type in 18.3 % of cases and as 
“Endothelium” in 14.6 % of cases (Table S3). In the case of Wu, the “Ascending Loop of Henle” harmonized cell type had the lowest F1 
scores across algorithms when the Wu dataset was used for testing (Fig. 3C). For example, 291 cells belonging to the “Parietal 
Epithelium, Late Proximal Tubule, & Descending Loop of Henle” harmonized cell type were misclassified by the MLP model as 
belonging to the “Ascending Loop of Henle” cell type, driving the low F1 scores for this cell type (Table S3).

When Young was used as the testing dataset, the average F1 scores for cells belonging to the “Principal” or “Proximal Tubule” 
harmonized cell types were below 0.35 (Fig. 3D). This can be attributed to the low precision of all the machine learning algorithms in 
predicting cells of the “Proximal Tubule” type and the low recall in predicting cells of the “Urothelium” type. The mislabeling of cells in 
“Urothelium” as cells in “Principal” instead of rejecting them and the mislabeling of “Endothelium” and “Ascending Loop of Henle” 
cells as “Proximal Tubule” cells were the main factors contributing to these low F1 scores. Detailed information regarding the predicted 
and actual labels for each cell type and classifier can be found in Table S3.

3. Discussion

In this study, we applied several machine learning algorithms including SVC, RF, MLP, KNN, and XGB to accurately classify kidney 

A. Tisch et al.                                                                                                                                                                                                           Heliyon 10 (2024) e38567 

7 



cell types using publicly available scRNA-seq and snRNA-seq datasets. Overall, the performance of the machine learning algorithms 
was satisfactory, with high median F1 scores and low rejection rates for most harmonized cell types across different testing datasets. 
This suggests that the machine learning algorithms successfully annotated the majority of cells and achieved a high level of concor-
dance with the actual harmonized cell type annotations.

Our work is among the first to investigate how general-purpose ML models, such as XGB and SVC, perform in annotating kidney- 
specific cell types, which present unique challenges in the complex cellular composition and expression patterns of the kidney. 
Currently, there are several excellent cell-type annotation methods such as scCATCH, SCSA, SingleR, SingleCellNet, and ACTINN, as 
well as novel large language model applications in cell type annotations such as Cell2Sentence [21–26]. Rather than propose a new 
algorithm for cell type annotation, our study aimed to fill a gap in knowledge by systematically evaluating the performance of 
established supervised ML methods in the context of kidney cell type annotation using both scRNA-seq and snRNA-seq datasets. While 
other comprehensive comparisons of cell type annotation methods have been published, such as the work by Ref. [4], which compared 
over 22 annotation tools across multiple tissues, they have not focused on kidney-specific data. Therefore, this study contributes to our 
understanding of which general ML methods are most suitable for kidney cell type classification and identifies areas where further 
improvement on these is needed.

By using inter-dataset evaluation, our study closely mimics real-world scenarios where models are trained on existing data and 
applied to an independent, novel study. With a sufficiently large number of cells across multiple datasets, our inter-dataset approach 
assessed model performance and allowed us to test model generalizability to new data across different sources. Additionally, our inter- 
dataset evaluation allowed cross-modality testing, where models trained on scRNA-seq data were tested on snRNA-seq data, and vice 
versa. Inter-dataset evaluation allowed us to explore how well models trained on one sequencing platform generalize to another, 
providing insights into the models’ flexibility and adaptability.

No single machine learning algorithm consistently outperformed the others in our evaluation of F1 scores and rejection rates. Each 
had strengths and limitations. In general, XGB and SVC models performed well across most datasets, achieving high median F1 scores 
and relatively low rejection rates. For example, SVC models had some of the lowest rejection rates across all five datasets, suggesting 
that this algorithm was able to confidently label most cells. However, both XGB and SVC had relative difficulty with correctly rejecting 
urothelial cells, neutrophils, and mast cells when these cell types were not present in the training data, suggesting that these algorithms 
tended to mislabel cells of uncertain type rather than rejecting them. On the other hand, RF models had lower median F1 scores overall 
but the highest rejection rates for urothelial cells and some other cell types. This suggests that RF was more conservative in its labeling, 
better rejecting uncertain cell types rather than mislabeling them. This may be a strength for studies that prioritize precision over 
recall. MLP and KNN models achieved a balanced performance overall but encountered challenges with labeling cell types with low 
cell counts. Our results highlight the importance of carefully selecting and tuning models for specific datasets and tasks.

We observed that the overall performance of the machine learning algorithms varied in different scenarios. For example, the al-
gorithms struggled to differentiate cell types with highly correlated transcription profiles, such as distal convoluted tubule and 
ascending Loop of Henle cells (Table S3). Additionally, cell types with smaller sample sizes, such as fibroblasts and principal cells, 
posed challenges for accurate classification. To improve the performance for cell types with limited cell numbers, we recommend 
investigating the correlation between clusters with regards to transcription profiles and merging highly correlated clusters into a single 
cluster. Notably, the performance for some small, harmonized cell type clusters, such as intercalated cells in Liao et al., showed higher 
accuracies, potentially due to lower correlation with other harmonized cell types.

Lower F1 scores were observed when training datasets consisted primarily of scRNA-seq data and testing datasets consisted 
exclusively of snRNA-seq data, as observed when Wu and Lake were used as testing datasets. This may stem from inherent differences 
between the two sequencing methods, as well as differences in protocols across studies. scRNA-seq tends to capture a higher proportion 
cytoplasmic mRNA leading to greater sensitivity for detecting highly expressed genes [27–29]. Previous studies have highlighted 
variations in cell type composition and dropout rates, including based on sample storage and processing, leading to differences in gene 
enrichment and subsequent cell type annotations [27–29]. For instance, snRNA-seq has been associated with reduced enrichment of 
leukocytes, including T cells, B cells, and natural killer cells, which are often indicative of underlying inflammatory states [27,28]. 
Notably, Wu et al. specified in their study that they were unable to detect stromal or leukocyte populations, possibly due to dissociation 
bias or cell frequency below the limit of detection [6]. This may contribute to reduced precision or recall for these cell types when 
models trained on scRNA-seq data are applied to snRNA-seq datasets. Another study comparing scRNA-seq and snRNA-seq in adult 
mouse kidney models reported an enrichment of specific kidney cell types, such as podocytes, mesangial cells, and endothelial cells in 
snRNA-seq data [30]. These differences contribute to the overall lower performance of machine learning models when tested on data 
obtained with a different method than the training dataset. Our results suggest that models trained primarily on a single sequencing 
technology may not fully capture the expression dynamics of other sequencing technologies, and therefore pursuing a multi-modal 
approach in future studies may improve generalizable performance.

In selecting the machine learning models for this study, we prioritized models based on several key criteria. First, we focused on 
widely used, open-source models from libraries such as scikit-learn [31] to ensure reproducibility and accessibility, allowing other 
researchers to easily expand and adapt our framework. We have also provided a detailed guide for incorporating additional datasets 
and ML algorithms in our GitHub repository. The models we chose—Random Forest (RF), Support Vector Machines (SVM), Multilayer 
Perceptrons (MLP), k-Nearest Neighbors (KN), and Extreme Gradient Boosting (XGB)—are general-purpose classifiers that are popular 
in bioinformatics and provide a robust baseline for kidney cell annotation. Our selection was informed by previous work comparing a 
wide array of ML algorithms, and this study fills a crucial gap in benchmarking the performance of these models in the context of 
kidney cell type annotation, laying the foundation for future work in this area [4].

Within the realm of biomarker ontologies, it is crucial to consider the diversity of the datasets analyzed in our study, which 
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originated from distinct studies utilizing varying pipelines, ontologies, and manual annotations by experts. Despite these differences, 
our machine learning models, trained on standardized cell type labels, exhibited strong performance. This indicates that expert- 
derived annotations can be effectively harmonized across studies with several implications. First, harmonization of cell types across 
studies can allow for greater sample sizes in future transcriptomic analysis and allow for comparison between studies. Consequently, 
we believe that our approach of identifying and labeling matching cell types across studies will facilitate the adoption of standardized 
cell labels for identical cell populations in future research endeavors. This promotes consistency and comparability in the field of 
biomarker ontologies, enabling more comprehensive and cohesive analyses across diverse studies. Moreover, specifically in the field of 
kidney research, there are ongoing efforts to establish standardized ontologies. The Kidney Precision Medicine Project (KPMP) is 
actively developing the Kidney Tissue Atlas Ontology, aiming to create a unified system that incorporates clinical, pathological, im-
aging, and molecular data [32]. This ontology seeks to standardize labels for biomarkers, phenotypes, disease states, cell types, and 
anatomical structures in the kidney across both healthy and diseased conditions [32]. By utilizing scRNA-seq and snRNA-seq, KPMP 
aims to identify gene, metabolite, and protein biomarkers that differentiate cell types and contribute to disease pathways.

KPMP builds upon previous ontological projects in the kidney, such as the Genitourinary Development Molecular Anatomy Project 
and the Chronic Kidney Disease Ontology, which focused on specific disease states or cell types rather than encompassing all kidney 
cell types [32]. The collaboration between KPMP and the Human BioMolecular Atlas Program (HuBMAP) resulted in the publication of 
the Anatomical Structures, Cell Types, and Biomarkers (ASCT + B) tables in 2019 [32,33]. These tables aid in the annotation of 
anatomical structures, cell types, and biomarkers in the kidney. Furthermore, the HuBMAP initiative, which includes KPMP and other 
data consortia, is actively working on the Human Reference Atlas (HRA) which aims to develop biomarker ontologies for various 
organs in the human body [33]. Additionally, the Human Cell Atlas (HCA) initiative has introduced the Cell Annotation Platform 
(CAP), a data visualization tool intended to facilitate the visualization and integration of annotation data from multiple published 
studies [34]. Moreover, our work complements the exceptional work done by the Tabula Sapiens Consortium and HubMAP’s Azimuth 
team as well as generative AI models in this space such as scGPT by utilizing general-purpose machine learning algorithms such as 
SVM, which were demonstrated by Abdelaal et al. to have better overall performance with faster computation time than 
scRNA-specific algorithms [4,35–37]. Our research aligns with these ongoing initiatives by providing valuable insights that can 
contribute to the less labor-intensive compilation of independent datasets, enhance interoperability, increase cell sample sizes, and 
strengthen the utilization of machine learning-derived cell type annotations using general-purpose machine learning models.

In this study, our focus was specifically on annotating healthy kidney cell types using scRNA-seq and snRNA-seq data. The decision 
to limit our analysis to healthy kidney cells was driven by the need to establish a robust baseline for cell type classification, free from 
the variability introduced by pathological states. By concentrating on healthy tissues, we aimed to assess the performance of machine 
learning algorithms in identifying the diverse and complex cell populations that constitute the normal kidney environment [33,38]. 
However, some recent studies investigating gene expression patterns in various kidney disease states have specifically focused on 
certain diseases, such as hypertensive or diabetic kidney disease, while others have utilized murine models to identify biomarkers and 
analyze cell type enrichment [39–41]. Lake et al. (2021) took a different approach by leveraging data from HuBMAP, KPMP, and HCA, 
including cells from both healthy and diseased kidneys, to characterize differential gene expression in disease states using spatial 
transcriptomics [42]. Their findings revealed associations between disease states, elevated cytokine production, and tubular regen-
eration and differentiation, as well as increased expression of inflammatory and fibrotic cell markers [42]. Machine learning models, 
including the general-purpose algorithms such as RF and XGB evaluated in this study, may be applied in future studies to identify key 
pathways involved in kidney disease. Despite not directly including patients with kidney disease, one potential application of our 
results in the study of kidney disease is to utilize the rejection rate of the models trained on healthy kidney cells. By identifying cells 
that are more likely to represent a disease state based on higher rejection rates, researchers can target those cells for further analysis of 
differential gene expression patterns. As databases of kidney disease continue to expand over time, similar approaches to the ones 
described in our study can be applied to enhance our understanding of kidney diseases.

Despite its many strengths, this study also has several limitations, including those previously acknowledged. First, we only included 
samples from the cortex and medulla and did not include samples from other regions of the kidney such as the renal pelvis or papilla. 
We focused on the regions that were most consistently available and well-represented across the publicly available datasets we used. 
Future studies may benefit from incorporating samples from other regions in the kidney. In addition, we included only 79 kidney 
biopsy samples in our study. The selection of these samples was intentional in that these were from five studies for which we could 
replicate the UMAP figures generated in the original publications, ensuring the integrity of the data. Moreover, the models were fed 
62,120 individual cells rather than pseudobulk data. The impact of varying sample sizes on model performance was previously 
evaluated by Abdelaal et al., in 2019 [4]. The authors found that while using fewer than 500 cells leads to reduced accuracy, most 
models performed reliably when trained on 20 % of the cells or more.

While our study provides a foundational framework for the annotation of kidney cell types using machine learning, several key 
areas for future research could expand and enhance the utility of our findings. These include incorporating disease-specific datasets, 
performing cross-species analyses with animal models, and exploring sex-specific differences in kidney cell type classification. One 
important extension of this work involves applying machine learning models to disease-specific datasets. Identifying key genes and 
sequences that differentiate healthy and diseased cells could illuminate the pathways involved in the onset and progression of kidney 
diseases in a cell-type-specific way. Machine learning algorithms such as Random Forest (RF) and Extreme Gradient Boosting (XGB) 
can provide feature importance scores that highlight the genes most influential in classifying diseased states. By performing gene set 
enrichment analysis (GSEA) [43] and other pathway analysis methods on these key genes, researchers can connect differential gene 
expression in diseased cell types to specific biological pathways, such as fibrosis, inflammation, and cell death. Understanding the 
dysregulated molecular mechanisms driving kidney diseases could aid in the identification of novel therapeutic targets.
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Another significant avenue for future exploration is the inclusion of animal sequences, particularly from murine models. 
Comparing human kidney cell types with those in mouse models can help evaluate how well machine learning algorithms trained on 
human data generalize to animal models. This cross-species analysis could reveal conserved and divergent cell types or molecular 
features, offering insights into kidney disease mechanisms that are relevant across species [44]. Moreover, analyzing how models 
trained on human data perform when applied to animal models could identify the strengths and limitations of these models in a 
translational research context. Additionally, exploring the impact of sex differences on kidney cell type annotation is another crucial 
direction for future research. By including datasets with a more balanced representation of male and female samples, future analyses 
can investigate how sex-specific biological pathways influence gene expression patterns, cellular composition, and disease suscepti-
bility in the kidney. Incorporating sex as a variable in these analyses will help to understand how these differences affect the per-
formance of machine learning algorithms in classifying kidney cell types. This understanding could lead to the development of more 
precise and personalized models for kidney health and disease, enabling researchers to identify pathways that are differentially 
regulated between male and female kidneys [45–47].

To ensure the reliability and consistency of our analysis, we did not perform any new cell type annotations or raw data processing 
for this study. Instead, we utilized pre-processed data as provided by the original authors of each dataset. Our approach was based on 
the principle that the original authors are experts in their respective studies and are best positioned to accurately annotate their 
datasets. Therefore, we focused on evaluating the performance of machine learning algorithms using the provided expert-curated 
annotations without introducing variability from re-annotation or re-processing steps. We successfully replicated the UMAP visuali-
zations presented in the original publications of each study, ensuring that our analyses were consistent with the authors’ original work.

To facilitate the expansion of our research by other scientists, we have made our entire pipeline available, including detailed 
documentation for adding new training datasets or implementing alternative machine learning algorithms. All code for our project can 
be found in our GitHub repository, and our data is accessible on Zenodo. By leveraging the power of machine learning algorithms and 
fostering collaborative efforts, we can accelerate the discovery of novel insights into kidney cell types and drive advancements in 
precision medicine for kidney diseases.

4. Methods

4.1. Availability of data and materials

The datasets supporting the conclusions of this article are available in Zenodo [48]. Cell and sample metadata are available on an 
alternate Zenodo [49]. Our results are reproducible with the code and Snakemake pipeline available in our GitHub repository (https:// 
github.com/smadapoosi/IKCTML).

4.2. Data collection and quality control

We initially identified five studies of sc/snRNA-seq data on kidney cells from the GEO database. The selection criteria included 
studies with publicly available data for which we could generate UMAP visualizations that matched the original publications using the 
methods described in this section or the code provided on our GitHub repository. Subsequently, we filtered the data to include only 
normal, healthy cells with “well-annotated” cell types as described in the sections corresponding to each original study below. Our 
analysis pipeline was implemented using Snakemake, and a visual representation of the pipeline can be found in Fig. S8. The complete 
code for our analysis, including the pipeline, is available on our GitHub repository. Additionally, the data used in this study can be 
accessed on Zenodo, including metadata on individual cells and samples. To ensure data quality, we performed UMAP analyses, which 
are illustrated in Fig. S2, and compared these to the UMAPs presented in the original publications. Importantly, we utilized publicly 
available RDS objects or processed count matrices provided by the authors of the original studies as below and did not process raw 
FASTQ files.

4.2.1. Lake et al. [8]
The normalized data from Lake et al. was generously shared with us. Several of the cells in this dataset were also included in the 

data from Menon et al., and these duplicates were removed. Additionally, we excluded cells marked as “distressed” or “unassigned.”

4.2.2. Liao et al. [9]
The raw data from Liao et al. was downloaded from GSE131685 [9]. Our replication of the original dataset used an adaptation of 

the original analysis code available on Github [50]. Sample ‘kidney1’ was removed due to its uniformly high mitochondrial expression 
and the misalignment of cells from ‘kidney1’ with those of ‘kidney2’ and ‘kidney3,’ as visualized by UMAP (Fig. S9). The rest of the 
cells from this study were included.

4.2.3. Menon et al. [7]
The normalized data from this study was downloaded from GSE140989 [7]. The original annotations were recreated using the 

published description of their workflow from the methods section of their paper. All cells from this dataset were used.

4.2.4. Wu et al. [6]
The raw data from Wu et al. was downloaded from GSE114156. Our replication of the original dataset was based on the instructions 
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provided in the supplementary files to the original publication. No cells were excluded from this analysis prior to the SVM quality 
control step. As the authors did not provide a file with marker genes to label clusters, cluster labeling was performed using the marker 
genes listed in Fig. 3 of the original manuscript.

4.2.5. Young et al. [5]
The raw data from this study was downloaded from the supplementary files of the study. Annotations were replicated with the 

provided metadata in their supplement and an adaptation of their original code, which is available on Github [51]. Samples derived 
from children and annotated as tumor samples were excluded using the cell manifest prior to reading the data. We then removed all 
cells annotated as ‘junk’, ‘private,’ or ‘nephron epithelium.’ This step resulted in the loss of several cells that clustered with proximal 
tubular cells, resulting in lower representation of this cell type from this particular dataset.

4.3. Batch correction

Batch Correction was performed using Seurat v4 rPCA integration [52]. The resulting integrated assay was then scaled, reduced in 
dimensionality, clustered, and visualized with the standard Seurat functions [53].

4.4. Harmonized cell type labeling

The cell-type annotations from the original datasets were classified into 16 different harmonized cell type classes, which were 
determined by the pattern of their PCA-coordinate Pearson correlations, implemented with Scanpy [54]. These categories were named 
based on the original, expert annotations present in each original dataset.

4.5. SVM outlier detection

We removed outlier cells from each harmonized cell type by training and testing an SVM model on the integrated dataset. Cells that 
were classified with low probability (<0.6) were removed. SVM was chosen for this task due to its previously shown high performance 
in outlier detection [4,16–20].

4.6. Supervised learning

We evaluated five different popular machine learning algorithms including a support vector classifier (SVC), a random forest 
classifier (RF), a multi-layer perceptron (MLP), a k-nearest neighbors classifier, and XGBoost (XGB), each implemented in the scikit- 
learn python library [31]. We trained the machine learning algorithms on four datasets and tested on the fifth dataset. We performed 
this process 5 times with unique single different testing datasets in each run. The performance of machine learning algorithms were 
evaluated using F1 scores and rejection rates. The overall F1 scores and rejection rates for each machine learning algorithm were 
calculated as the median of all individual harmonized cell types.

Ethics approval and consent to participate

Not applicable.

Funding

The KPMP is funded by the following grants from the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK): 
U01DK133081, U01DK133091, U01DK133092, U01DK133093, U01DK133095, U01DK133097, U01DK114866, U01DK114908, 
U01DK133090, U01DK133113, U01DK133766, U01DK133768, U01DK114907, U01DK114920, U01DK114923, U01DK114933, 
U24DK114886, UH3DK114926, UH3DK114861, UH3DK114915, UH3DK11493.

CRediT authorship contribution statement

Adam Tisch: Writing – review & editing, Writing – original draft, Visualization, Software, Methodology, Formal analysis. Sid-
dharth Madapoosi: Writing – review & editing, Validation, Software, Resources, Conceptualization. Stephen Blough: Writing – 
original draft, Software, Resources, Methodology. Jan Rosa: Validation, Software, Methodology. Sean Eddy: Methodology. Laura 
Mariani: Investigation, Conceptualization. Abhijit Naik: Software, Methodology. Christine Limonte: Writing – review & editing. 
Philip McCown: Writing – review & editing, Data curation. Rajasree Menon: Writing – review & editing, Data curation. Sylvia E. 
Rosas: Writing – review & editing. Chirag R. Parikh: Writing – review & editing. Matthias Kretzler: Writing – review & editing, 
Funding acquisition. Ahmed Mahfouz: Writing – review & editing, Writing – original draft, Visualization, Methodology. Fadhl 
Alakwaa: Writing – review & editing, Writing – original draft, Visualization, Validation, Supervision, Resources, Project adminis-
tration, Methodology, Conceptualization.

A. Tisch et al.                                                                                                                                                                                                           Heliyon 10 (2024) e38567 

11 



Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Acknowledgments

The authors would like to thank NIH-DDK and HCA for funding the studies utilized in this project, the authors of Menon et al. 
(2020), Lake et al. (2019), Liao et al. (2020), Wu et al. (2019), and Young et al. (2018) for generously sharing their data and code, and 
the kidney sample donors for their contribution to science.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.heliyon.2024.e38567.

References

[1] W. Ju, C.S. Greene, F. Eichinger, V. Nair, J.B. Hodgin, M. Bitzer, et al., Defining cell-type specificity at the transcriptional level in human disease, Genome Res. 
23 (11) (2013) 1862–1873.

[2] S.S. Shen-Orr, R. Tibshirani, P. Khatri, D.L. Bodian, F. Staedtler, N.M. Perry, et al., Cell type-specific gene expression differences in complex tissues, Nat. Methods 
7 (4) (2010) 287–289.

[3] D.R. Gawel, J. Serra-Musach, S. Lilja, J. Aagesen, A. Arenas, B. Asking, et al., Correction to: a validated single-cell-based strategy to identify diagnostic and 
therapeutic targets in complex diseases, Genome Med. 12 (1) (2020) 37.

[4] T. Abdelaal, L. Michielsen, D. Cats, D. Hoogduin, H. Mei, M.J.T. Reinders, et al., A comparison of automatic cell identification methods for single-cell RNA 
sequencing data, Genome Biol. 20 (1) (2019) 194.

[5] M.D. Young, T.J. Mitchell, F.A. Vieira Braga, M.G.B. Tran, B.J. Stewart, J.R. Ferdinand, et al., Single-cell transcriptomes from human kidneys reveal the cellular 
identity of renal tumors, Science 361 (6402) (2018) 594–599.

[6] H. Wu, A.F. Malone, E.L. Donnelly, Y. Kirita, K. Uchimura, S.M. Ramakrishnan, et al., Single-cell transcriptomics of a human kidney allograft biopsy specimen 
defines a diverse inflammatory response, J. Am. Soc. Nephrol. 29 (8) (2018) 2069–2080.

[7] R. Menon, E.A. Otto, P. Hoover, S. Eddy, L. Mariani, B. Godfrey, et al., Single cell transcriptomics identifies focal segmental glomerulosclerosis remission 
endothelial biomarker, JCI Insight 5 (6) (2020).

[8] B.B. Lake, S. Chen, M. Hoshi, N. Plongthongkum, D. Salamon, A. Knoten, et al., A single-nucleus RNA-sequencing pipeline to decipher the molecular anatomy 
and pathophysiology of human kidneys, Nat. Commun. 10 (1) (2019) 2832.

[9] J. Liao, Z. Yu, Y. Chen, M. Bao, C. Zou, H. Zhang, et al., Single-cell RNA sequencing of human kidney, Sci. Data 7 (1) (2020) 4.
[10] P. Kameneva, A.V. Artemov, M.E. Kastriti, L. Faure, T.K. Olsen, J. Otte, et al., Single-cell transcriptomics of human embryos identifies multiple sympathoblast 

lineages with potential implications for neuroblastoma origin, Nat. Genet. 53 (5) (2021) 694–706.
[11] F.X. Galdos, S. Xu, W.R. Goodyer, L. Duan, Y.V. Huang, S. Lee, et al., devCellPy is a machine learning-enabled pipeline for automated annotation of complex 

multilayered single-cell transcriptomic data, Nat. Commun. 13 (1) (2022) 5271.
[12] H. Le, B. Peng, J. Uy, D. Carrillo, Y. Zhang, B.D. Aevermann, et al., Machine learning for cell type classification from single nucleus RNA sequencing data, PLoS 

One 17 (9) (2022) e0275070.
[13] C. Ziegenhain, B. Vieth, S. Parekh, B. Reinius, A. Guillaumet-Adkins, M. Smets, et al., Comparative analysis of single-cell RNA sequencing methods, Mol. Cell 65 

(4) (2017) 631, 43.e4.
[14] A.M. Klein, L. Mazutis, I. Akartuna, N. Tallapragada, A. Veres, V. Li, et al., Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells, Cell 

161 (5) (2015) 1187–1201.
[15] B.B. Lake, S. Chen, B.C. Sos, J. Fan, G.E. Kaeser, Y.C. Yung, et al., Integrative single-cell analysis of transcriptional and epigenetic states in the human adult 

brain, Nat. Biotechnol. 36 (1) (2018) 70–80.
[16] P. Zhao, Z. Xu, J. Chen, Y. Ren, I. King, Single cell self-paced clustering with transcriptome sequencing data, Int. J. Mol. Sci. 23 (7) (2022) 3900, https://doi.org/ 

10.3390/ijms23073900. Published 2022 Mar 31.
[17] X. Zhu, T.K. Wolfgruber, A. Tasato, C. Arisdakessian, D.G. Garmire, L.X. Garmire, Granatum: a graphical single-cell RNA-Seq analysis pipeline for genomics 

scientists, Genome Med. 9 (1) (2017) 108, https://doi.org/10.1186/s13073-017-0492-3. Published 2017 Dec 5.
[18] W.V. Li, J.J. Li, An accurate and robust imputation method scImpute for single-cell RNA-seq data, Nat. Commun. 9 (1) (2018) 997, https://doi.org/10.1038/ 

s41467-018-03405-7. Published 2018 Mar 8.
[19] T.S. Furey, N. Cristianini, N. Duffy, D.W. Bednarski, M. Schummer, D. Haussler, Support vector machine classification and validation of cancer tissue samples 

using microarray expression data, Bioinformatics 16 (10) (2000) 906–914, https://doi.org/10.1093/bioinformatics/16.10.906.
[20] Bong-Hyun Kim, Kijin Yu, Peter C.W. Lee, Cancer classification of single-cell gene expression data by neural network, Bioinformatics 36 (5) (March 2020) 

1360–1366, https://doi.org/10.1093/bioinformatics/btz772.
[21] X. Shao, J. Liao, X. Lu, R. Xue, N. Ai, X. Fan, scCATCH: automatic annotation on cell types of clusters from single-cell RNA sequencing data, iScience 23 (3) 

(2020) 100882, https://doi.org/10.1016/j.isci.2020.100882.
[22] Y. Cao, X. Wang, G. Peng, SCSA: a cell type annotation tool for single-cell RNA-seq data, Front. Genet. 11 (2020) 490, https://doi.org/10.3389/ 

fgene.2020.00490. Published 2020 May 12.
[23] Y. Tan, P. Cahan, SingleCellNet: a computational tool to classify single cell RNA-seq data across platforms and across species, Cell Syst 9 (2) (2019) 207–213.e2, 

https://doi.org/10.1016/j.cels.2019.06.004.
[24] D. Aran, A.P. Looney, L. Liu, et al., Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage, Nat. Immunol. 20 (2) 

(2019) 163–172, https://doi.org/10.1038/s41590-018-0276-y.
[25] F. Ma, M. Pellegrini, ACTINN: automated identification of cell types in single cell RNA sequencing, Bioinformatics 36 (2) (2020) 533–538, https://doi.org/ 

10.1093/bioinformatics/btz592.
[26] D. Levine, S.A. Rizvi, S. Levy, et al., Cell2Sentence: teaching large language models the language of biology, bioRxiv (2024), https://doi.org/10.1101/ 

2023.09.11.557287 [Preprint].
[27] E. Denisenko, B.B. Guo, M. Jones, R. Hou, L. de Kock, T. Lassmann, et al., Systematic assessment of tissue dissociation and storage biases in single-cell and single- 

nucleus RNA-seq workflows, Genome Biol. 21 (1) (2020) 130.

A. Tisch et al.                                                                                                                                                                                                           Heliyon 10 (2024) e38567 

12 

https://doi.org/10.1016/j.heliyon.2024.e38567
http://refhub.elsevier.com/S2405-8440(24)14598-7/sref1
http://refhub.elsevier.com/S2405-8440(24)14598-7/sref1
http://refhub.elsevier.com/S2405-8440(24)14598-7/sref2
http://refhub.elsevier.com/S2405-8440(24)14598-7/sref2
http://refhub.elsevier.com/S2405-8440(24)14598-7/sref3
http://refhub.elsevier.com/S2405-8440(24)14598-7/sref3
http://refhub.elsevier.com/S2405-8440(24)14598-7/sref4
http://refhub.elsevier.com/S2405-8440(24)14598-7/sref4
http://refhub.elsevier.com/S2405-8440(24)14598-7/sref5
http://refhub.elsevier.com/S2405-8440(24)14598-7/sref5
http://refhub.elsevier.com/S2405-8440(24)14598-7/sref6
http://refhub.elsevier.com/S2405-8440(24)14598-7/sref6
http://refhub.elsevier.com/S2405-8440(24)14598-7/sref7
http://refhub.elsevier.com/S2405-8440(24)14598-7/sref7
http://refhub.elsevier.com/S2405-8440(24)14598-7/sref8
http://refhub.elsevier.com/S2405-8440(24)14598-7/sref8
http://refhub.elsevier.com/S2405-8440(24)14598-7/sref9
http://refhub.elsevier.com/S2405-8440(24)14598-7/sref10
http://refhub.elsevier.com/S2405-8440(24)14598-7/sref10
http://refhub.elsevier.com/S2405-8440(24)14598-7/sref11
http://refhub.elsevier.com/S2405-8440(24)14598-7/sref11
http://refhub.elsevier.com/S2405-8440(24)14598-7/sref12
http://refhub.elsevier.com/S2405-8440(24)14598-7/sref12
http://refhub.elsevier.com/S2405-8440(24)14598-7/sref13
http://refhub.elsevier.com/S2405-8440(24)14598-7/sref13
http://refhub.elsevier.com/S2405-8440(24)14598-7/sref14
http://refhub.elsevier.com/S2405-8440(24)14598-7/sref14
http://refhub.elsevier.com/S2405-8440(24)14598-7/sref15
http://refhub.elsevier.com/S2405-8440(24)14598-7/sref15
https://doi.org/10.3390/ijms23073900
https://doi.org/10.3390/ijms23073900
https://doi.org/10.1186/s13073-017-0492-3
https://doi.org/10.1038/s41467-018-03405-7
https://doi.org/10.1038/s41467-018-03405-7
https://doi.org/10.1093/bioinformatics/16.10.906
https://doi.org/10.1093/bioinformatics/btz772
https://doi.org/10.1016/j.isci.2020.100882
https://doi.org/10.3389/fgene.2020.00490
https://doi.org/10.3389/fgene.2020.00490
https://doi.org/10.1016/j.cels.2019.06.004
https://doi.org/10.1038/s41590-018-0276-y
https://doi.org/10.1093/bioinformatics/btz592
https://doi.org/10.1093/bioinformatics/btz592
https://doi.org/10.1101/2023.09.11.557287
https://doi.org/10.1101/2023.09.11.557287
http://refhub.elsevier.com/S2405-8440(24)14598-7/sref27
http://refhub.elsevier.com/S2405-8440(24)14598-7/sref27


[28] D. Deleersnijder, J. Callemeyn, I. Arijs, M. Naesens, A.H. Van Craenenbroeck, D. Lambrechts, et al., Current methodological challenges of single-cell and single- 
nucleus RNA-sequencing in glomerular diseases, J. Am. Soc. Nephrol. 32 (8) (2021) 1838–1852.

[29] N. Habib, I. Avraham-Davidi, A. Basu, T. Burks, K. Shekhar, M. Hofree, et al., Massively parallel single-nucleus RNA-seq with DroNc-seq, Nat. Methods 14 (10) 
(2017) 955–958.

[30] H. Wu, Y. Kirita, E.L. Donnelly, B.D. Humphreys, Advantages of single-nucleus over single-cell RNA sequencing of adult kidney: rare cell types and novel cell 
states revealed in fibrosis, J. Am. Soc. Nephrol. 30 (1) (2019) 23–32.

[31] F. Pedregosa, G. Varoquax, A. Gramfort, V. Michel, B. Thirion, O. Grisel, et al., Scikit-learn: machine learning in Python, J. Mach. Learn. Res. 12 (2011) 
2825–2830.

[32] E. Ong, L.L. Wang, J. Schaub, J.F. O’Toole, B. Steck, A.Z. Rosenberg, et al., Modeling kidney disease using ontology: insights from the Kidney Precision Medicine 
Project, Nat. Rev. Nephrol. 16 (11) (2020) 686–696.

[33] K. Börner, S.A. Teichmann, E.M. Quardokus, J.C. Gee, K. Browne, D. Osumi-Sutherland, et al., Anatomical structures, cell types and biomarkers of the Human 
Reference Atlas, Nat. Cell Biol. 23 (11) (2021) 1117–1128.

[34] Y. Hao, S. Hao, E. Andersen-Nissen, et al., Integrated analysis of multimodal single-cell data, Cell 184 (13) (2021) 3573–3587.e29, https://doi.org/10.1016/j. 
cell.2021.04.048.

[35] Tabula Sapiens Consortium, R.C. Jones, J. Karkanias, et al., The Tabula Sapiens: a multiple-organ, single-cell transcriptomic atlas of humans, Science 376 (6594) 
(2022) eabl4896, https://doi.org/10.1126/science.abl4896.

[36] D. Osumi-Sutherland, C. Xu, M. Keays, A.P. Levine, P.V. Kharchenko, A. Regev, et al., Cell type ontologies of the human cell atlas, Nat. Cell Biol. 23 (11) (2021) 
1129–1135.

[37] Cui H, Wang C, Maan H, Wang B. scGPT: towards building a foundation model for single-cell multi-omics using generative AI. bioRxiv. doi:10.1101/ 
2023.04.30.538439.Preprint.

[38] J. Hansen, R. Sealfon, R. Menon, et al., A reference tissue atlas for the human kidney, Sci. Adv. 8 (23) (2022) eabn4965, https://doi.org/10.1126/sciadv. 
abn4965.

[39] A. Obradovic, N. Chowdhury, S.M. Haake, C. Ager, V. Wang, L. Vlahos, et al., Single-cell protein activity analysis identifies recurrence-associated renal tumor 
macrophages, Cell 184 (11) (2021) 2988–3005.e16.

[40] B.R. Conway, E.D. O’Sullivan, C. Cairns, J. O’Sullivan, D.J. Simpson, A. Salzano, et al., Kidney single-cell atlas reveals myeloid heterogeneity in progression and 
regression of kidney disease, J. Am. Soc. Nephrol. 31 (12) (2020) 2833–2854.

[41] J. Fu, K.M. Akat, Z. Sun, W. Zhang, D. Schlondorff, Z. Liu, et al., Single-cell RNA profiling of glomerular cells shows dynamic changes in experimental diabetic 
kidney disease, J. Am. Soc. Nephrol. 30 (4) (2019) 533–545.

[42] B.B. Lake, R. Menon, S. Winfree, et al., An atlas of healthy and injured cell states and niches in the human kidney, Nature 619 (7970) (2023) 585–594, https:// 
doi.org/10.1038/s41586-023-05769-3.

[43] A. Subramanian, P. Tamayo, V.K. Mootha, et al., Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles, 
Proc. Natl. Acad. Sci. U. S. A. 102 (43) (2005) 15545–15550, https://doi.org/10.1073/pnas.0506580102.

[44] J. Miao, H. Zhu, J. Wang, J. Chen, F. Han, W. Lin, Experimental models for preclinical research in kidney disease, Zool. Res. 45 (5) (2024) 1161–1174, https:// 
doi.org/10.24272/j.issn.2095-8137.2024.072.

[45] A.R. Brannon, S.M. Haake, K.E. Hacker, et al., Meta-analysis of clear cell renal cell carcinoma gene expression defines a variant subgroup and identifies gender 
influences on tumor biology, Eur. Urol. 61 (2) (2012) 258–268, https://doi.org/10.1016/j.eururo.2011.10.007.

[46] S. Liu, J. Wu, D. Yang, J. Xu, H. Shi, B. Xue, Z. Ding, Big data analytics for MerTK genomics reveals its double-edged sword functions in human diseases, Redox 
Biol. 70 (2024 Apr) 103061, https://doi.org/10.1016/j.redox.2024.103061. Epub 2024 Feb 5. PMID: 38341954; PMCID: PMC10869259.

[47] R. Sultanova, R. Schibalski, I. Yankelevich, K. Stadler, D. Ilatovskaya, Sex differences in renal mitochondrial function: a hormone-gous opportunity for research, 
Am. J. Physiol. Ren. Physiol. 319 (6) (2020) F1117–F1124, https://doi.org/10.1152/ajprenal.00320.2020.

[48] Siddharth Madapoosi, Automatic identification of kidney cell types in scRNA-seq and snRNA-seq data using machine learning algorithms - datasets, Zenodo 
(2023), https://doi.org/10.5281/zenodo.8303415 [Data set].

[49] Siddharth Madapoosi, Identification of kidney cell types in scRNA-seq and snRNA-seq data using machine learning algorithms, Zenodo (2024), https://doi.org/ 
10.5281/zenodo.11267675 [Data set].

[50] Z. Yu, Lessonskit (2019) [Available from: https://github.com/lessonskit/Single-cell-RNA-sequencing-of-human-kidney.
[51] M.D. Young, constantAmateur (2018) [Available from: https://github.com/constantAmateur/scKidneyTumors.
[52] Y. Hao, S. Hao, E. Andersen-Nissen, W.M. Mauck, S. Zheng, A. Butler, et al., Integrated analysis of multimodal single-cell data, Cell 184 (13) (2021) 3573, 87. 

e29.
[53] R. Satija, J.A. Farrell, D. Gennert, A.F. Schier, A. Regev, Spatial reconstruction of single-cell gene expression data, Nat. Biotechnol. 33 (5) (2015) 495–502.
[54] F.A. Wolf, P. Angerer, F.J. Theis, SCANPY: large-scale single-cell gene expression data analysis, Genome Biol. 19 (1) (2018) 15.

A. Tisch et al.                                                                                                                                                                                                           Heliyon 10 (2024) e38567 

13 

http://refhub.elsevier.com/S2405-8440(24)14598-7/sref28
http://refhub.elsevier.com/S2405-8440(24)14598-7/sref28
http://refhub.elsevier.com/S2405-8440(24)14598-7/sref29
http://refhub.elsevier.com/S2405-8440(24)14598-7/sref29
http://refhub.elsevier.com/S2405-8440(24)14598-7/sref30
http://refhub.elsevier.com/S2405-8440(24)14598-7/sref30
http://refhub.elsevier.com/S2405-8440(24)14598-7/sref31
http://refhub.elsevier.com/S2405-8440(24)14598-7/sref31
http://refhub.elsevier.com/S2405-8440(24)14598-7/sref32
http://refhub.elsevier.com/S2405-8440(24)14598-7/sref32
http://refhub.elsevier.com/S2405-8440(24)14598-7/sref33
http://refhub.elsevier.com/S2405-8440(24)14598-7/sref33
https://doi.org/10.1016/j.cell.2021.04.048
https://doi.org/10.1016/j.cell.2021.04.048
https://doi.org/10.1126/science.abl4896
http://refhub.elsevier.com/S2405-8440(24)14598-7/sref36
http://refhub.elsevier.com/S2405-8440(24)14598-7/sref36
https://doi.org/10.1126/sciadv.abn4965
https://doi.org/10.1126/sciadv.abn4965
http://refhub.elsevier.com/S2405-8440(24)14598-7/sref39
http://refhub.elsevier.com/S2405-8440(24)14598-7/sref39
http://refhub.elsevier.com/S2405-8440(24)14598-7/sref40
http://refhub.elsevier.com/S2405-8440(24)14598-7/sref40
http://refhub.elsevier.com/S2405-8440(24)14598-7/sref41
http://refhub.elsevier.com/S2405-8440(24)14598-7/sref41
https://doi.org/10.1038/s41586-023-05769-3
https://doi.org/10.1038/s41586-023-05769-3
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.24272/j.issn.2095-8137.2024.072
https://doi.org/10.24272/j.issn.2095-8137.2024.072
https://doi.org/10.1016/j.eururo.2011.10.007
https://doi.org/10.1016/j.redox.2024.103061
https://doi.org/10.1152/ajprenal.00320.2020
https://doi.org/10.5281/zenodo.8303415
https://doi.org/10.5281/zenodo.11267675
https://doi.org/10.5281/zenodo.11267675
https://github.com/lessonskit/Single-cell-RNA-sequencing-of-human-kidney
https://github.com/constantAmateur/scKidneyTumors
http://refhub.elsevier.com/S2405-8440(24)14598-7/sref52
http://refhub.elsevier.com/S2405-8440(24)14598-7/sref52
http://refhub.elsevier.com/S2405-8440(24)14598-7/sref53
http://refhub.elsevier.com/S2405-8440(24)14598-7/sref54

	Identification of kidney cell types in scRNA-seq and snRNA-seq data using machine learning algorithms
	1 Introduction
	2 Results
	2.1 Harmonization of cell type annotations across datasets reveals 16 harmonized cell types
	2.2 Machine learning algorithms were predictive of harmonized cell types
	2.3 Feature importance analysis
	2.4 Performance of different classifiers varied across sequencing methods and harmonized cell types

	3 Discussion
	4 Methods
	4.1 Availability of data and materials
	4.2 Data collection and quality control
	4.2.1 Lake et al. [8]
	4.2.2 Liao et al. [9]
	4.2.3 Menon et al. [7]
	4.2.4 Wu et al. [6]
	4.2.5 Young et al. [5]

	4.3 Batch correction
	4.4 Harmonized cell type labeling
	4.5 SVM outlier detection
	4.6 Supervised learning

	Ethics approval and consent to participate
	Funding
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A Supplementary data
	References


