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SUMMARY

To better understand complex human phenotypes, large-scale studies have increasingly collected multiple
data modalities across domains such as imaging, mobile health, and physical activity. The properties of each
data type often differ substantially and require either separate analyses or extensive processing to obtain
comparable features for a combined analysis. Multimodal data fusion enables certain analyses on matrix-
valued and vector-valued data, but it generally cannot integrate modalities of different dimensions and data
structures. For a single data modality, multivariate distance matrix regression provides a distance-based
framework for regression accommodating a wide range of data types. However, no distance-based method
exists to handle multiple complementary types of data. We propose a novel distance-based regression
model, which we refer to as Similarity-based Multimodal Regression (SIMMR), that enables simultaneous
regression of multiple modalities through their distance profiles. We demonstrate through simulation,
imaging studies, and longitudinal mobile health analyses that our proposed method can detect associations
between clinical variables and multimodal data of differing properties and dimensionalities, even with
modest sample sizes. We perform experiments to evaluate several different test statistics and provide
recommendations for applying our method across a broad range of scenarios.

KEYWORDS: distance statistics; mobile health; multimodal; neuroimaging.

1. INTRODUCTION

Complex health outcomes are understood as a byproduct of intricate biological pathways that
are rarely captured in a single measurement. Advances in technology have enabled researchers to
collect alarge number of measurements on a single individual, spanning domains such as genomics,
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imaging, and physical activity. These individual data types are often called modalities, and the
aggregation of several modalities on the same subject is called multimodal data. The availability
of large multimodal data has increased considerably in the past decade, with studies such as the UK
Biobank releasing multimodal data on roughly half a million individuals (Sudlow et al. 2015).

We focus on two large-scale multimodal studies, one collecting multimodal neuroimaging data
and the other collecting a multitude of mobile health data. The Philadelphia Neurodevelopmen-
tal Cohort (PNC; Satterthwaite et al., 2014) consists of over 1,600 subjects with multimodal
imaging including structural magnetic resonance imaging (MRI), functional MRI (fMRI), and
diffusion tensor imaging (DTI). With the goal of understanding neurodevelopmental trajectories,
studies have leveraged the PNC data to understand the effect of brain development on matrix-
valued brain connectivity (Baum et al. 2020) and high-dimensional measures of cortical structures
(Vandekar et al. 2015), among many other measures. For mobile health data, the National Institute
of Mental Health (NIMH) Family Study of Affective Spectrum Disorders collects real-time data
on over 200 participants on their physical activity and emotional state through actigraphy and
ecological momentary assessment (EMA) administered through mobile devices (Merikangas et al.
2014, 2019). Through the NIMH Family Study, researchers have identified differences among
participants with mood disorders such as bipolar disorder in their patterns of sleep, mood, and
physical activity (Merikangas et al. 2019). In both studies, there is a need for flexible methods to
handle multimodal data, allowing further analyses while minimizing loss of information from the
original data.

The emergence of these multimodal studies has driven methods for integration of multiple data
modalities, often called multimodal data fusion. These methods vary considerably in their models
and applications but generally involve extensions of traditional multivariate analysis techniques
such as independent component analysis, canonical correlation analysis, and singular value decom-
position (Lahat et al. 2015). While these techniques work very well for certain types of data for
which model constraints are satisfied, they are difficult to generalize to others. In neuroimaging
for example, methods for integrating multiple modalities of functional imaging data may not
directly apply to simultaneous analysis of structural and functional imaging. For more generally
applicable models, several deep learning frameworks have been extended and enable prediction
using multimodal data (Gao et al. 2020). However, these machine learning approaches are tailored
for prediction tasks and are not suited for inference.

For analysis of data having arbitrary dimension and structure, distance-based and kernel-based
methods provide inference through similarity metrics computed between subjects. Distance
correlation and the HilbertSchmidt independence criterion are used for independence testing
and are equivalent under certain choices of the distance and kernel (Sejdinovic etal. 2013;
Shen and Vogelstein 2020). Maximum mean discrepancy is used for two-sample kernel testing
(Gretton et al. 2007) and permutational analysis of variance for multiple group distance-based
tests (Anderson 2001), with asymptotic properties recently investigated (Shinohara et al. 2020).
For regression, multivariate distance matrix regression (MDMR; McArdle and Anderson, 2001)
and kernel machine regression (KMM; Suykens et al., 2002; Liu et al., 2007) are both widely used
and have been shown to be equivalent under certain conditions on the corresponding distance
and kernel matrices (Pan 2011). For multiple kernels computed on the same data, the microbiome
regression-based kernel association test, an extension of KMM, allows for testing based on the
minimum of P-values across kernels (Zhao et al. 2015). Another extension of KMM can incorporate
multiple data modalities and their interactions in regression on outcomes with distributions in the
exponential family (Liand Cui 2012). To the best of our knowledge, none of these methods are
designed to perform regression on multiple data modalities through their distances or kernels.

We propose a distance-based model for simultaneous regression of multimodal data of arbi-
trary types, which we call similarity-based multimodal regression (SiMMR). We develop two test
statistics that are appropriate for different settings and compare them through simulation and
applications to the PNC and NIMH Family Study data. We demonstrate that our test statistics
outperform existing distance-based methods and provide high power for detection of associations
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across all data types considered. Our method introduces a novel framework for multimodal data
fusion, which we demonstrate to be a flexible and powerful model for regression of multimodal
data.

2. METHODS

2.1. Multivariate distance matrix regression
We briefly review a standard distance-based method for regression of a single data modality called
multivariate distance matrix regression (MDMR; McArdle and Anderson, 2001; Anderson, 2001;
Schork and Zapala, 2012). Let (2, d) be a semimetric space and Y be a random object taking
values in Q2. Suppose, we observe independent draws y; for each subject i=1,2,...,n and let
D = (dij)nxn denote the sample dissimilarity matrices where dj; = d(y;, y;). Define the doubly
centered dissimilarity matrix G = (I — 11TAI — 11T) where A = (—%dizi)nxn. LetXbeann X p
design matrix with corresponding projection matrix H = X(X7X) " 1xT.

MDMR tests for an association of Y and X via the pseudo-F statistic

B tr(HGH)
" u[(I - H)GI — H)]

where statistical significance is typically evaluated through permutation. With a univariate outcome
and Euclidean distance, it is equivalent to the standard regression F-statistic if appropriate degrees
of freedom are accommodated (McArdle and Anderson 2001). For testing subsets of covariates,
the numerator can be replaced by tr[(H — H,) G(H — H,)], where H, is the projection matrix from
the reduced model (Li et al. 2009; Reiss et al. 2010).

Recent papers investigate the asymptotic null distribution of the MDMR test statistic, deriving
distributions based on x2 random variables weighted by the eigenvalues of G. McArtor et al.
(2017) reformulate the statistic in terms of multidimensional scaling (MDS) scores and derive the
asymptotic distribution as a quotient of weighted sums of central x> random variables by making
assumptions about the distribution of MDS scores. By assuming matrix normal error and limiting
their scope to Euclidean and Mahalanobis distances, Li et al. (2019) find the distribution to be
a weighted quotient of noncentral x? random variables. For distance-based analysis of variance,
Shinohara et al. (2020) represent the pseudo-F statistic as a U-statistic to identify the limiting
distribution as a weighted sum of central x 2 random variables. Shi et al. (2021) adapt results from
kernel-based testing to derive the asymptotic null distribution as a weighted sum of noncentral x>
random variables, making no assumptions about the error structure or limitations on the distance
function.

2.2. Similarity-based multimodal regression model

Let (21,d1), (22, d2), . . ., (2m, d) be semimetric spaces. We consider random objects Y1, Y, . . .,
Y, taking valuesin 21, 25, . . ., 24, respectively and a vector-valued random variable for covariates
X. Suppose we observe independent draws {y1i, y2i, - - ., ¥mi} as the multimodal outcome and «;
as the corresponding vector of covariates of dimension length p for each subject i =1,2,...,n.
Let Di = (dij)nxn denote sample dissimilarity matrices defined based on appropriately chosen
distance metrics for each individual data modality where dkij = di (ki Yij) for k=1,2,...,m.

Our goal is to assess the joint association between Y7, Y5, . . ., Y, and X through their respective
dissimilarity matrices D1, Ds,...,Dy,. Define weighted doubly centered dissimilarity matrices
G1, Gy, . .., Gy, where G = wi(I — %IIT)Ak(I - %IIT) and Ay = (—%dii].)nxy,. In our analyses,
the weights wi > 0 are chosen as the largest eigenvalue of Gy following recommendations from
previous literature on integration of multiple distance matrices (Abdi et al. 2005). Weights based
on other properties of Gy may alternatively be selected, or weights can be chosen to place particular
emphasis on certain modalities.
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Figure 1. Illustration of similarity-based multimodal regression. In SIMMR, distance matrices are
computed separately on each modality, followed by representation in Euclidean space via classical
multidimensional scaling (cMDS). SIMMR then concatenates these cMDS coordinates and performs
inference using either Dempster’s trace (SIMMR-D) or Pillai’s trace after dimension reduction using
principal components (SIMMR-PC).

Our model tests for an association between these weighted doubly centered dissimilarity ma-
trices and the covariates of interest. These Gy admit the decompositions Gx = ZkaT, where Z; =

[Zkl Zky - zkn]T are the n X n matrices of classical multidimensional scaling (cMDS) scores
(McArdle and Anderson 2001). Note that for non-Euclidean distances, Gy, is not guaranteed to be
positive semidefinite and cMDS scores may include imaginary values. One solution is to discard
imaginary cMDS axes; however, McArdle and Anderson (2001) show that this might lead to
conservative tests. The reccommended solution is to add a constant to off-diagonal elements of each
distance matrix prior to computation of cMDS, which has a solution derived in Cailliez (1983) and
recently applied in the formulation of partial distance correlation (Székely and Rizzo 2014).

Let Z= [Z1 Zy --- Zm] denote the n X mn matrix of concatenated cMDS scores; this
concatenation was first proposed in Faraway (2014). We propose similarity-based multimodal
regression (SiIMMR) as the multivariate regression model

Z=XB+E, (2.1)

T . . . . . .
where X = [x1 Xy - xn] is the n X p design matrix, B is a p X mn matrix of regression
coeflicients and E is an n X mn error matrix. In Fig. 1, we illustrate the SIMMR model and two
proposed test statistics which we describe in 2.3.

2.3. SiMMR-D and SiMMR-PC test statistics
We propose two statistics to test the null hypothesis that a subset of covariates has no association

with the joint cMDS scores Z. Let B = (B1 BZ)T where B, are the regression coefficients for
the covariates of interest. Our goal is to test the null hypothesis Hg : By = 0 against H, : By # 0.
Certain test statistics for multivariate regression require Z to be full-rank and compare the sum of
squares and cross products (SSCP) matrices of the hypothesis R = ZT (H — H,)Z and the SSCP
error matrixE = ZT (I — H)Z, where H = X(XTX)1XT and H, is the hat matrix from the reduced
model. In our case, Z is rank deficient since mn > n for m > 1. To perform regression in this high-
dimensional setting, we propose two alternative approaches. First, we adapt the Dempster trace
(Dempster 1958) to our setting, which we denote by Tp, the SIMMR Dempster trace (SIMMR-
D). Directly applying the original formulation of Dempster trace, SIMMR-D is the ratio between
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the traces of the SSCP matrices,

_ tr(ZT(H — H,)2Z)

= . 2.2
D= MZT(1 — H)Z] (22)
Using the idempotency of H and the cyclical property of the trace, we can rewrite this as
tr[(H — H,) (3, Go)(H — H,
_ wlH — H) (L, GoH — Hol )

tr[(I — H) QL G (I — H)]

This equality shows that SIMMR-D is equivalent to performing MDMR using the sum of the
dissimilarity matrices, which connects SiMMR-D directly to this classic distance-based regression
framework. Theoretical results derived for MDMR thus apply directly to our method, which
include the asymptotic null distribution of the MDMR pseudo-F statistic previously discussed in
Section 2.1.

The SIMMR-D test statistic is a natural extension of MDMR, but it discards cross-product terms
in the SSCP matrices that capture the correlations among modalities. As an alternative solution, we
propose another test statistic that leverages the correlations of the cMDS scores. We first address
the rank deficiency of the SSCP matrices by performing dimension reduction on the cMDS scores
using principal component analysis (PCA). We then construct Pillai’s trace from the first K PC
scores represented in the n x K matrix W. This test statistic, which we denote by Tpc and we
call SIMMR principal components (SIMMR-PC(K)), is defined through the corresponding K x K
SSCP matrices Rpc = WT(H — H,)W and Epc = WT(I — H)W as

Tpc(K) = tr[Rpc (Epc + Rpc) 1. (24)

For the design matrix of dimensions n x p, Tpc(K) is defined for K < n — p — 1. We investigate
the choice of K through simulation and applications in Sections 4.1 and 4.2.

SiMMR-PC performs inference based on the cMDS scores of each modality, which are not
unique since any orthogonal rotation of the optimal scores is also optimal (see e.g. page 396 in
Mardia et al. (1979)). Orthogonal rotation of each cMDS solution can be represented as a rotation
of the concatenated cMDS scores. However, owing to rotational invariance of the Pillai’s trace test
statistic (Langsrud 2004 ), any set of cMDS solutions yields the same Tpc test statistic.

Testing for both SIMMR-D and SiMMR-PC statistics proceeds via permutation. The permuta-
tional null distribution is generated by permuting the rows of the design matrix and computing
the chosen SIMMR test statistic. The P-value for the permutation test is then the proportion
of permuted test statistics less than the test statistic computed using the original design matrix.
Throughout our analyses, we perform 999 permutations for computation of each SiIMMR p-value.

The computational complexity of SIMMR depends on the choice of test statistic. We first
assume that the vector of covariates is reasonably small so that computation of the hat matrices
does not impact the complexity. For SiMMR-D, the most expensive computations are the matrix
multiplications involving the n X nm Z matrices to obtain the SSCP matrices. These multiplications
have a time complexity of up to O(n3m?). For SSIMMR-PC(K), we first apply PCA to the Z matrices,
which have time complexity of O(n3m3) using standard implementations. We then select the top
K PCs, leading to SSCP matrix construction having a lower time complexity of O(n?K + nK?).
Thus, the relative complexity of SIMMR-D versus SIMMR-PC depends on a number of factors, but
SiMMR-D should be faster when both n and m are large. For all SIMMR test statistics, the dimension
of each modality g impacts the complexity of distance matrix computations but does not impact
SiMMR. Empirical results for the runtime of each test statistic are presented in Section 3.2.

2.4. Alternative methods
Few other methods exist for regression of multimodal outcomes taking values in arbitrary semimet-
ric spaces. However, we can compare our SiMMR methodology to other methods that test similar
hypotheses.
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For Euclidean distances computed on a single modality, MDMR is equivalent to multivariate
multiple regression (MMR) using a pseudo-F statistic (McArdle and Anderson 2001). We thus
compare our SIMMR test statistics to MMR on the concatenation of multimodal outcomes. When
the dimensionality of the multimodal outcomes are sufficiently small (k < n — p — 1, where kis the
dimension of the outcome and p is the dimension of the covariates), we can compare our SIMMR-
PC test statistic to multivariate regression using Pillai’s trace. In our analyses, Pillai’s trace is only
applicable in simulations.

We can also compare SiMMR to performing individual MDMR tests while controlling for
multiple comparisons (MC-MDMR). This method tests against the null hypothesis that none of
the modalities are associated with the covariates of interest. We apply MDMR to each modality
separately and adjust using the Bonferroni correction.

Kernel machine regression (KMR) provides an alternative framework that enables regression
on complex data through kernels. For MDMR with a univariate continuous covariate, KMR is
equivalent to MDMR when the kernel is equal to the doubly centered dissimilarity matrix from
MDMR (Pan 2011). Unlike MDMR however, KMR requires a positive semidefinite kernel matrix.
Let y be an n X 1 vector of continuous outcomes, X be a n X p matrix of covariates with rows ;,
and z1, 2y, . . ., 2, be n-dimensional vectors of multimodal data where 7 is the number of subjects.
For subject i, we consider a KMR model for multimodal complex data as

yi =] B+ hi(z1) + ha(z) + - - - + hn (zmi) + e,

where Bisap x 1vector of regression coefficients, hj, j = 1,2, . .., mare unknown functions, and ¢;

are independent errors with variance o2, A variance components test has been proposed for testing
Hp : hi () = ha(-) = - - - = hy () using the score test statistic

1 m
2y T § : .
S(O’ ) - m}’ Py & K] P()y,

where Py =1 — X(XTX)71XT is the projection matrix under the null hypothesis. By making
several assumptions of normality and using an estimator for o2, the approximate distribution of
S(62) is obtained using the Satterthwaite method (Li and Cui 2012).

‘We compare SiIMMR to KMR by treating our covariate of interest as the outcome and using the
doubly centered dissimilarity matrices as kernels. That is, we choose K; = G; forj=1,2,...,m,
where Gj are defined in Section 2.3. For non-Euclidean distances, the G; are not necessarily positive
semidefinite and KMR may not apply. Furthermore, KMR cannot be applied in settings with other
types of outcomes, including categorical and ordinal responses.

3. SIMULATION STUDY

We evaluate the efficacy of our proposed SIMMR methodology through a simulation study with
varying sample size, number of features, number of modalities, and correlation structure. We
compare our method to MDMR, KMR, and multivariate multiple regression (MMR) where
applicable.

3.1. Data generation

We simulate a multimodal dataset with correlations within and between modalities through the
following setup. Let N be the simulation sample size, M be the number of modalities, and Q be the
number of features per modality. Let Y = (Y3, Y, . . ., Yp) denote the full MQ -dimensional vector
of multimodal data and x ~ Binomial(0.5) denote a simulated binary covariate. We additionally
consider settings with a continuous covariate, x ~ N(0, 1).

‘We draw the N multimodal observations from a multivariate normal distribution with correlation
structure ¥ of dimension MQ X MQ, where the covariate shifts the observations in directions of
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the eigenvectors of . For a covariate effect ofrank L, Y = x ZzL: 1 P + €, wheree ~N(0, X), X
is the chosen correlation structure, and ¢;, I = 1,2, . . ., MQ are the eigenvectors of Z. In additional
simulations, we will also consider the case where the covariate is only associated with one modality.
To achieve this, we use the same simulation design but modify the elements of ¢; to be 0 for features
that are not part of the first modality, Y;.

‘We propose three simulation settings by modifying the correlation structure. In our first scenario,
> is an exchangeable correlation matrix with parameter p = 0.25 to simulate multimodal data
that have low correlations within modality and between modalities. Our second scenario uses an
exchangeable correlation structure with p = 0.75 so that the simulated multimodal data has high
correlations. The third scenario has ¥ instead as a first-order autoregressive structure, or AR(1),
with parameter 7 = 0.9. The AR(1) structure yields correlations that are generally higher within
modality than between modalities.

In each scenario, we vary the rank and magnitude of the covariate effect. We choose L as 1,
[MQ/4], IMQ /2], and MQ to provide simulation settings with varying complexity of covariate
effects. The contribution of each eigenvector of X to the covariate effect varies across settings to
ensure that the strength of the effect remains similar. In particular, L = 1 has¢; = 3,L = |[MQ /4]
has ci =ca = - =cmq/s) =07, L=[MQ/4]| has c; =c =--- =cmq/2) =07, and L =
MQhasc; =c, =+ =cmq =0.15.

For each simulation setting, we generate 1,000 multimodal datasets. In each dataset, we compare
SiMMR to three competing methods: multivariate multiple regression (MMR), KMR, and mul-
tivariate distance matrix regression applied to each modality correcting for multiple comparisons
using Bonferroni correction (MC-MDMR). For simulation settings where MQ < N — 2, we per-
form MMR by computing Pillai’s trace based on the simulated data Y. SiMMR-PC is computed with
the number of PCs K ranging from 2 to 25. For SSiMMR-PC with K > N — 2, all PCs are included.

3.2. Simulation results

Type I error is well-controlled across simulation settings and SIMMR test statistics. In Table 1,
we display the type I error and power of MMR, KMR, MC-MDMR, SiMMR-D, and SiMMR-
PC(3) across simulation settings. Supplementary Table 1 shows results for AR(1) correlation
settings while also including SIMMR-PC(10) and SiMMR-PC(1S). We find that the type I error
rates for SIMMR test statistics are well-controlled across simulation settings, but MC-MDMR is
overly conservative at high numbers of modalities M, especially in the exchangable correlation
settings. Across correlation structures at sample size 100 and 10 modalities, MMR has a slightly
conservative type I error. In simulations with a continuous covariate, MC-MDMR and MMR have
type I error closer to 0.05 (Supplementary Tables 2 and 3).

SiMMR outperforms MC-MDMR across simulation settings. For covariate effects in the first
PC direction, SIMMR-D shows equal or greater power than MC-MDMR and MMR across all
simulations. For more complex covariate effects, we observe that SIMMR-PC(3) yields greater
power than MC-MDMR across the exchangeable correlation settings with especially large differ-
ences in the high correlation setting. Supplementary Table 1 shows that either SiMMR-PC(10)
or SIMMR-PC(15) outperform MC-MDMR across all AR(1) correlation settings. Figure 2 and
Supplementary Fig. 1 compare test statistics for settings with two modalities and show that these
results hold across number of features Q per modality. Supplementary Figure 6 demonstrates that
SiMMR particularly outperforms MC-MDMR in settings where only one modality is associated
with the covariate.

SiMMR yields comparable power with MMR and KMR. SiMMR-D and KMR produce
similar power results across all settings, with KMR slightly outperforming in certain settings. In
settings with MQ < N — 2, we can apply MMR and compare the power results to SiIMMR. At a
sample size of 25, we find that SIMMR-PC yields similar or greater power than MMR across all
settings. SIMMR-PC(10) and SIMMR-PC(15) show particularly higher power in exchangeable,
high correlation, and AR(1) correlation settings (Supplementary Table 1). Across settings with a


https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad033#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad033#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad033#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad033#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad033#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad033#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad033#supplementary-data

1129

.

Biostatistics, 2023, 25, 4

*uo1ss21301 SUIYDRW [UIN] “JIADI
{u013091100 TUOLIBJUOY I33e SOLSTRIS YINAN S1dnnu ‘DA 90013 s, Fef[1J Sursn uorssa13a1 oydiynu Sjerreannw YN "PAPIOq ST 3UT33as UOIIE[NWIS Yora UIIim 53593 Suowre :amod 35341y oy, (D) 39P°
Sjerreaod £reurq ay3 ur papnpour syusuodwod fedpurid yo saquinu pue ‘(D) Lepowr 1ad sa1njesy Jo aquinu ‘() sSRIepow jo Iaqumu ‘(N) $393(qns jo raqumu 3urdIea SSOIOE UMOYS dIe $3jeI U0y

I I 1 1 I LS80 T80  PLIO 1 I 1 1 00T

€0 I I 6560 I I TLLO 180 88L0 I I I 1 1 I § o

S0 1 1 1 1 9€8'0 €980 SLVO 1 1 1 1 001

L860 1S90 1S90 €8S0 I 1 $9°0 TS90 SS90 I L16'0 LS6'0  LS6'0 LV6O0 6860 S T 00T

+S6'0 I I ¥5S0 I +$800 1600 €100 1 T6¥'0 LLSO +6T°0 00T

L8T0 €€T0 8E€T0  9€T0 I 10 9110 %800 818°0 PIF0 PO LEO S o1

LIE0 7€9°0 S€9°0 €6£0 1 6900 TL00 T¥00 6660 9€H'0  €0S0  S8IE0 00T

¥LS°0 LIT'0  LITO0 STI'0  919°0 8€8°0 €TI0 8IT0  ¥TI'0  6¥L0 6£€°0 6LT0 970 €0€0 TLTO S T ST %0S

760 I 1 1 I 1610 88T'0 ¥¥00 1 6660 I S6L0 00T

0 89S0 9.50 60¥0 60 I €810 I8T0  €+0 I 6£6°0 868'0 9160 T680 860 S O

+0€°0 1 1 1560 1 8810 9610 LTIO 1 L66°0 1 1860 001

81+°0 1€T0  1€C0 1620 T14TO 6080 1020 T0 LLTO T£6°0 910 8St'0 S9¥0 LO¥O 88¥'0 S T 00L

L1S°0 96L°0 L8L0 LTTO 1 S90'0 S900 6000 1 SYI'0 €810 8¥00 001

901°0 SIT'0  $IT'0 600 1S6°0 ¥L0'0  8L00 8¥0°0 €9€'0 SST0 89T0 6910 )

$ST'0 €T°0  €T0 ISTO I ¥400 8400 $T00 688°0 €IT0  6TT0 €800 00T

STI'o 8900 S900 1800 8L00 ST0 9800 €800 9900 96T0 8ET°0 TET'0  LTT0 STI0 €010 S T ST %ST

11€°0 I'0 8IF0  8+T0 L50°0 +¥80'0 +80°0 8100 $60°0 SYT'0 TI9T°'0 7SO0 00T

1480 8760 6760 180 SSI'0 9Lt'0 990 TS9'0 8v¥0 T60°0 8760 860 7860 9¥60 €STO S O

£vL0 SSL'0 ¥9L0 6890 $ST'0 €7T0  €T0  TLTO 97€0 +TS0 ¥SS'0 650 001

6660 1 1 I 9.6 L66°0 1 1 I €560 I I 1 1 I §$ T o0l

2600 +80°0 €800 800 1500 €S0°0 7SO0 S000 900 1900 ¥40°0 6100 001

LETO 6V€'0 LVEO  1TO 1€T°0 610 S6T'0 9800 €0 SLY'0 8640 8TE0 S o1

810 T81°0 T8I0 LST'O €500 $90°0 +900 T¥00 L60°0 8¢I'0 IST'0  +0T0 001

1250 YILO YIL0 TL90 €£TO TIS°0 TELO TELO 990 SITO 680 960 8960 8¥60 +¥S0 S T ST 1

SY00 SS0'0  SS00 TS0 L¥00 S¥00 TH0'0 9000 9+0°0 ¥¥00 SO0  TI00 001

9200 SO0 SO0 6200 00 9+00 7SO0 €500 €100  +00 7500 SY00 SO0 6€00 ¥00 S O

8€0°0 9¥00 L¥00 +¥00 7500 S¥00 8v00 8700 +50°0 /00 TSO0 €£00 00T

SO0 SSO'0 LS00 TSO0 1IS0'0 900 8S0'0 LSOO 8€00 TISO0 8¥0°0 SS00 €500 +S00 IS00 S T 00T

+0'0 w00 700 SO0 $S0°0 w00 L¥00 S000 7500 ¥¥00  ISO00  L00O 00T

£€0°0 800 SO0 TE00 S00 1S00 8500  +10°0 w00 €500 7900 +€00 )

00 LEO'0  LEOOD 9€0°0 S€0°0 €00 TEO'0  LIOO +€0°0 €00 6£00 LIOO 00T

1S0°0 8¥0'0 8¥00 THO0 +S00 6¥0°0 8¥0'0 TIS00 TE00 +SO00 6¥0°0 LY0'0 €¥00 SPO0 SO0 S T ST QUON
(£)DdINNIS AYWINIS YN WOW YW (£)Dd-ININIS dIWNIS YN WOW YW (£)Dd-ININIS dIWNIS YA WOW YWN O W N od

uoneRIIod (1)4V

uonea110d Y31y ‘s1qesdueyoxy

uone[a1I0d MO] ‘a1qeadueydxy

*2INJONI)S UOTJE[LIOD PUE ‘09I 9JLLILAOD ‘S9InJea] Jo 1aquinu ‘azrs sydures Surd1e ssoIde s)[nsal UOTE[NUIS *T d[qe],



Exchangeable, high Exchangeable, low

AR(1)

1130 - Chenetal

First PC First 25% of PCs First 50% of PCs

Power

] 10 15 25 50 100 5 10 16 25 50 100 5 10 16 25 50 100

Number of features per modality

SIMMR-D 4~ SIMMR-PC(10) = MC-MDMR %~ KMR
— SIMMR-PC(3) —— SIMMR-PC(15) - MMR

Figure 2. Power results in simulations with exchangeable and AR(1) correlation structures for a sample
size of 25. Each trace represents a different test statistic. Different simulation settings are distinguished by
correlation structure across rows and by rank of the binary covariate effect across columns. Exchangeable
refers to an exchangeable correlation structure with low or high correlation and AR(1) refers to a
first-order autoregressive structure. MDMR, multivariate distance matrix regression; MC-MDMR,
multiple MDMR statistics after Bonferroni correction; MMR, multivariate multiple regression using
Pillai’s trace.

sample size of 100, Supplementary Table 1 and Supplementary Fig. 1 show that SiMMR-PC(3) has
comparable or lesser power than MMR but SIMMR-PC(10) and SiMMR-PC(15) yield equal or
greater power than MMR. In our setting where only one modality is associated with the covariate,
we find that all of our multimodal analyses decrease in performance as the number of unassociated
modalities increases (Supplementary Fig. 6).

Relative performance of SiMMR-D and SiMMR-PC depends on correlation structure and
covariate effect. In settings with a covariate effect in the first PC direction, Table 1 shows that
SiMMR-D yields equal or higher power than SIMMR-PC and Supplementary Figs. 2 and 3 show
that this relationship holds across SIMMR-PC test statistics for 2 through 25 PCs. For exchangeable
correlation structures and covariate effects in 25% or 50% of the PC directions, SIMMR-PC
outperforms across sufficiently low number of PCs in the low correlation setting and across all
choices in the high correlation setting. For settings with an AR(1) correlation structure, the


https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad033#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad033#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad033#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad033#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad033#supplementary-data

Biostatistics, 2023,25,4 - 1131

performance of SIMMR-PC relative to SIMMR-D depends on the complexity of the covariate effect
and number of features per modality. SIMMR-PC with large numbers of PCs performs better in
settings with more complex covariate effects and larger number of features. Supplementary Table 1
numerically compares SiMMR-PC test statistics for AR(1) correlation settings and shows that
SiMMR-PC(3) performs the best for covariate effects with 25% of PCs and S features per modality,
but SIMMR-PC(10) and SIMMR-PC(15) outperform in other settings. Supplementary Tables 2
and 3 and Supplementary Fig. 5 show that these results hold in settings with a continuous covariate.
In Supplementary Fig. 6, we observe that SIMMR-PC considerably outperforms SIMMR-D when
only one modality is associated with the covariate. Supplementary Figure 7 shows running times in
the high correlation setting, demonstrating that SIMMR-D runs faster than SIMMR-PC(1) in most
settings considered. One notable exception is the N = 100, M = 50 setting where SiMMR-D runs
in 12.03 min and SiIMMR-PC(1) runs in 9.2 min on a Intel Core i9-13900H (24M Cache, up to
540 GHz).

4. DATA APPLICATIONS

We apply SIMMR to two studies with novel and distinct types of multimodal data. Our first
application involves neuroimaging data from the Philadelphia Neurodevelopmental Cohort (PNC;
Satterthwaite et al., 2014 ), where we are interested in testing for age-related changes in brain connec-
tivity and cortical structure. Our second application uses mobile health data from the National In-
stitute of Mental Health (NIMH) Family Study of Affective Spectrum Disorders (Merikangas et al.
2014), where we test for differences in mood and physical activity measures among subjects with
mood disorders. Our SIMMR applications involve vector-valued cortical thickness and sulcal depth
measurements from the PNC, matrix-valued structural and functional connectivity from the PNC,
and time series observations of mobile health data from the NIMH Family Study of Affective
Spectrum Disorders.

4.1. Philadelphia Neurodevelopmental Cohort

We apply the SIMMR methodology to two multimodal neuroimaging datasets collected as part of
the PNC (Satterthwaite et al. 2014). All participants, or their parent or guardian, provided informed
consent, and minors provided assent. The study was approved by the institutional review boards of
both the University of Pennsylvania and the Children’s Hospital of Philadelphia. The PNC includes
9,498 subjects between the ages of 8 and 23. Multimodal imaging was acquired on a subset of 1,601
subjects using a Siemens TIM Trio 3-T scanner with a 32-channel head coil and the same imaging
sequences and parameters for every subject. Included participants in the PNC were medically
healthy, were not taking psychoactive medication, and passed strict quality-assurance procedures
for their imaging.

4.1.1. Image acquisition and preprocessing

In this study, we first examine a subset of 912 PNC subjects with high-quality cortical thickness
(CT) and sulcal depth (SD) measurements computed from T1-weighted images (demographic de-
tails in Table 2 under “PNC Cortical Structure”). The acquisition and preprocessing for these data
was originally described in Vandekar et al. (2015) and in subsequent studies (Vandekar et al. 2016;
Weinstein et al. 2021). Cortical reconstruction of the T 1-weighted structural images was completed
using FreeSurfer (version S5.3). These cortical measurements were resampled to the fsaverage$
atlas, which has 10,242 vertices in each brain hemisphere. Cortical thickness was computed as the
minimum distance between pial and white matter surfaces (Dale et al. 1999) and sulcal depth as the
height of gyri (Fischl et al. 1999).

Our second application involves a set of subjects from the PNC with structural connectivity,
resting-state functional connectivity, and n-back functional connectivity measurements. Acquisi-
tion and preprocessing for this sample has previously been discussed in Baum et al. (2020). In
summary, 727 participants are included after strict quality assurance procedures (demographic
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Table 2. Demographics of the imaging and mobile health datasets.

PNC Connectivity PNC Cortical Structure NIMH Family Study

Number of subjects 727 912 77
Age, mean (SD) 15.88 (3.23) 14.80 (3.50) 4931 (17.73)
Male, n (%) 307 (42.2) 415 (45.5) 31(40.3)
Diagnosis, n(%)

Healthy Control 34 (44.2)

MDD 26 (33.8)

Bipolar Type I 6(78)

Bipolar Type II 11 (14.3)

Age, sex, and diagnosis status (applicable only to the NIMH Family Study) are shown for all subjects included in this study.
The two PNC datasets are different subsets of the full PNC dataset with some overlap. PNC, Philadelphia Neurodevelopmental
Cohort; FC, functional connectivity; SC, structural connectivity; CT, cortical thickness; SD, sulcal depth; NIMH, National
Institute of Mental Health; MDD, major depressive disorder.

details in Table 2 under “PNC Connectivity”). Structural connectivity is calculated from diffusion-
weighted imaging using probabilistic tractography. Entries of each subject’s structural connectivity
(SC) matrices are computed as the number of probabilistic streamlines connecting each pair of
400 brain regions, normalized by the total edge weight across all network connections. Func-
tional connectivity matrices are computed separately for functional magnetic resonance imaging
(fMRI) acquired while the participant is at rest (rsFC) and during the n-back task (n-back FC).
Functional connectivity between each pair of the 400 brain regions is computed as the Pear-
son correlation coefficient between the mean regional blood-oxygen-level-dependent (BOLD)
time series.

4.1.2. Application of SIMMR

Previous studies of the PNC have demonstrated neurodevelopmental changes in cortical thickness
(Vandekar et al. 2015) and the coupling between cortical thickness and sulcal depth (Vandekar et al.
2016). We apply SiMMR to the cortical structure data for regression on age while controlling for
sex. We construct dissimilarity matrices based on the Euclidean distance. We compare SIMMR to
KMR by treating age as the outcome while treating sex as a nuisance covariate.

Using SC and FC matrices from the PNC, Baum et al. (2020) demonstrated neurodevelopmental
changes in a coupling metric computed between SC and n-back FC while separately examining
coupling between SC and rsFC. In our application, we incorporate all three modalities and apply
SiMMR to determine if there is an association between SC, n-back FC, and rsFC jointly with
age while controlling for sex and relevant quality metrics. The quality metrics are identical to
those in Baum et al. (2020), which includes mean relative framewise displacements calculated
on the resting-state and n-back fMRI scans and mean relative displacement from interspersed
volumes with a b value of 0 s/mm? calculated from the diffusion-weighted images. We choose to
compute dissimilarities between functional connectivity matrices using the log-Euclidean distance
(Arsigny et al. 2006), which addresses several issues with using Frobenius distances for positive
semidefinite matrices. For structural connectivity, we use the Frobenius distance since the matrices
are not guaranteed to be positive semidefinite. We compare SiMMR to KMR by using the doubly
centered dissimilarity matrices as kernels while treating age as the outcome and sex and quality
metrics as nuisance covariates.

To assess rejection rate in these applications, we use a resampling-based approach to evaluate
rejection of the null hypothesis in smaller sample sizes. That is, we draw 1,000 samples without
replacement and compute P-values for all test statistics for each sample. The rejection rate is then
calculated as the proportion of p-values with value less than our nominal type I error rate of 0.0S.
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Figure 3. Rejection rates across resamples in applications of SIMMR to imaging and mobile health data.
Each trace represents a different test statistic. Power curves for individu