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Despite the variety in sequencing platforms, mappers, and variant callers, no single pipeline is optimal
across the entire human genome. Therefore, developers, clinicians, and researchers need to make
tradeoffs when designing pipelines for their application. Currently, assessing such tradeoffs relies on
intuition about how a certain pipeline will perform in a given genomic context. We present StratoMod,
which addresses this problem using an interpretable machine-learning classifier to predict germline
variant calling errors in a data-driven manner. We show StratoMod can precisely predict recall using
Hifi or Illumina and leverage StratoMod’s interpretability to measure contributions from difficult-to-
map and homopolymer regions for each respective outcome. Furthermore, we use Statomod to
assess the effect of mismapping on predicted recall using linear vs. graph-based references, and
identify the hard-to-map regions where graph-based methods excelled and by how much. For these
we utilize our draft benchmark based on the Q100 HG002 assembly, which contains previously-
inaccessible difficult regions. Furthermore, StratoMod presents a new method of predicting clinically
relevant variants likely to be missed, which is an improvement over current pipelines which only filter
variants likely to be false. We anticipate this being useful for performing precise risk-reward analyses
when designing variant calling pipelines.

The current era of sequencing offers an array of short-read and long-read
technologies to identify the bases of a DNA molecule. However, different
genomic contexts give rise to varying performance of technologies to
measure the human genome1. Challenging genome contexts include repe-
titive adjacent bases, repeats in a local neighborhood, and large duplications.
For example, homopolymers are a challenge for most sequencing technol-
ogies, and the few that do perform well in homopolymers are short-read
technologies which don’t have the same mapping capabilities as long-read
platforms. Furthermore, the bioinformatics tools (such as readmappers and
variant callers) one could employ to analyze data from these platforms also
have different performance characteristics depending on the genomic
context. Thus to fully take advantage of the sequencing ecosystem, it is
important to understand how combinations of each platform and bioin-
formatics tool (ie “pipelines”) perform in different genomic contexts.

Understanding how genomic context affects the accuracy of sequen-
cing, mapping, and/or variant calling is important for a variety of applica-
tions. First, the Genome in a Bottle Consortium (GIAB) maintains a set of
DNA reference materials and variant benchmarks for several well-

characterized genomes2. These benchmarks are VCF files representing
variants for each genome in comparison to GRCh37 or GRCh38, and
creating these benchmarks involves leveraging the strengths of many
sequencing platforms within the varying contexts throughout the human
genome. Second, utilizing multiple sequencing technologies was instru-
mental in creating the T2T-CHM13 reference3, the Human Pangenome
Reference Consortium diploid assemblies4, and the T2T-HG002 Q100
diploid assembly5. Indeed, GIAB recently leveraged the latter in creating a
draft assembly-based benchmark for HG002 (which is featured later in this
work). Third, many challenging medically relevant genes occur in difficult-
to-sequence regions6–8. Therefore, designing clinical assays or designing
clinical trials would benefit from understanding which technologies are
most appropriate given the regions under study. In fact, the Association for
Molecular Pathology recommends the use of representative variants in their
bioinformatics guidelines9, and these must satisfy FDA’s requirements for
regulatory submissions10. In each of these examples, choosing the sequen-
cing platform and subsequent bioinformatics tooling requires making
informed tradeoffs between reagent cost, time, compute power, user
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expertise, and desired level of accuracy given the application at hand and the
relevant regions within the human genome.

To measure performance (often either precision or recall) in these
differing genomic contexts,GIABmaintains a set of bedfiles called “genome
stratifications”which bin the human genome into different region types. As
an example, the precisionFDA Truth Challenge V2 used stratifications to
compare the strengths and weaknesses in different genomic contexts of
sequencing technologies1. These stratifications encompass the following
categories which are expected to have an impact on variant call accuracy:
Low Complexity, Functional Technically Difficult, Genome Specific,
FunctionalRegions,GCcontent,mappability11,OtherDifficult or erroneous
reference regions8, Segmental Duplications, Union of multiple categories,
Ancestry of the reference12, and sex chromosomes. By using these stratifi-
cations, we were able to show that Oxford Nanopore Technologies (ONT)
reads had higher performance in segmental duplications and hard-to-map
regions whereas Illumina excelled in low-complexity regions like
homopolymers.

While stratifications can be useful in assessing performance, they
themselves do not provide a model for where errors are likely to occur. To
this end, a variety of approaches have beenused tomodel sequencing errors,
mostly as part of variant calling to filter variants from the callset which do
not exist in the genome being measured. For example, GATK Variant
Quality Score Recalibration uses Gaussian Mixture Models to identify
abnormal read characteristics13.More recently several deep learningmodels
have been developed to minimize the need for expert-curated features by
taking in sequences from the reference and characteristicsof alignedreads in
a small region around each candidate variant14–17. Additional methods have
been designed by clinical laboratories to predict which variants in a callset
are likely to be real anddonot need tobeorthogonally confirmedby another
method like Sanger sequencing18,19. All of these methods have been very
useful, particularly for increasing variant calling precision, but they have
important limitations. For example, deep learning and many machine
learning methods lack interpretability, and all the above methods focus
mostly on sequencing read characteristics at the expense of genome context,
and they do not predict true variants that are likely to be missed.

In this work, our goal was to develop an interpretable model to predict
the precision and recall for calling a variant using a specified method given
its genome context. Interpretability was desired to allow end users of our
model to understand how each feature (which corresponds to an aspect of
genome context) contributes to a prediction20. To this end, we chose
Explainable Boosting Machines (EBMs)21, which are a specific imple-
mentation of generalized additivemodels (GAMs)wheremodel predictions
are derived from additive effects of univariate and pairwise functions of
dataset features (see “Methods” section for equation form). Each of these
functions can be plotted individually to assess its impact on the response.
EBMs have previously been shown to identify patterns in data that were
obscured by other models, including confounding effects that can only be
explained by domain experts22. In our use case, this aspect is especially
important for clinicians who generally are required to justify their decisions
to patients or other stakeholders (beyond simply saying “the model
told me”).

This modeling approach using EBMs with genomic context features,
whichwe call StratoMod, offers several advantages over the current strategy
for assessing performance based onGIAB stratifications. First, StratoMod is
muchmore precise. In the case of homopolymers, the genome stratification
approach would have required a decision to threshold discrete bins of
homopolymer lengths such as 4–6 bp, 7–10 bp, >10 bp, and >20 bp; in this
case, errors can only be reported in terms of these discrete bins. In contrast,
the EBMmodel reports errors in terms of a continuous scale (log-odds), in
which users canmore precisely identify the impact of homopolymer length
on the likelihood of an errorwhich in turn canhighlight biases or strength of
different sequencing technologies. Second, this model approach allows
multiple genome contexts to be assessed simultaneously. Since EBMs can
also include bivariate terms, we can inspect the interaction between
homopolymer and INDEL length for instance. Since INDELs themselves

can have varying difficulty depending on their length, sign (e.g., insertion or
deletion), and method by which they are measured, it would be useful to
understand how homopolymers (or other genome context) modulate this
difficulty. This would also be important for assessing structural variants
(INDELs>50 bp),whichwedid not address in thiswork but are nonetheless
of interest to the field. Third, StratoMod can predict both precision and
recall for a given method. This is a step forward for the field because many
variant calling pipelines will filter candidate sites with poor support whose
inclusion would likely hurt precision. However, the inverse is not true;
current variant calling pipelines have noway of addingmissing variants that
are true, which would improve recall. While GIAB has previously created
stratification bed files which include hard-to-map and segmental duplica-
tion regions which in theory are enriched for variants likely to be missed,
these bed files provide no predictive quantification on their own. StratoMod
solves this limitation by using well-characterized benchmarks as a source of
truth, and inferringwhere avariantwill likely bemissedbasedon the context
of each variant.

Results
Figure 1 shows theoverall approachof StratoMod. For this study,we trained
multiple iterations of StratoMod to showcase its ability to predict recall,
precision, or Jaccard index (Fig. 1c). In the sections “Usecase 1”, “Usecase 2”
and “Other use cases” below, we use StratoMod to predict recall of several
pipeline configurations. We focused on recall in this study since this is
currently difficult to predict for pipelines, and thus showcases StratoMod’s
value. We also trained StratoMod to predict precision in Supplementary
Note 2. In “Model Validation” below we use StratoMod to predict the
Jaccard index (TP/(FP+ FN+ TP)) for variants in ClinVar, which we
compare to the likelihood of matching variants in gnomAD being filtered.
Here we predicted the Jaccard index instead of precision or recall since a
filtered variant in gnomADmay correspond to either a false positive or false
negative.

In each case, we trained two individual models for INDELs and SNVs
separately. Furthermore, all false positive (FP) and false negative (FN) errors
were determinedwith respect to either theGIABv4.2.1 benchmarkVCFs or
our new T2T-HG002-Q100 assembly-based benchmark (see “Methods”
section) usingGRCh38 as the reference. Lastly, we simplified the analysis by
splitting multi-nucleotide variants, removing SVs (variants larger than
50 bp), genotype errors, and any variants that appeared in theMHC regions
from both the benchmark and query VCF input files.

Usecase1: predicting recall in IlluminaPCR-freeandPacBioHiFi
variant calling pipelines
We first asked if StratoMod could be used to assess the likelihood ofmissing
a variant given its genomic context and the read length used to assess the
variant. To this end, we trained StratoMod using our new draft assembly-
based benchmark forHG002,which is based on the near-perfectly complete
Q100HG002 assembly5 and thus allows us to assess variation in some of the
most difficult-to-analyze regions of the genome (Fig. 2a). Furthermore, we
used the trained models to predict recall for pathogenic/likely pathogenic
ClinVar variants, which should provide useful insight to diagnostic test
developers and clinicians who may be concerned about the likelihood of
missing a potentially lethal variant in a patient.

Identifying driving features that influence recall. We trained separate
models for SNVs and INDELs using VCFs generated using DeepVariant
with GRCh38 as the reference and reads generated from HG002 using
either Illumina PCR-free or Pacbio Hifi. Each model was trained on false
negatives (FN, defined as variants in the benchmark that are missing or
have an incorrect allele or genotype in the query)23 and true positives (TP,
defined as variants matching a benchmark variant and genotype) variant
call classifications, as reported by vcfeval using our Q100 HG002
assembly-based benchmark as the truth set. The model utilized 22 main
effect (univariate) features, including 1 categorical feature denoting the
sequencing platform (Hifi or Illumina). These main effect features
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included quantified characteristics of homopolymers, tandem repeats,
segmental duplications, and other repetitive elements, many of which we
have seen causemapping errors and/or sequencing errors which will lead
to missed variants. Each model also included interaction terms between
the 22main effects and the Hifi/Illumina categorical feature, allowing the
model to show the behavior of each main effect conditional on tech-
nology (see “Methods” section and Supplementary Table 1 for a complete
list of features).

We show two examples of such variants that might be predicted using
StratoMod in Fig. 2b. The left panel depicts a variant in a LINE (long
interspersed nuclear element) that Illuminamissed butHifi called correctly,
presumably because long reads were able tomap correctly to the LINE. The
right panel depicts a homopolymer where the variant was called correctly
from Illumina data, but DeepVariant incorrectly classified the candidate
variant as ahomozygous reference fromHiFi data, presumablybecauseHiFi
data is noisier due to the homopolymer.

Fig. 1 | Graphical overview of StratoMod. a Conceptual framework for mapping
“genomic context” to a machine-understandable value (with homopolymer length
as an example). b Flow chart for the analysis pipeline, where a query callset is
compared to the benchmark to identify TPs, FPs, and FNs. These are then inter-
sectedwith regions andmetadata describing different genomic contexts, producing a
mapping between variant calling results (TP, FP, FN) vs genomic context which are

used as labels and features in themodel respectively. cThis data frame is then filtered
for different labels and is assigned positive (“+” for TP) or negative (“−” for FN and/
or FP) class depending on the desired prediction. Subsetting to the benchmark
variants (FN+ TP), query variants (FP+ TP), or both (FN+ FP+ TP) will predict
recall, precision, or Jaccard index respectively. SegDups Segmental Duplications,
LINE long interspersed nuclear element, SINE short interspersed nuclear element.
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Fig. 2 | StratoMod found context-specific regions where variants are likely to be
missed in either HiFi or Illumina analysis pipelines. a Experimental overview
b IGV images depicting false negative calls identified by this model. c–f EBM
interaction feature plots for SNV hard-to-map regions (c), SNV LINEs and

segmental duplications (d), INDEL hard-to-map regions (e), and INDEL tandem
repeats/indel length (f). LINE long interspersed nuclear element. Error bars and
ribbons around step plots are model errors.
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StratoMod enables us to systematically quantify error likelihood for
variants such as these using feature profiles (Fig. 2c–f). Each profile is
actually the addition of three features output by themodel: themain effect
of the sequencing platform (color), a region type such as tandem repeat
length (x-axis), and the interaction of the two (divergence of the two colors
in the profile). The y-axis is the log2 odds ratio of the predicted recall (i.e.
an increase in 1 corresponds to twice as likely to find a true variant). For
SNV and INDELs, we found that hard-to-map regions were unsurpris-
ingly predictive of higher error rates (Fig. 2c, e). Furthermore, the increase
in error rate was less for Hifi than Illumina, likely due to longer read
lengths provided byHifi assisting inmapping. For SNVs, we also observed
that variants in a LINE were more likely to be missed than those not in
LINEs, and the difference in predicted score between Illumina and HiFi
became larger as length increased (Fig. 2c). There was a spike in the FN
rate around 6000 bp long (corresponding to full-length L1 LINEs), pos-
sibly because full-length LINEs are more recent and similar to each other.
Interestingly, segmental duplications for SNVs did not show a wide
divergence between Illumina and Hifi, although the error rate increased
with increasing similarity. This could be partly explained by the difference
in the difficult-to-map effect in Fig. 2c between Hifi and Illumina, which
overlaps with the segmental duplications effect in Fig 2d (as segmental
duplications are also hard-to-map generally). For INDELs we observed
that increasing tandem repeat length generally increased error rate, and
Hifi’s error rate decreased slower, in particular as repeat length exceeded
the length of a short-read (100 s) (Fig. 2f). Furthermore, long deletions and
insertions generally had higher error rates, andHifi had a lower error rate
relative to Illumina for long insertions, likely due to the fact that mapping
becomes harder as insertions become longer. While these only repre-
sented a subset of all features tested, they represent many of the high-
leverage features that contribute to the resulting prediction (Supple-
mentary Fig. 1a). In total, these profiles support what we already know
about short vs long reads given our intuition about mappability and long
repetitive regions; however, they further enable better precision for
understanding both the error rate and the types of regions that lead to a
given error rate. An important caveat is that these profiles can change
substantially depending on themapping and variant callingmethodology,
as we show below for linear vs. graph-based references.

Performance assessment and prediction of missing clinically rele-
vant variants. Eachmodelwas trained using an 80/20 test split onHG002
(Ashkenazi Jewish ancestry) (Fig. 2a); we additionally tested themodel on
HG005 and HG007 (Han Chinese ancestry) to assess its generalizability
to other genomes. Since we did not have an assembly-based benchmark
for these, we used our v4.2.1 benchmarks instead and also tested the
v4.2.1 benchmark for HG002 which we expected would give us similar
results to the assembly-based HG002 benchmark (which is mostly a
superset of the v4.2.1 benchmark). We observed that both precision and
recall (note these two metrics refer to the model’s classification perfor-
mance and are distinct from the predicted precision and recall which
describe StratoMod’s output) were generally similar and high between all
models and genomes (Supplementary Fig. 1b). SNV performance for
HG002 Q100 was near 1.0 for the area under the precision-recall (PR)
curve and about 0.96 for the area under the receiver-operator (ROC)
curve for both Illumina and Hifi (Supplementary Fig. 2d). INDEL per-
formance was lower (PR = 0.84–0.86 and ROC = ~0.985). These metrics
were similar for HG002 between the two different benchmarks, with
Illumina INDELs being slightly higher for v4.2.1. The other genomes
were also similar, again with the exception of Illumina INDELs were
slightly more performant. We also noted that when stratifying the ROC
andPR curves by platformand variant type, the curves overlapped almost
perfectly, indicating the performance across the two platforms is more-
or-less equal (Supplementary Fig. 2e). Together these indicate that the
models are well-trained and that feature profiles are describing trends in
the data reasonably well.

Assessment of pathogenic ClinVar variants. We next assessed the
ability of ourmodel to predict the likelihood ofmissing clinically relevant
variants with either Illumina or Hifi reads. We fed a ClinVar VCF
through our model and extracted the probabilities of missing each var-
iant. We also examined the contribution of each feature to those prob-
abilities to “explain”why some variants were likely to bemissed. To focus
on variants of more clinical interest, we only considered variants marked
as “pathogenic” or “likely pathogenic” in the ClinVar VCF. We then
bisected variant predictions to those greater or less than 90%, with the
former being deemed “detected” and the latter “missed”. The models
were well-calibrated around this 90% cutoff, indicating that our cutoff
should roughly correspond to the real-world likelihood of missing a
variant (Supplementary Fig. 1a). Note that the vast majority of variants
were above this 90% threshold (Supplementary Fig. 2b, c) thus the var-
iants below this cutoff represented the lower tail of the hardest variants
to call.

We then plotted missed variants where Illumina and Hifi predictions
disagreed (Fig. 3a) and agreed (Fig. 3b) with each other along with the
relative contributions fromeach feature.We found thatHifihadmany fewer
variants lower than our 90% cutoff for both INDELs and SNVs (Fig. 3a).
Furthermore, variants for which Illumina and Hifi disagreed had different
features driving their predictions. Illumina’s predictions were largely driven
by segmental duplications, mappability features, tandem repeats, and indel
length (in the case of indels). The few errors in Hifi by contrast were mostly
in homopolymer regions. For cases where Illumina and Hifi both missed
variants, the feature contributions were largely similar (Fig. 3b). We also
noted that Hifi tended to assign higher probabilities overall, particularly in
the case of SNVs where Hifi was as confident as Illumina or more but the
reverse was not true (Fig. 3c). For INDELs this was also largely true except
for SNVs >90% where Illumina was sometimes more confident than Hifi.
Together these indicate that while Hifi is overall much less likely to miss
variants (particularly in hard-to-map regions) when using DeepVariant
with a standard linear reference, it still might miss errors in homopolymers
that would otherwise not be missed with Illumina.

Most predictedmissed pathogenic and likely pathogenic variants were
explained both by lowmappability and being in a highly similar/duplicated
segmental duplication, with more than 20 FN SNVs and INDELs predicted
for Illumina-DeepVariant and/orHiFi-DeepVariant in genes PKD1,PMS2,
NF1,CYP21A2,CHEK2,NEB,FLG, SDHA,ABCC6, SMN1,STRC, KMT2D,
CYP11B1, CDKN1C, PIK3CA, PROSS1, HYDIN, and TUBB2B, as well as
genes that are falsely duplicated in GRCh38 (CBS, with fewer FNs in
KCNE1,U2AF1, andCRYAA), with full list of genes and counts of predicted
FNs in Supplementary Data 1 and Supplementary Note 1. This is plausible
given that these two region types should overlap significantly and also
should lead to mismapped reads and hence missed variant calls. Interest-
ingly, HiFi-DeepVariant had at least 5-fold fewer predicted missed variants
in all of these genes except CBS, CYP21A2, NEB, ABCC6, and HYDIN,
whichwere predicted to be challenging for both technologies. However, this
findingmay not apply to all methods, such asmethods thatmask the falsely
duplicated regions in GRCh38 that cause mapping challenges in CBS and
other genes.

In addition to segmental duplications, some variants predicted to be
missedwere related to INDELlength, tandemrepeats, andotherdifficult-to-
map regions, indicating thatmultiple errormechanismsmay be at play. For
example, potentially missed variants were predicted for INDELs in VNTRs
in ACAN, COL6A1, F7,MYO7A,AGRN, and CDKN1C (some of which are
inside an exon and some partly exonic but mostly intronic), as well as large
insertions in trinucleotide tandem repeats like DMPK, PHOX2B, and
RUNX2, where expansions are associated with disorders. The remaining
predicted missed variants were large INDELs in non-repetitive regions (a
few incidentally in homopolymers), except for a cluster in a few hundred bp
regions ofANKRD11 that is identical to a region on chrXbut canbemapped
accurately with most paired-end reads. The full list of genes and counts of
predicted missed variants is in Supplementary Data 1.
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Many of the above-identified genes, tandem repeat regions, and
variant types have previously been known to be challenging. In
addition to highlighting general genes and characteristics of variants,
this model predicted particular pathogenic variants that may be

missed by a particular sequencing and bioinformatics method (in this
case, 35× Illumina-DeepVariant PCR-free WGS), which may not be
representative of all Illumina-based methods. This model could be
used similarly to predict variants that might be missed by any

d.

a.

b.

c.

HG005 GIAB
benchmark
HG005 Illumina
VCF
HG005 Hifi
VCF

HG005 Hifi
Alignments

HG005 Illumina
Alignments

Difficult-to-map
Regions

Fig. 3 | Assessment of ClinVar variants predicted to bemissed using Illumina and
HiFi calls from DeepVariant. a, b Heatmap of variants with a 10% or higher
likelihood of being predicted asmissed unshared between Illumina/Hifi (a) or shared
(b) showing contributions of each feature within themodel. Note that all interaction
terms were added to their univariate main effect features to simplify visualization,
and also note that negative scores contributed positively to a missed variant.

c Predicted probabilities between Illumina and Hifi models. Red dotted red line is
equal probability for Illumina and Hifi. Blue dotted lines are 90% probability cutoffs
for either platform d ClinVar variant that is correctly predicted to be missed in
Illumina-DeepVariant and as a TP in HiFi-DeepVariant due to being in a difficult-
to-map region in a segmental duplication in PI4KA.
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method that has been used to call variants from benchmark samples
like those available from GIAB.

Use case 2: comparing linear vs graph-based mappers
We next hypothesized that StratoMod’s feature set would enable it to dif-
ferentiate the performance of different mappers, particularly linear and
graph-based mappers because graph-based mappers have been developed
to improve results in difficult-to-map regions and variants24,25.

To test this, we trained StratoMod using two Element DeepVariant
callsetswhichused either BWAmem26 (linear) orVG27 (graphical)mappers
prior to running DeepVariant. The model was trained using TP as the
positive class and FN as the negative class and thus learned to predict where
variants were most likely missed. Between VG and BWA, the models were
generally similar except for a few key features that corresponded to hard-to-
map regions, and theperformance/calibrationof eachmodelwas reasonable
(Fig. 4a, b, Supplementary Fig. 3a). As expected, VG’s error rate increased
less than BWA’s when moving from non-hard-to-map vs hard-to-map

(either 100 or 250 bp long) for both SNVs and INDELs. Furthermore, VG’s
error rate increased less with increasing LINE length for both SNVs and
INDELs, corresponding to the intuition that longer LINEs should be harder
to map. Finally, in the case of INDELs BWA’s error rate dropped when
similarity increased above 92% while VG dropped less at the same point,
again corresponding to the intuition that more similar segmental duplica-
tions areharder tomap.Eachof these depicted featureswas representativeof
a key subset of features whose main effect and interaction with the two
mappers contributed to a large component of the model’s variability
(Supplementary Fig. 3b).

We next asked what distinguished the variants for which the two
mappers disagreed.We plotted StratoMod’s predicted recall for caseswhere
BWA was correct and VG was incorrect and vice versa (Fig. 4c, Supple-
mentary Data 3, 4). These probabilities were reasonably calibrated for both
SNVs and INDELs (Supplementary Fig. 3c). Interestingly, in either case
using VG often led to higher predicted recall than BWA (by as much as
50%), even when it was incorrect according to our benchmark. The reverse

Fig. 4 | StratoMod correctly predicts the advantage for VG in hard-to-map
regions. a,bProminent hard-to-map feature profiles. Error bars and ribbons around
step plots are model errors. c Prediction correlation plot between VG and BWA
where either BWA or correct and VG is incorrect (top) or the reverse (bottom).
Dotted line y = x (perfect correlation). Note these are only for SNVs but the INDEL

plots were almost identical. “Hard regions” included LINEs, SINEs, LTRs, segdups,
and hard-to-map regions 100 and 250 bp long d IGV screenshot depicting an
instance where VG is correct and BWA is incorrect. In this case, the variant appears
in this copy of the segdup but not others for a large fraction of haplotypes in the
graph (bottom track).
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(using BWA lead to higher predicted recall than VG) appeared to never be
true. When stratifying these plots by those in “hard” regions (LINEs/SINEs
(short interspersed nuclear element)/LTRs (long terminal repeats)/Segd-
ups/Hard-to-map 100 and 250 bp long), we saw that this increased pre-
dicted recall was due to VG performing better in these particular
region types.

Wenextmanually investigated caseswhere the twomappers disagreed,
and highlighted a representative case where VG was correct and BWAwas
incorrect due to a segmental duplication (Fig. 4d). This variant was present
in HG002’s genome (top benchmark track) but the self-chain alignment of
the other copy of this segmental duplication to this region shows that it
matches this variant, causing Element reads with the variant to map to the
wrong copy using a linear reference. However, because the variant is also
present in most of the HPRC assemblies in the graph (bottom track), VG
was able to leverage this graph to accurately map reads to this region rather
than the other copy of the segmental duplication.

Taken together, these demonstrate how StratoMod can be used to
compare and assess the performance of different mappers given genomic
regions with different mapping characteristics.

Other use cases
Assessment of new sequencing technologies. New sequencing
technologies are under active development, and methods to understand
the strengths and weaknesses of these technologies are important, so we
next tested if StratoMod could be used to measure the progression of
Ultima’s new sequencing platform that promises to be less expensive and
has been steadily improving up to their first product launch in 202428.We
compared their latest callsets (“R2024”) from the UG100 to those from
2022 (“R2022”), both called by DeepVariant. These models were trained
analogously to those in use case 1 (same feature set, benchmark, and
genome) and were trained to predict recall.

We particularly investigated homopolymer errors since these features
were dominant in the model’s predictions (Supplementary Fig. 4a, b). For
AThomopolymers, the error rate climbedprecipitously after 8 and10 bp for
SNV and INDEL respectively. For GC homopolymers the error rate rose
almost immediately after 4 bp (which was our minimum for defining a
homopolymer). Furthermore, Ultima’s latest iteration had notably higher
overall accuracy compared to their previous iteration, as noted by the
translational increase in the R2024 curve relative to the R2022 curve in each
of the plots and the “VAR_seqtech” variable (which is the categorical
variable distinguishing the two releases) being near the top in the feature
importance plots (Supplementary Fig. 4b). Subtly, their newer iteration
showed a slight advantage for longer homopolymers (particularly INDELs)
where the distance between the curves grew with increasing homopolymer
length.

In total, these data demonstrate how StratoMod can be used to assess
the progress of emerging technologies; in this case, the overall error rate
dropped considerably for the latest Ultima iteration, with subtle perfor-
mance differences conditional on region type (such as longhomopolymers).

Assessment of variant calling pipeline improvements. In addition to
the platforms themselves, the software used to call variants from data
created on these platforms is constantly improving. We used StratoMod
to assess improvements in predicted recall for different versions of guppy
and clair, the base and variant caller respectively for the ONT sequencing
pipeline. Specifically, we assessed guppy4+clair1 and guppy5+clair3 in
combination. Thesewere trained analogously to use case-1 except that we
used HG003 as the benchmark.

We again investigated homopolymer errors since this is a well-known
errormodality forONT callsets. Overall error ratesweremuch lower for the
newer software as expected (Supplementary Fig. 5, Supplementary Note 3)
with the improvement being much more pronounced for INDELs. In the
case of SNVs,much of the performance improvementswere independent of
homopolymer length and imperfect fraction. However, the INDELs, the
predicted recall for the older callers degraded much more rapidly for

homopolymers longer than 8 bp and 6 bp for AT and GC respectively
(Supplementary Fig. 5a). The gap between the older callers and the newer
callers decreased with increasing imperfect fraction, especially for AT
homopolymers (Supplementary Fig. 5b). Despite this, the older callers were
still inferior to the newer callers by at least a 5x margin for each imperfect
fraction. These suggest that the homopolymer-specific error mechanism in
the older ONT callers (which the newer callers improved) was due to
miscounting longer homopolymers. This would affect INDELs more than
SNVs since vcfeval will only count a variant if it matches completely. This
also would be somewhat negated in homopolymers with higher imperfect
fractions since imperfect bases “interrupt” a stretch of otherwise similar
bases as they are going through thenanopore,whichmaymake counting the
number of bases easier. In fact, one approach ONT has announced to
improve accuracy in homopolymers (the 6b4 chemistry) is to modify bases
inside the homopolymer.

Together, these indicate howStratoMod is able to assess improvements
in variant/base callers and provide insight into the mechanism for these
improvements.

Model validation: comparison between ClinVar predictions
and gnomAD
We finally sought to validate the use of our model’s predictions of ClinVar
variants thatmay bemissed or erroneously called by short reads. Given that
no benchmark exists for most ClinVar variants from which we can derive
“labels” (TP, FP, etc), we hypothesized that the probability of our model
should be correlated with the likelihood of a variant in gnomAD v4.0 being
filtered. gnomAD may filter a variant for similar reasons that StratoMod
may assign a low probability, albeit with a different model and different
input data.We trained similarmodels to thoseused in “use case 1” exceptwe
also included FP (along with FN) as the error label since errors in gnomAD
could correspond to either anFPor anFNerror in StratoMod (note that this
is the Jaccard index, or TP/(TP+ FN+ FP) (Fig. 1c)). Previouslywe limited
ourselves to FN to demonstrate StratoMod’s ability to predict recall.We also
trained StratoMod using an Illumina callset to be comparable to gnomADs
underlying sequencing data, albeit with different variant calling meth-
odologies (both used BWA mem, and the training set used DeepVariant).
Thus the interpretation of StratoMod’s output is “the probability that
ClinVar variants of interest will be correctly called using Illumina-
BWAMEM-DeepVariant.” Many ClinVar variants did not intersect with
any gnomAD variants (Supplementary Fig. 13a); since many missing var-
iants are likely very rare andnot in anygnomADsamples.While someof the
missing variants are in challenging regions, many are not, so the rest of the
analysis only concerns the fraction of ClinVar variants that intersected with
either a filtered or passing gnomAD variant.

We first created “agreement plots” (similar to calibration plots in
machine learning) which depict the binned fraction of gnomADnon-PASS
variants vs the mean predicted error rate (which is 1 - StratoMod’s output)
for that bin (Fig. 5a). In general, StratoMod and gnomAD corresponded
reasonably well, with StratoMod predicting slightly fewer errors than gno-
mAD’s filtering (i.e. assigned a lower probability than the fraction of non-
PASSvariants) for themajority of variants for bothSNVsand INDELs.Note
that for both, the curves were noisier moving toward the lower-left corner
since the number of variants in each bin decreased with decreasing prob-
ability. To explain why Stratomod predicted fewer errors, we further
hypothesized that gnomAD is filtering true variants with low allele count
(AC) in a region type that StratoMod predicted would be easier than the
number of filtered variants would suggest. We tested this by stratifying the
agreement plots by allele counts greater than/less than 10 (red vs blue lines)
and indeed noted that for themajority of variants, StratoModpredicts fewer
errors for low allele counts.

We further tested this hypothesis by curating some of the low allele
count variants in the gnomAD browser. We found that these variants
mostly fell in two categories: (1) variants in only one or two whole genome
samples that did not have evidence of mapping or sequencing errors so
appeared likely to be true, and (2) variants in homopolymers thatwere likely
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sequencing errors because they only occurred in one direction (Supple-
mentary Fig. 14). The latter variantswere likely predicted to have a low error
rate because StratoMod features do not include characteristics of the reads
such as strand bias. Furthermore, our model is designed to distinguish
between true variants and errors in Illumina-DeepVariant calls, whereas
gnomAD’s GATK VQSR-based filtering is designed to remove likely false
variants in population callsets from 100,000’s of individuals. In summary,
these curated examples explain nuanced differences due to rare variants and
feature sets used, but the model is generally consistent with gnomAD fil-
tering despite these differences, as shown in Fig. 5a.

Furthermore, the “x” points in the plots denote variants that intersect
withno features corresponding to challenging regions inStratoMod (oronly

INDEL length in the case of INDELs), and thus have nearly the same
probability. Surprisingly a large number of variants with features had higher
predictions than those without, which was likely due to our feature set not
including all possible features that could be used tomeasure “difficulty”, and
the inclusion of some features correlated with higher rates of true variants
like short homopolymers (Supplementary Note 2 and Supplementary
Fig. 15). These also followed the same pattern, with lower allele counts
corresponding to StratoMod being more overconfident.

Note that in the case of SNVs, the majority of variants were in the
lower-left corner (note the large dot, denotingmost of the variants are in this
range), which shows gnomAD hadmore filtered variants than predicted by
StratoMod for AC < 10 vs ≥10, in line with that for INDELs (albeit with less

Fig. 5 | Validation of ClinVar model predictions using gnomAD. a Agreement
plots between model predicted error rate and fraction of gnomAD non-PASS var-
iants using 20 bins and stratified by gnomADallele count. Each dot is a binnedmodel
probability, where the x position is the mean probability and the y position is the
fraction of non-PASS in that bin. The “x” points are all variants that had no features
in the model (and thus their probabilities are nearly identical) and the remaining
points are variants with at least one feature. Red dotted line is y = x (perfect agree-
ment). Data shown does not include the bottom 5% of probabilities, as these were

sparse enough to appear as noise. b Correlations plots between mean model prob-
ability and a fraction of non-PASS variants in segmental duplications (SegDups).
Each point represents one SegDup region and only regions with >10 variants are
included. c Probability histograms for gnomAD PASS and non-PASS variants
stratified by allele count (shown as an order of magnitude, so “AC 10”means “allele
counts between 10 and 99”). Dotted red line is themedianmodel probability for each
histogram.
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magnitude).However, for SNVswith probabilities between 0.025 and 0.075,
gnomAD had fewer filtered variants than predicted. We hypothesized that
this shift reflected a confound in the type of region represented between
these different allele count stratifications and within these probabilities. To
test this, we assessed the fraction of each region type (tandem repeat, seg-
mental duplication, etc) in each bin and noted that for SNVs, segmental
duplications are over-represented for variants with AC < 10 vs ≥10 for the
range of probabilities between 0.025 and 0.075 (Supplementary Fig. 13b).
Because StratoMod assigns a lower probability to variants in segmental
duplications vs those not, this explains why gnomAD has more filtering
than predicted for the AC > = 10 curve (i.e. StratoMod thinks these variants
are “easier” as they are not in segmental duplications) vs the AC < 10 curve
despite gnomADmore aggressively filtering variants with low allele count.

We also assessed the fraction of gnomAD non-PASS variants in seg-
mental duplications vs StratoMod’s predicted error rate (Fig. 5b). We
observed a good correlation between gnomAD and StratoMod for both
INDELs and SNVs. Note that in these plots we are only showing segmental
duplications with 10 variants or more (regions with few variants tended to
be noisier since they have fewer variants fromwhich to estimate the x and y
mean). In agreement with the segmental duplications discussed above in
Fig. 5a, in the case of SNVs we observed several segmental duplications for
which StratoMod predicted fewer errors compared to gnomAD in the
90–100% range. Furthermore, unlike Fig. 5awhich only depicts the top 95%
of variants (otherwise bins in the lower probability rangewould be too noisy
given how little data they would contain), Fig. 5b shows variants in seg-
mental duplications forwhich the StratoMod probability was less than 80%,
and indeed shows that even for these lower ranges, therewashigh agreement
between StratoMod and gnomAD.

Finally, we further assessed the relationship between allele count and
StratoMod’s probability by plotting histograms stratified by PASS/non-
PASS and increasing allele count (Fig. 5c). We observed that probability is
near 1 for the vast majority of variants in the PASS case and not so for the
non-PASS case, in agreement with Fig. 5a, b. Furthermore, the median
probability (dotted red line) appears to decreasewith increasing allele count.
This effect is very subtle in the case of SNVs (droppingby~2x log-odds from
the lowest to highest) and much higher in the case of INDELs (~8x drop
from lowest to highest), also in agreement with the apparent magnitude
between low and high allele counts between SNVs and INDELs in Fig. 5a.

Discussion
In this work, we demonstrated that an inherently interpretable model with
expert-designed features for genome context can be used to gain a deeper
understanding of sequencing and variant calling errors.

First we demonstrated StratoMod’s ability to not only predict recall for
clinically relevant variants but also provide insight intowhat types of regions
and platforms contribute to this prediction. Particularly, we showed that
Hifi missed fewer variants in hard-to-map regions compared to Illumina,
but the variants thatHifimissedwhich Illumina did notmiss were in longer
homopolymers. The intuition that long reads generally provide superior
mapping ability over short reads is not surprising or new, but StratoMod
quantifies this intuition in a way that has not been done previously and
provides additional nuance depending on region type. Furthermore, the fact
that these models were well-calibrated shows that they can inform key
decisions and risk analysis in the context of designing lab tests or clinical
trials. Analogous to the example we demonstrated, StratoMod can predict
the recall of difficult variants given aplatform, region type, and threshold.As
new technologies such as long reads enable increasingly challenging
pathogenic variants to be added to ClinVar, StratoMod could become
increasingly useful for understanding the strengths and weaknesses of dif-
ferent pipelines for detecting these variants.

StratoMod’s ability to predict recall also allows one to perform risk
analyses. We demonstrated this by showing where variants may be missed
given a 90%cutoff in StratoMod’s predicted recall probability.Note that this
cutoff was somewhat arbitrary, and its precise valuemust be determined by
the end user after assessing the costs and benefits of each decision in their

application. Increasing the cutoffwill increase theminimumconfidence that
a true variant would be detected, which will decrease the risk of missing a
variant but also increase the number of potential FNvariants.Also, note that
StratoMod’s “predicted recall” is related but not identical to the “probability
of a false negative in any genome”which needs to consider the likelihood of
the true variant existing in the genome under study (see Supplementary
Note 4 for additional details).

We validated the results of this analysis by comparing the output of
StratoMod’s assigned probabilities for ClinVar variants in gnomAD, par-
ticularly the likelihoodof gnomADtobepassing orfiltered.Given the size of
gnomAD, the similarity of the input data (Illumina short reads), the fact that
many ClinVar variants are also in gnomAD, and the differences in the
underlying models (StratoMod vs BWA/gatk), we reasoned this would
provide a natural orthogonal comparison to justify StratoMod’s output for
ClinVar variants because GIAB benchmarks contain insufficient clinically
relevant variants to test for ground truth. In general, gnomAD and Stra-
toMod seemed to correspond quite well, at least for the majority of variants
where the assessmentweused ismost robust. StratoModwas generallymore
confident (ie higher StratoMod probability vs likelihood of gnomAD pas-
sing) which seemed to be more pronounced in variants with low allele
counts (less than 10) and overall was probably due to themore conservative
model gnomAD entails when variants occur in few samples.

Similarly, we provided an analogous example using different types of
mappers (linear and graph-based, represented by BWA and VG respec-
tively).While the common intuition says that graph-basedmappers should
provide an advantage in hard-to-map regions and larger INDELs, Strato-
Mod again provides additional insight by quantifying howmuch andwhere
this intuition applies (for example, VG is ~2x less likely to miss INDELs in
segmental duplications with >92% similarity). For tool developers, Strato-
Mod provides a context-dependent lens through which their tools may be
evaluated, and it also provides a means to assess the current landscape for
opportunities in developingnew tools to tackle difficult regions forwhichno
good tool exists. For end users, this provides a method by which the risk-
reward tradeoff of using aparticular tool for a given taskmaybe evaluated; in
this example, giraffe-VG generally has a higher memory cost than BWA24,
and this may or may not be important depending on the goal.

We selected a relatively small set of features tomaintain interpretability
and reduce correlations between related features as this reduces interpret-
ability.We also evaluated a limited number of interactions between features,
because large numbers of feature interactions are challenging to interpret.
We expect adding and fine-tuning features and adding more interactions
could improve model performance, but would also create more challenges
in interpretation and visualization of results. The tree-based modeling
approach enabled us to identify some discontinuities in scores that point to
possible improvements in feature design, such as identifying peaks in seg-
mental duplication length related to particular segmental duplications with
errors in GRCh38, and a peak in LINE length related to full-length LINEs.
However, the tree-based nature of the model also makes robust uncertainty
estimates challenging relative to other GAM-based approaches. These
results also provide suggestions for features that could be added to other
models like those used by variant callers to remove false variant candidates.

While we have demonstrated that StratoMod can be useful for diag-
nosing and understanding variant calling errors, it was not intended to be a
replacement for any existing variant caller. We trained StratoMod on FP
errors for PCR-free/plus Illumina callsets, and unlike the FN models,
included all candidate variant sites to test the degree to which either library
prepmethod introduced errors (SupplementaryNote 2). In particular, up to
20% of falsely called variants are not assigned any genome context features,
so StratoMod uses only depth of coverage and variant allele fraction for
classification. This limits StratoMod’s ability to be as comprehensive as
expected from a variant caller (Supplementary Fig. 15). Adding slop (i.e.,
extra bases around the repeat) can be important for some features, and we
experimented with adding 1–5 bp slop around homopolymers.We decided
touse 1 bp to simplify interpretation aroundnearbyhomopolymers, but this
increased the number of variants without a genome context feature,
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particularly forGC-rich regions.Despite this lackof comprehensiveness, the
model’s interpretability enables amore detailed understanding of how types
of repeats and their characteristics predict sequencing and mapping error
rates for PCR-free vs. PCR-plus Illumina sequencing. Understanding dif-
ferences in sequencing and mapping errors between technologies can be
challenging due to differences in how candidate variants are generated, so
we did not use the model to predict false positives across technologies but
instead predicted differences in false negatives after filtering for
DeepVariant-based callsets from Illumina and HiFi in the second use case.

StratoMod is available as an open-source snakemake pipeline for
anyone touse (see “Data availability” section). Enduserswill derive themost
benefit by training StratoMod themselves on their specific applications
(modeled on the demonstrations provided here) as it is impossible for us to
coverevery combinationof variant caller,mapper, platform, libraryprep, etc
here. Thememory requirements will vary widely depending on the number
of VCFs onewishes to study at once, but in general, will require at least 12G
minimum (32 G is more realistic for more than two VCFs). The EBM
training step is themain CPU-intensive task andwill finish in about 60min
with 4 threads running on a 3 GHz Xeon processor when analyzing 2 VCFs
with 22 features (note EBMs are not GPU-accelerated so this is not a
consideration).

Users should also note that StratoMod was designed to work with
germline variant calls, and will likely work best on whole genome sequen-
cing (WGS) datasets. Other types of data such as whole exome sequencing
and targeted sequencing may also work but will face the issue of having
relatively fewer variants for training, aswell as needing additional features to
account for coverage variability and challenges near the edges of targeted
regions. StratoMod additionally was not designed to assess somatic variant
calling pipelines (although in theory, this may work with the right training
data). Furthermore, the ClinVar callset we used likely has a small fraction
(2%) of somatic variants in it29; however we do not believe this is a large
enough number to significantly change our conclusions in Fig. 3. Further-
more, the ClinVar variants used in the gnomAD comparison (Fig. 5) were
entirely germline since we only used variants common to both, and gno-
mAD is a database of germline variants.

StratoMod can be used for either explainability or prediction (which
may involve explainability); either use case has different data requirements.
Both require at least one benchmark VCF and at least one query VCF for
training. In the former case, this is all that is needed, since the goal is to use
the model to understand how different genome contexts lead to a given
benchmarking outcome (analogous to finding the slopes in linear regres-
sion). In the latter case, one is concerned about predicting (and possibly
explaining) the outcome of a variant outside the training set. Importantly,
these predictions are conditional on priors (Supplementary Note 4) which
for recall, precision, and Jaccard index are the likelihoodof a variant being in
the benchmark, the query, and either the benchmark or query respectively.
In order for this to be useful, one needs to use past experience, data, and
intuition regarding the likelihood of these priors.

The work presented here supports future stratification development in
a more data-driven way. More comprehensive benchmarks, such as those
based on de novo assembly, will also provide more accurate models of
variant call errors, particularly in more difficult regions and for larger var-
iants. We also expect these models along with manual curation to help
systematize the creation of new benchmarks by helping to understand
tradeoffs for each technology and variant caller so that we can know which
method to trust when they differ. Models like StratoModwill provide a new
approach both for developing better benchmarks and for using these
benchmarks to understand strengths and weaknesses of a method and
predict which clinically relevant variants may be missed.

Methods
Variant labeling
The overall process to label a query VCF file such that it can be understood
by the EBM model is given in Fig. 1b. The following is a more detailed
description of this process:

Preprocessing. To treatDeepVariant’sfiltered variants as variantswhen
doing the comparisonwith vcfeval, we converted genotypes from ./. to 0/1
and 0/0 to 0/1. Furthermore, we removed all chromosomes except 1–22
(as the benchmarkswe used did not haveX/Y or alternate chromosomes).
We also split multiallalic variants using bcftools norm --multiallelics -.
Finally, we removed the MHC region from the benchmark and query
VCFs before comparison.

Comparison. We generated TP, FP, and FN labels using vcfeval with
‘--refoverlap –all-records’ to preserve all filtered variants (which were
either kept or removeddepending on the desired analysis). The output vcf
files corresponding to TP, FP, and FN labels were then concatenated and
converted to a bed file with an additional column holding the corre-
sponding label for each variant. During this step, we also computed all
VCF_* features (see below) from the VCF file itself. We also removed
variantswhoseREF andALTwere both >1 bp and equal to each other and
structural variants (those whose REF or ALT columns were longer than
50 bp). Importantly, we shifted the start/end columns resulting from the
VCF file leftwise by 1 to make the final result 0-based instead of 1-based
for proper intersection with BED files.

The truth set for each comparison was either the GIAB v4.2.1
benchmark for the indicated genome2 or the Q100 draft assembly-based
benchmark in the case ofHG002where noted.TheHG002Q100draft small
variant benchmark was created using v0.011 of DeFrABB (https://github.
com/usnistgov/giab-defrabb), the T2T-HG002-Q100v1.0 diploid assembly
(https://github.com/marbl/hg002), and GRCh38 reference (https://ftp-
trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/
analysis/NIST_HG002_DraftBenchmark_defrabbV0.011-20230725/).
DeFrABB (Development Framework forAssembly-Based Benchmarks) is a
snakemake based pipeline created to facilitate the iterative development of
benchmarks sets for evaluating variant callsets using high-quality diploid
assemblies. DeFrABB first generates assembly-based variant calls using
dipcall v0.3 (https://github.com/lh3/dipcall)30. Dipcall was run with default
parameters with the following Z-drop parameter, -z200000,10000,200,
which yielded more contiguous assembly-assembly alignments compared
to the default value. After reformatting and annotation the variants reported
by dipcall (vcf) are used as the draft benchmark variants. The benchmark
regions are defined as regions with a 1:1 alignment between each assembled
haplotype and the reference (except X&Y) and then excluded gaps in the
assembly and theirflanking sequences, aswell as any large repeats (satellites,
tandem repeats >10 kb, and segdups) that have a break in the assembly to
reference alignment on either haplotype. Additionally structural variants
including repeat regions when SVs overlapping large tandem repeats are
also excluded from the benchmark regions. Widened SV coordinates were
identified using the SVanalyzer v0.36 widen module (https://github.com/
nhansen/SVanalyzer).

Annotation. After generating all feature bed files (see below section) we
merged the SNV and INDEL label bed files from the previous step using
multiple rounds of bedtools intersected with the -loj flag.

Pre-train processing. Prior to use in the EBM for training, we converted
the labels (TP, FP, FN) to a 0/1 feature as required for binary classifica-
tion. For the precision model, we simply removed the FN label and
mapped FP -> 0 and TP -> 1. For the recall models, we wanted to remove
the effect of including filtered variants in the training set (as if we had
never used ‘--all-records’ with vcfeval), and thus for all non-PASS var-
iants, wemapped FP -> TN and TP -> FN, filtered only FN and TP labels,
and thenmappedTP -> 1 and FN -> 0. For the overlapmodel, we used the
same mapping as the recall model except all PASS FP variants were also
mapped to 0.

Since we used the -loj flag in the previous annotation step, many
variants did not have any values for a given feature (since on average a given
variant will only intersect with a few regions corresponding to our feature
categories). For HOMOPOL_imperfect_frac and TR_percent_AT_median
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we filled these missing values with −1 since 0 had real meaning for these
features. For all other features we filled in missing values with 0; for these
features, this corresponded to0-lengthor 0-count, and thusmadenumerical
sense as a missing substitute.

Feature engineering
Model features were grouped into 5 main categories. See Supplementary
Table 1 for a list of all features as used throughout the models in this work.
The prefix of each feature corresponds to its category.

Note that VCF_DP and VCF_VAF were used only for the PCR-free/
plus precisionpredictionmodel (SupplementaryNote 1 andSupplementary
Fig. 5) and none of themodels in themain text. All other features were used
in all models.

An overview of each feature category and their method of generation
follows:

VCF features (prefix = VCF). VCF_DP and VCF_VAF were taken from
the queryVCFfilewithoutmodification.VCF_inputwas used as an index
to track the query VCF file where multiple inputs were used in the model
(which in this work was used to represent different mappers, different
sequencing technologies, or different library preps). VCF_indel length
was taken as the difference between the ALT and REF columns (thus
positive values represented insertions).

Homopolymers (prefix =HOMOPOL). Perfect homopolymers (e.g.
homopolymers with no other interrupting bases) with lengths≥4 bpwere
generated directly from the reference using an in-house Python script
and saved to a bed file. This bed file was then split into each of the four
bases. Each individual homopolymer-per-base file was then merged
using bedtools with -d 1 (to get “imperfect” homopolymers which have at
least two stretches of the same base ≥4 bp with one different base in
between). We then added 1 bp slop to each end of the merged regions in
order to detect errors immediately adjacent to the homopolymer itself.
For each homopolymer region, we used the length (without slop) as well
as the fraction of imperfectness (the number of non-homopolymer bases
over the length). Note that in our formulation, imperfect fraction
approaches a theoretical maximum of 20% in the limit as length
increases.

Tandem Repeats (prefix = TR). Tandem repeat features were based off
of the simple repeat finder UCSC database. We used bedtools merge to
summarize a subset of the columns in this database (period, copyNum,
perMatch, perIndel, and score; note that we renamed these in our feature
set to better distinguish them). For each of these columns, we computed
the min, max, and median values when merging, and also stored the
count of the number of merged repeats. Furthermore, we computed the
percent of GC and AT content in each region using the individual base
percent columns present in the database and merging analogously to the
previous columns. Finally, computed the length of the tandem repeat
region directly using the coordinates present in the database file. We
added 5 bp slop to each region and removed all regions with period/
unitsize == 1 as these corresponded to homopolymers which were
represented in a different feature category.

Segmental duplications (prefix = SEGDUP). Segmental duplication
features were merged in a similar manner to the tandem repeat columns,
except we used the genomicSuperDups database from UCSC. We only
used the alignL and fracMatchIndel columns and computed the min,
max, and mean of these as well as the count of regions that were merged.
We did not add slop to these features.

Repeat Masker (prefix =REPMASK). Repeat masker features were
based on the rmsk database from UCSC. For entries whose class was
SINE, LINE, or LTR, we filtered by class and merged using bedtools. We
then calculated the length of each merged region (conditioned on class).

We did not add slop to these regions. In the case of SINE and LTR, we
converted each feature to binary by setting each length to 1 (and then any
non-intersecting variants would get a 0 representing that they did not
intersect this region).

Hard-to-map (prefix =MAP). We used the GEM-based11 low-
mappabilityall.bed.gz (100 bp) and nonunique_l250_m0_e0.bed.gz
(250 bp) from the GIAB v3.0 stratifications1 as the basis for this feature.
For both of these bed files, we simply appended a column filled entirely
with 1’s representing a binary feature where 1 means “in a hard-to-map
region” and 0 otherwise.

Model training
We used the interpretml package31 from Microsoft Research to train the
EBMmodels.We specifically used the ExplainableBoostingClassifier which
has the following form:

gðxÞ ¼ f 1ðx1Þ þ f 1ðx1Þ þ :::þ f 1;2ðx1; x2Þ þ :::

Here g is the logit link function and each fi is either a univariate or bivariate
decision tree in terms of its input(s).

These were trained using a random 80/20 train/test split. For interac-
tions, we specifically included all interactions that included VCF_input as
well as indel_length vs all four of thehomopolymer length features.All other
settings were left at default.

Model comparisons
To compare EBMs with other commonly used models in the machine
learning space, we used the FP/TP EBM model with Illumina PCR-Free/
Plus and ran the associated data through the algorithms and hyperpara-
meter tuning schemes described in Table 1.

ClinVar analysis
We used the November 5 2022 release of the ClinVar VCF. We added a
FORMAT (GT) and SAMPLE (0/1) column to the VCF and used hap.py
(https://github.com/Illumina/hap.py) to compare the v4.2.1 benchmark
VCF and BED (https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/
release/ChineseTrio/HG005_NA24631_son/NISTv4.2.1/GRCh38/).
Restricting to “likely pathogenic” or “pathogenic” variants in the ClinVar
VCF, this resulted in 133 matching variants from HG005.

ClinVar gnomAD validation
The model was trained using our draft Q100 benchmark and a 30×
Illumina-DeepVariant callset as the query (which we picked since we
assumed it would closely match the data used to make gnomAD). The
model was trained as described above using both FP and FN as the negative

Table 1 | Parameters used for models when comparing
to EBMs

Model Implementation Hyperparameter levels

Decision tree rpart (R) Cost_complexity: 0.00001,
0.0001, 0.001, 0.01, 0.1

Logistic
regression

glmnet (R) Penalty: 0.000001, 0.000001,
0.00001, 0.0001, 0.001, 0.01,
0.1, 1, 10
Mixture: 0, 0.5, 1

Random forest ranger (R) mtry : 1, 4, 7
trees: 500, 1000, 2000

XGBoost xbgoost (python/
gpu accel)

max_depth : 3, 6, 9
n_estimators: 100, 500, 1000
gamma: 1, 10, 100

All models (including the EBMs) were trained on a compute cluster with 512GBmemory, 2 20-core
Intel Xeon E52698 v4 CPUs, and 8 Nvidia Tesla V100 (per node). Each job was allowed 3 days of
compute time.Of all the algorithmsused (includingEBMs), only xgboostwas able to take advantage
of GPU acceleration.
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class and with FILTERed variants removed in the benchmark comparison.
TheClinVarVCF(described above)was the input into this trainedmodel to
obtain prediction probabilities for either TP (no error) or FP/FN (error).

The ClinVar VCF (modified now with model probabilities in the
FORMAT column), was then intersected with the genomic gnomAD v4.0
vcf (chromosomes 1–22 since this was what was included in our model)
using bcftools isec with default parameters.

The gnomAD VCFs were individually downloaded from https://
gnomad-public-us-east-1.s3.amazonaws.com/release/4.0/vcf/genomes/
gnomad.genomes.v4.0.sites.chr%i.vcf.bgz where i is 1 through 22.

Statistics and reproducibility
The StratoMod pipeline uses snakemake as its base. Reproducibility is
ensured by specifying all inputs as publicly-accessibleURLs and hashing the
downloaded contents to alert the user when the source changes and
potentiallymay change the output. This configuration is then committed to
git. Additionally, the pipeline fully specifies each of its conda environments
(including version and build) for both individual rules and overall runtime.

Code integrity is ensured using a continuous integration/continuous
development pipeline (run on a privately-hosted GitLab) which includes
linting withmypy/pylint as well as snakemake integration tests using small-
scale datasets. See the link to the repository below for more details.

See Supplementary Table 5 for a list of software packages and their
versions that were used in this work.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
All data can be found on figshare at https://figshare.com/account/home#/
projects/164446.

Code availability
The pipeline repository is located at https://github.com/usnistgov/giab-
stratomod32. Experiments using this pipeline are located at https://github.
com/usnistgov/giab-stratomod-experiments33. Details on each of the data-
sets used can be found in Supplementary Table 634–48.
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