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SUMMARY
To better understand complex human phenotypes, large-scale studies have increasingly collected multiple
datamodalities across domains such as imaging,mobile health, and physical activity. The properties of each
data type often differ substantially and require either separate analyses or extensive processing to obtain
comparable features for a combined analysis. Multimodal data fusion enables certain analyses on matrix-
valued and vector-valued data, but it generally cannot integrate modalities of different dimensions and data
structures. For a single data modality, multivariate distance matrix regression provides a distance-based
framework for regression accommodating a wide range of data types. However, no distance-based method
exists to handle multiple complementary types of data. We propose a novel distance-based regression
model, which we refer to as Similarity-basedMultimodal Regression (SiMMR), that enables simultaneous
regression of multiple modalities through their distance profiles. We demonstrate through simulation,
imaging studies, and longitudinal mobile health analyses that our proposedmethod can detect associations
between clinical variables and multimodal data of differing properties and dimensionalities, even with
modest sample sizes. We perform experiments to evaluate several different test statistics and provide
recommendations for applying our method across a broad range of scenarios.
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1. IN TRODUCTION
Complex health outcomes are understood as a byproduct of intricate biological pathways that
are rarely captured in a single measurement. Advances in technology have enabled researchers to
collect a large number ofmeasurements on a single individual, spanning domains such as genomics,
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imaging, and physical activity. These individual data types are often called modalities, and the
aggregation of several modalities on the same subject is called multimodal data. The availability
of large multimodal data has increased considerably in the past decade, with studies such as the UK
Biobank releasing multimodal data on roughly half a million individuals (Sudlow et al. 2015).
We focus on two large-scale multimodal studies, one collecting multimodal neuroimaging data

and the other collecting a multitude of mobile health data. The Philadelphia Neurodevelopmen-
tal Cohort (PNC; Satterthwaite et al., 2014) consists of over 1,600 subjects with multimodal
imaging including structural magnetic resonance imaging (MRI), functional MRI (fMRI), and
diffusion tensor imaging (DTI). With the goal of understanding neurodevelopmental trajectories,
studies have leveraged the PNC data to understand the effect of brain development on matrix-
valued brain connectivity (Baum et al. 2020) and high-dimensional measures of cortical structures
(Vandekar et al. 2015), amongmany other measures. For mobile health data, the National Institute
of Mental Health (NIMH) Family Study of Affective Spectrum Disorders collects real-time data
on over 200 participants on their physical activity and emotional state through actigraphy and
ecological momentary assessment (EMA) administered throughmobile devices (Merikangas et al.
2014, 2019). Through the NIMH Family Study, researchers have identified differences among
participants with mood disorders such as bipolar disorder in their patterns of sleep, mood, and
physical activity (Merikangas et al. 2019). In both studies, there is a need for flexible methods to
handle multimodal data, allowing further analyses while minimizing loss of information from the
original data.
The emergence of these multimodal studies has driven methods for integration of multiple data

modalities, often called multimodal data fusion. These methods vary considerably in their models
and applications but generally involve extensions of traditional multivariate analysis techniques
such as independent component analysis, canonical correlation analysis, and singular value decom-
position (Lahat et al. 2015). While these techniques work very well for certain types of data for
which model constraints are satisfied, they are difficult to generalize to others. In neuroimaging
for example, methods for integrating multiple modalities of functional imaging data may not
directly apply to simultaneous analysis of structural and functional imaging. For more generally
applicable models, several deep learning frameworks have been extended and enable prediction
using multimodal data (Gao et al. 2020). However, these machine learning approaches are tailored
for prediction tasks and are not suited for inference.
For analysis of data having arbitrary dimension and structure, distance-based and kernel-based

methods provide inference through similarity metrics computed between subjects. Distance
correlation and the HilbertSchmidt independence criterion are used for independence testing
and are equivalent under certain choices of the distance and kernel (Sejdinovic et al. 2013;
Shen and Vogelstein 2020). Maximum mean discrepancy is used for two-sample kernel testing
(Gretton et al. 2007) and permutational analysis of variance for multiple group distance-based
tests (Anderson 2001), with asymptotic properties recently investigated (Shinohara et al. 2020).
For regression, multivariate distance matrix regression (MDMR; McArdle and Anderson, 2001)
and kernel machine regression (KMM; Suykens et al., 2002; Liu et al., 2007) are both widely used
and have been shown to be equivalent under certain conditions on the corresponding distance
and kernel matrices (Pan 2011). For multiple kernels computed on the same data, the microbiome
regression-based kernel association test, an extension of KMM, allows for testing based on the
minimumofP-values across kernels (Zhao et al.2015).Another extensionofKMMcan incorporate
multiple data modalities and their interactions in regression on outcomes with distributions in the
exponential family (Li and Cui 2012). To the best of our knowledge, none of these methods are
designed to perform regression on multiple data modalities through their distances or kernels.
We propose a distance-based model for simultaneous regression of multimodal data of arbi-

trary types, which we call similarity-based multimodal regression (SiMMR). We develop two test
statistics that are appropriate for different settings and compare them through simulation and
applications to the PNC and NIMH Family Study data. We demonstrate that our test statistics
outperform existing distance-based methods and provide high power for detection of associations
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across all data types considered. Our method introduces a novel framework for multimodal data
fusion, which we demonstrate to be a flexible and powerful model for regression of multimodal
data.

2. M ETHODS
2.1. Multivariate distance matrix regression

We briefly review a standard distance-based method for regression of a single data modality called
multivariate distance matrix regression (MDMR;McArdle and Anderson, 2001; Anderson, 2001;
Schork and Zapala, 2012). Let (�, d) be a semimetric space and Y be a random object taking
values in �. Suppose, we observe independent draws yi for each subject i = 1, 2, . . . , n and let
D = (dij)n×n denote the sample dissimilarity matrices where dij = d(yi, yj). Define the doubly
centered dissimilarity matrixG = (I − 11T)A(I − 11T)whereA = (− 1

2 d2
ij)n×n. LetX be an n × p

design matrix with corresponding projection matrixH = X(XTX)−1XT .
MDMR tests for an association of Y and X via the pseudo-F statistic

F = tr(HGH)

tr[(I − H)G(I − H)] ,

where statistical significance is typically evaluated through permutation.With a univariate outcome
and Euclidean distance, it is equivalent to the standard regression F-statistic if appropriate degrees
of freedom are accommodated (McArdle and Anderson 2001). For testing subsets of covariates,
the numerator can be replaced by tr[(H − Hr)G(H − Hr)], whereHr is the projectionmatrix from
the reduced model (Li et al. 2009; Reiss et al. 2010).
Recent papers investigate the asymptotic null distribution of the MDMR test statistic, deriving

distributions based on χ2 random variables weighted by the eigenvalues of G. McArtor et al.
(2017) reformulate the statistic in terms of multidimensional scaling (MDS) scores and derive the
asymptotic distribution as a quotient of weighted sums of central χ2 random variables by making
assumptions about the distribution of MDS scores. By assuming matrix normal error and limiting
their scope to Euclidean and Mahalanobis distances, Li et al. (2019) find the distribution to be
a weighted quotient of noncentral χ2 random variables. For distance-based analysis of variance,
Shinohara et al. (2020) represent the pseudo-F statistic as a U-statistic to identify the limiting
distribution as a weighted sum of central χ2 random variables. Shi et al. (2021) adapt results from
kernel-based testing to derive the asymptotic null distribution as a weighted sum of noncentral χ2

random variables, making no assumptions about the error structure or limitations on the distance
function.

2.2. Similarity-based multimodal regression model
Let (�1, d1), (�2, d2), . . . , (�m, dm)be semimetric spaces.Weconsider randomobjectsY1, Y2, . . . ,
Ym taking values in�1,�2, . . . ,�m, respectively and a vector-valued randomvariable for covariates
X. Suppose we observe independent draws {y1i, y2i, . . . , ymi} as the multimodal outcome and xi
as the corresponding vector of covariates of dimension length p for each subject i = 1, 2, . . . , n.
Let Dk = (dkij)n×n denote sample dissimilarity matrices defined based on appropriately chosen
distance metrics for each individual data modality where dkij = dk(yki, ykj) for k = 1, 2, . . . ,m.
Our goal is to assess the joint association between Y1, Y2, . . . , Ym andX through their respective

dissimilarity matrices D1,D2, . . . ,Dm. Define weighted doubly centered dissimilarity matrices
G1,G2, . . . ,Gm, whereGk = wk(I − 1

n 11T)Ak(I − 1
n 11T) and Ak = (− 1

2 d2
kij)n×n. In our analyses,

the weights wk > 0 are chosen as the largest eigenvalue of Gk following recommendations from
previous literature on integration of multiple distance matrices (Abdi et al. 2005). Weights based
on other properties ofGk may alternatively be selected, or weights can be chosen to place particular
emphasis on certain modalities.
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Figure 1. Illustration of similarity-based multimodal regression. In SiMMR, distance matrices are
computed separately on each modality, followed by representation in Euclidean space via classical
multidimensional scaling (cMDS). SiMMR then concatenates these cMDS coordinates and performs
inference using either Dempster’s trace (SiMMR-D) or Pillai’s trace after dimension reduction using
principal components (SiMMR-PC).

Our model tests for an association between these weighted doubly centered dissimilarity ma-
trices and the covariates of interest. These Gk admit the decompositions Gk = ZkZT

k , where Zk =[
zk1 zk2 · · · zkn

]T are the n × n matrices of classical multidimensional scaling (cMDS) scores
(McArdle and Anderson 2001). Note that for non-Euclidean distances,Gk is not guaranteed to be
positive semidefinite and cMDS scores may include imaginary values. One solution is to discard
imaginary cMDS axes; however, McArdle and Anderson (2001) show that this might lead to
conservative tests. The recommended solution is to add a constant to off-diagonal elements of each
distance matrix prior to computation of cMDS, which has a solution derived in Cailliez (1983) and
recently applied in the formulation of partial distance correlation (Székely and Rizzo 2014).
Let Z = [

Z1 Z2 · · · Zm
]
denote the n × mn matrix of concatenated cMDS scores; this

concatenation was first proposed in Faraway (2014). We propose similarity-based multimodal
regression (SiMMR) as the multivariate regression model

Z = XB + E, (2.1)

where X = [
x1 x2 · · · xn

]T is the n × p design matrix, B is a p × mn matrix of regression
coefficients and E is an n × mn error matrix. In Fig. 1, we illustrate the SiMMR model and two
proposed test statistics which we describe in 2.3.

2.3. SiMMR-D and SiMMR-PC test statistics
We propose two statistics to test the null hypothesis that a subset of covariates has no association
with the joint cMDS scores Z. Let B = (

B1 B2
)T where B2 are the regression coefficients for

the covariates of interest. Our goal is to test the null hypothesis H0 : B2 = 0 against Ha : B2 �= 0.
Certain test statistics for multivariate regression require Z to be full-rank and compare the sum of
squares and cross products (SSCP) matrices of the hypothesis R̃ = ZT(H − Hr)Z and the SSCP
errormatrix Ẽ = ZT(I − H)Z, whereH = X(XTX)−1XT andHr is the hatmatrix from the reduced
model. In our case, Z is rank deficient since mn > n for m > 1. To perform regression in this high-
dimensional setting, we propose two alternative approaches. First, we adapt the Dempster trace
(Dempster 1958) to our setting, which we denote by TD, the SiMMR Dempster trace (SiMMR-
D). Directly applying the original formulation of Dempster trace, SiMMR-D is the ratio between
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the traces of the SSCPmatrices,

TD = tr(ZT(H − Hr)Z)

tr[ZT(I − H)Z] . (2.2)

Using the idempotency ofH and the cyclical property of the trace, we can rewrite this as

TD = tr[(H − Hr)(
∑m

k=1 Gk)(H − Hr)]
tr[(I − H)(

∑m
k=1 Gk)(I − H)] . (2.3)

This equality shows that SiMMR-D is equivalent to performing MDMR using the sum of the
dissimilarity matrices, which connects SiMMR-D directly to this classic distance-based regression
framework. Theoretical results derived for MDMR thus apply directly to our method, which
include the asymptotic null distribution of the MDMR pseudo-F statistic previously discussed in
Section 2.1.
The SiMMR-D test statistic is a natural extension ofMDMR, but it discards cross-product terms

in the SSCPmatrices that capture the correlations amongmodalities. As an alternative solution, we
propose another test statistic that leverages the correlations of the cMDS scores. We first address
the rank deficiency of the SSCP matrices by performing dimension reduction on the cMDS scores
using principal component analysis (PCA). We then construct Pillai’s trace from the first K PC
scores represented in the n × K matrix W . This test statistic, which we denote by TPC and we
call SiMMRprincipal components (SiMMR-PC(K)), is defined through the correspondingK × K
SSCPmatrices R̃PC = WT(H − Hr)W and ẼPC = WT(I − H)W as

TPC(K) = tr[R̃PC(ẼPC + R̃PC)−1]. (2.4)

For the design matrix of dimensions n × p, TPC(K) is defined for K < n − p − 1. We investigate
the choice of K through simulation and applications in Sections 4.1 and 4.2.
SiMMR-PC performs inference based on the cMDS scores of each modality, which are not

unique since any orthogonal rotation of the optimal scores is also optimal (see e.g. page 396 in
Mardia et al. (1979)). Orthogonal rotation of each cMDS solution can be represented as a rotation
of the concatenated cMDS scores. However, owing to rotational invariance of the Pillai’s trace test
statistic (Langsrud 2004), any set of cMDS solutions yields the same TPC test statistic.
Testing for both SiMMR-D and SiMMR-PC statistics proceeds via permutation. The permuta-

tional null distribution is generated by permuting the rows of the design matrix and computing
the chosen SiMMR test statistic. The P-value for the permutation test is then the proportion
of permuted test statistics less than the test statistic computed using the original design matrix.
Throughout our analyses, we perform 999 permutations for computation of each SiMMR p-value.
The computational complexity of SiMMR depends on the choice of test statistic. We first

assume that the vector of covariates is reasonably small so that computation of the hat matrices
does not impact the complexity. For SiMMR-D, the most expensive computations are the matrix
multiplications involving the n × nm Zmatrices to obtain the SSCPmatrices. Thesemultiplications
have a time complexity of up toO(n3m2). For SiMMR-PC(K), we first apply PCA to theZmatrices,
which have time complexity of O(n3m3) using standard implementations. We then select the top
K PCs, leading to SSCP matrix construction having a lower time complexity of O(n2K + nK2).
Thus, the relative complexity of SiMMR-D versus SiMMR-PC depends on a number of factors, but
SiMMR-Dshouldbe fasterwhenbothn andm are large. For all SiMMRtest statistics, thedimension
of each modality q impacts the complexity of distance matrix computations but does not impact
SiMMR. Empirical results for the runtime of each test statistic are presented in Section 3.2.

2.4. Alternative methods
Few othermethods exist for regression ofmultimodal outcomes taking values in arbitrary semimet-
ric spaces. However, we can compare our SiMMRmethodology to other methods that test similar
hypotheses.



Biostatistics, 2023, 25, 4 · 1127

For Euclidean distances computed on a single modality, MDMR is equivalent to multivariate
multiple regression (MMR) using a pseudo-F statistic (McArdle and Anderson 2001). We thus
compare our SiMMR test statistics toMMR on the concatenation of multimodal outcomes. When
the dimensionality of themultimodal outcomes are sufficiently small (k < n − p − 1,where k is the
dimension of the outcome and p is the dimension of the covariates), we can compare our SiMMR-
PC test statistic to multivariate regression using Pillai’s trace. In our analyses, Pillai’s trace is only
applicable in simulations.
We can also compare SiMMR to performing individual MDMR tests while controlling for

multiple comparisons (MC-MDMR). This method tests against the null hypothesis that none of
the modalities are associated with the covariates of interest. We apply MDMR to each modality
separately and adjust using the Bonferroni correction.
Kernel machine regression (KMR) provides an alternative framework that enables regression

on complex data through kernels. For MDMR with a univariate continuous covariate, KMR is
equivalent to MDMR when the kernel is equal to the doubly centered dissimilarity matrix from
MDMR (Pan 2011). Unlike MDMR however, KMR requires a positive semidefinite kernel matrix.
Let y be an n × 1 vector of continuous outcomes, X be a n × p matrix of covariates with rows xi,
and z1, z2, . . . , zm be n-dimensional vectors of multimodal data where n is the number of subjects.
For subject i, we consider a KMRmodel for multimodal complex data as

yi = xT
i β + h1(z1i) + h2(z2i) + · · · + hm(zmi) + ei,

whereβ is a p × 1 vector of regression coefficients, hj, j = 1, 2, . . . ,m are unknown functions, and ei
are independent errors with variance σ 2. A variance components test has been proposed for testing
H0 : h1(·) = h2(·) = · · · = hm(·) using the score test statistic

S(σ 2) = 1
2σ 2 yTP0

⎛
⎝

m∑
j=1

Kj

⎞
⎠ P0y,

where P0 = I − X(XTX)−1XT is the projection matrix under the null hypothesis. By making
several assumptions of normality and using an estimator for σ 2, the approximate distribution of
S(σ̂ 2) is obtained using the Satterthwaite method (Li and Cui 2012).
We compare SiMMR to KMR by treating our covariate of interest as the outcome and using the

doubly centered dissimilarity matrices as kernels. That is, we choose Kj = Gj for j = 1, 2, . . . ,m,
whereGj are defined in Section 2.3. For non-Euclidean distances, theGj are not necessarily positive
semidefinite and KMRmay not apply. Furthermore, KMR cannot be applied in settings with other
types of outcomes, including categorical and ordinal responses.

3. SI MUL ATION ST UDY
We evaluate the efficacy of our proposed SiMMR methodology through a simulation study with
varying sample size, number of features, number of modalities, and correlation structure. We
compare our method to MDMR, KMR, and multivariate multiple regression (MMR) where
applicable.

3.1. Data generation
We simulate a multimodal dataset with correlations within and between modalities through the
following setup. LetN be the simulation sample size,M be the number of modalities, andQ be the
number of features permodality. Let Y = (Y1, Y2, . . . , YM) denote the fullMQ -dimensional vector
of multimodal data and x ∼ Binomial(0.5) denote a simulated binary covariate. We additionally
consider settings with a continuous covariate, x ∼ N(0, 1).
Wedraw theNmultimodal observations fromamultivariate normal distributionwith correlation

structure� of dimension MQ × MQ , where the covariate shifts the observations in directions of
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the eigenvectors of�. For a covariate effect of rankL, Y = x
∑L

l=1 clφl + ε, where ε ∼ N(0,�),�
is the chosen correlation structure, andφl, l = 1, 2, . . . ,MQ are the eigenvectors of�. In additional
simulations, we will also consider the case where the covariate is only associated with onemodality.
To achieve this, we use the same simulation design butmodify the elements ofφl to be 0 for features
that are not part of the first modality, Y1.
We propose three simulation settings bymodifying the correlation structure. In our first scenario,

� is an exchangeable correlation matrix with parameter ρ = 0.25 to simulate multimodal data
that have low correlations within modality and between modalities. Our second scenario uses an
exchangeable correlation structure with ρ = 0.75 so that the simulated multimodal data has high
correlations. The third scenario has � instead as a first-order autoregressive structure, or AR(1),
with parameter τ = 0.9. The AR(1) structure yields correlations that are generally higher within
modality than between modalities.
In each scenario, we vary the rank and magnitude of the covariate effect. We choose L as 1,

�MQ/4�, �MQ/2�, and MQ to provide simulation settings with varying complexity of covariate
effects. The contribution of each eigenvector of � to the covariate effect varies across settings to
ensure that the strength of the effect remains similar. In particular, L = 1 has c1 = 3, L = �MQ/4�
has c1 = c2 = · · · = c�MQ/4� = 0.7, L = �MQ/4� has c1 = c2 = · · · = c�MQ/2� = 0.7, and L =
MQ has c1 = c2 = · · · = cMQ = 0.15.
For each simulation setting, we generate 1,000multimodal datasets. In each dataset, we compare

SiMMR to three competing methods: multivariate multiple regression (MMR), KMR, and mul-
tivariate distance matrix regression applied to each modality correcting for multiple comparisons
using Bonferroni correction (MC-MDMR). For simulation settings where MQ < N − 2, we per-
formMMRby computingPillai’s trace basedon the simulateddataY . SiMMR-PC is computedwith
the number of PCs K ranging from 2 to 25. For SiMMR-PC with K ≥ N − 2, all PCs are included.

3.2. Simulation results
Type I error is well-controlled across simulation settings and SiMMR test statistics. InTable 1,
we display the type I error and power of MMR, KMR, MC-MDMR, SiMMR-D, and SiMMR-
PC(3) across simulation settings. Supplementary Table 1 shows results for AR(1) correlation
settings while also including SiMMR-PC(10) and SiMMR-PC(15). We find that the type I error
rates for SiMMR test statistics are well-controlled across simulation settings, but MC-MDMR is
overly conservative at high numbers of modalities M, especially in the exchangable correlation
settings. Across correlation structures at sample size 100 and 10 modalities, MMR has a slightly
conservative type I error. In simulations with a continuous covariate, MC-MDMR andMMR have
type I error closer to 0.05 (Supplementary Tables 2 and 3).

SiMMR outperforms MC-MDMR across simulation settings. For covariate effects in the first
PC direction, SiMMR-D shows equal or greater power than MC-MDMR and MMR across all
simulations. For more complex covariate effects, we observe that SiMMR-PC(3) yields greater
power than MC-MDMR across the exchangeable correlation settings with especially large differ-
ences in the high correlation setting. Supplementary Table 1 shows that either SiMMR-PC(10)
or SiMMR-PC(15) outperform MC-MDMR across all AR(1) correlation settings. Figure 2 and
Supplementary Fig. 1 compare test statistics for settings with two modalities and show that these
results hold across number of features Q per modality. Supplementary Figure 6 demonstrates that
SiMMR particularly outperforms MC-MDMR in settings where only one modality is associated
with the covariate.

SiMMR yields comparable power with MMR and KMR. SiMMR-D and KMR produce
similar power results across all settings, with KMR slightly outperforming in certain settings. In
settings with MQ < N − 2, we can apply MMR and compare the power results to SiMMR. At a
sample size of 25, we find that SiMMR-PC yields similar or greater power than MMR across all
settings. SiMMR-PC(10) and SiMMR-PC(15) show particularly higher power in exchangeable,
high correlation, and AR(1) correlation settings (Supplementary Table 1). Across settings with a

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad033#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad033#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad033#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad033#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad033#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad033#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad033#supplementary-data
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Figure 2. Power results in simulations with exchangeable and AR(1) correlation structures for a sample
size of 25. Each trace represents a different test statistic. Different simulation settings are distinguished by
correlation structure across rows and by rank of the binary covariate effect across columns. Exchangeable
refers to an exchangeable correlation structure with low or high correlation and AR(1) refers to a
first-order autoregressive structure. MDMR, multivariate distance matrix regression; MC-MDMR,
multiple MDMR statistics after Bonferroni correction; MMR, multivariate multiple regression using
Pillai’s trace.

sample size of 100, Supplementary Table 1 and Supplementary Fig. 1 show that SiMMR-PC(3) has
comparable or lesser power than MMR but SiMMR-PC(10) and SiMMR-PC(15) yield equal or
greater power than MMR. In our setting where only one modality is associated with the covariate,
we find that all of our multimodal analyses decrease in performance as the number of unassociated
modalities increases (Supplementary Fig. 6).

Relative performance of SiMMR-D and SiMMR-PC depends on correlation structure and
covariate effect. In settings with a covariate effect in the first PC direction, Table 1 shows that
SiMMR-D yields equal or higher power than SiMMR-PC and Supplementary Figs. 2 and 3 show
that this relationship holds across SiMMR-PC test statistics for 2 through 25 PCs. For exchangeable
correlation structures and covariate effects in 25% or 50% of the PC directions, SiMMR-PC
outperforms across sufficiently low number of PCs in the low correlation setting and across all
choices in the high correlation setting. For settings with an AR(1) correlation structure, the

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad033#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad033#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad033#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad033#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad033#supplementary-data
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performance of SiMMR-PC relative to SiMMR-Ddepends on the complexity of the covariate effect
and number of features per modality. SiMMR-PC with large numbers of PCs performs better in
settings with more complex covariate effects and larger number of features. Supplementary Table 1
numerically compares SiMMR-PC test statistics for AR(1) correlation settings and shows that
SiMMR-PC(3) performs the best for covariate effects with 25% of PCs and 5 features permodality,
but SiMMR-PC(10) and SiMMR-PC(15) outperform in other settings. Supplementary Tables 2
and 3 and Supplementary Fig. 5 show that these results hold in settings with a continuous covariate.
In Supplementary Fig. 6, we observe that SiMMR-PC considerably outperforms SiMMR-D when
only onemodality is associated with the covariate. Supplementary Figure 7 shows running times in
the high correlation setting, demonstrating that SiMMR-D runs faster than SiMMR-PC(1) inmost
settings considered. One notable exception is theN = 100,M = 50 setting where SiMMR-D runs
in 12.03 min and SiMMR-PC(1) runs in 9.2 min on a Intel Core i9-13900H (24M Cache, up to
5.40 GHz).

4. DATA A PPLIC ATIONS
We apply SiMMR to two studies with novel and distinct types of multimodal data. Our first
application involves neuroimaging data from the PhiladelphiaNeurodevelopmental Cohort (PNC;
Satterthwaite et al., 2014),wherewe are interested in testing for age-related changes inbrain connec-
tivity and cortical structure. Our second application uses mobile health data from the National In-
stitute ofMental Health (NIMH) Family Study of Affective SpectrumDisorders (Merikangas et al.
2014), where we test for differences in mood and physical activity measures among subjects with
mood disorders. Our SiMMRapplications involve vector-valued cortical thickness and sulcal depth
measurements from the PNC, matrix-valued structural and functional connectivity from the PNC,
and time series observations of mobile health data from the NIMH Family Study of Affective
Spectrum Disorders.

4.1. Philadelphia Neurodevelopmental Cohort
We apply the SiMMR methodology to two multimodal neuroimaging datasets collected as part of
thePNC(Satterthwaite et al.2014). All participants, or their parent or guardian, provided informed
consent, andminors provided assent. The study was approved by the institutional review boards of
both theUniversity of Pennsylvania and theChildren’sHospital of Philadelphia. The PNC includes
9,498 subjects between the ages of 8 and 23.Multimodal imaging was acquired on a subset of 1,601
subjects using a Siemens TIM Trio 3-T scanner with a 32-channel head coil and the same imaging
sequences and parameters for every subject. Included participants in the PNC were medically
healthy, were not taking psychoactive medication, and passed strict quality-assurance procedures
for their imaging.

4.1.1. Image acquisition and preprocessing
In this study, we first examine a subset of 912 PNC subjects with high-quality cortical thickness
(CT) and sulcal depth (SD)measurements computed fromT1-weighted images (demographic de-
tails in Table 2 under “PNCCortical Structure”). The acquisition and preprocessing for these data
was originally described in Vandekar et al. (2015) and in subsequent studies (Vandekar et al. 2016;
Weinstein et al. 2021). Cortical reconstruction of theT1-weighted structural imageswas completed
using FreeSurfer (version 5.3). These cortical measurements were resampled to the fsaverage5
atlas, which has 10,242 vertices in each brain hemisphere. Cortical thickness was computed as the
minimumdistance between pial andwhitematter surfaces (Dale et al. 1999) and sulcal depth as the
height of gyri (Fischl et al. 1999).
Our second application involves a set of subjects from the PNC with structural connectivity,

resting-state functional connectivity, and n-back functional connectivity measurements. Acquisi-
tion and preprocessing for this sample has previously been discussed in Baum et al. (2020). In
summary, 727 participants are included after strict quality assurance procedures (demographic

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad033#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad033#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad033#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad033#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad033#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad033#supplementary-data
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Table 2.Demographics of the imaging and mobile health datasets.
PNC Connectivity PNCCortical Structure NIMH Family Study

Number of subjects 727 912 77
Age, mean (SD) 15.88 (3.23) 14.80 (3.50) 49.31 (17.73)
Male, n (%) 307 (42.2) 415 (45.5) 31 (40.3)
Diagnosis, n(%)
Healthy Control 34 (44.2)
MDD 26 (33.8)
Bipolar Type I 6 ( 7.8)
Bipolar Type II 11 (14.3)

Age, sex, and diagnosis status (applicable only to the NIMH Family Study) are shown for all subjects included in this study.
The two PNC datasets are different subsets of the full PNC dataset with some overlap. PNC, Philadelphia Neurodevelopmental
Cohort; FC, functional connectivity; SC, structural connectivity; CT, cortical thickness; SD, sulcal depth; NIMH, National
Institute of Mental Health; MDD, major depressive disorder.

details in Table 2 under “PNCConnectivity”). Structural connectivity is calculated from diffusion-
weighted imaging using probabilistic tractography. Entries of each subject’s structural connectivity
(SC) matrices are computed as the number of probabilistic streamlines connecting each pair of
400 brain regions, normalized by the total edge weight across all network connections. Func-
tional connectivity matrices are computed separately for functional magnetic resonance imaging
(fMRI) acquired while the participant is at rest (rsFC) and during the n-back task (n-back FC).
Functional connectivity between each pair of the 400 brain regions is computed as the Pear-
son correlation coefficient between the mean regional blood-oxygen-level-dependent (BOLD)
time series.

4.1.2. Application of SiMMR
Previous studies of the PNC have demonstrated neurodevelopmental changes in cortical thickness
(Vandekar et al.2015) and the coupling between cortical thickness and sulcal depth (Vandekar et al.
2016). We apply SiMMR to the cortical structure data for regression on age while controlling for
sex. We construct dissimilarity matrices based on the Euclidean distance. We compare SiMMR to
KMR by treating age as the outcome while treating sex as a nuisance covariate.
UsingSCandFCmatrices from thePNC,Baum et al. (2020)demonstratedneurodevelopmental

changes in a coupling metric computed between SC and n-back FC while separately examining
coupling between SC and rsFC. In our application, we incorporate all three modalities and apply
SiMMR to determine if there is an association between SC, n-back FC, and rsFC jointly with
age while controlling for sex and relevant quality metrics. The quality metrics are identical to
those in Baum et al. (2020), which includes mean relative framewise displacements calculated
on the resting-state and n-back fMRI scans and mean relative displacement from interspersed
volumes with a b value of 0 s/mm2 calculated from the diffusion-weighted images. We choose to
compute dissimilarities between functional connectivity matrices using the log-Euclidean distance
(Arsigny et al. 2006), which addresses several issues with using Frobenius distances for positive
semidefinite matrices. For structural connectivity, we use the Frobenius distance since thematrices
are not guaranteed to be positive semidefinite. We compare SiMMR to KMR by using the doubly
centered dissimilarity matrices as kernels while treating age as the outcome and sex and quality
metrics as nuisance covariates.
To assess rejection rate in these applications, we use a resampling-based approach to evaluate

rejection of the null hypothesis in smaller sample sizes. That is, we draw 1,000 samples without
replacement and compute P-values for all test statistics for each sample. The rejection rate is then
calculated as the proportion of p-values with value less than our nominal type I error rate of 0.05.
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Figure 3. Rejection rates across resamples in applications of SiMMR to imaging and mobile health data.
Each trace represents a different test statistic. Power curves for individual modalities are obtained through
multivariate distance matrix regression (MDMR). PNC, Philadelphia Neurodevelopmental Cohort; FC,
functional connectivity; rsFC, resting-state functional connectivity; SC, structural connectivity; EMA,
ecological momentary assessment; MC-MDMR, multiple MDMR statistics after Bonferroni correction;
MMR, multivariate multiple regression using Pillai’s trace.

4.1.3. Results
For changes of cortical structure during brain development, joint analysis of cortical thickness
and sulcal depth does not outperform unimodal analysis of cortical thickness. MDMR on cortical
thickness has a 83.3% rejection rate to detect an age association at a sample size of 20, whereasMC-
MDMR, KMR, and SiMMR-D only have a 75.9%, 71.5%, and 72.9% rejection rate, respectively.
At the same sample size, MDMR on sulcal depth only has a 13.0% rejection rate. These results are
consistent with a previous study finding age-related changes in cortical thickness using the PNC
study (Vandekar et al. 2015).Wefind that age-related changes in sulcal depth require a larger sample
size to detect, which leads inclusion of sulcal depth to reduce rejection rate in our multimodal
analyses. Our results do not contradict previous reports of age-related patterns in the coupling
between cortical thickness and sulcal depth (Vandekar et al. 2016); however, this relationship does
not drive higher rejection rate for detection of age when jointly analyzing the two modalities.
In PNC structural and functional connectivity data, Fig. 3a shows that SiMMR-D and KMR

have a high rejection rate for detecting age-related changes in connectivity, achieving rejection rates
of 90.7% and 92.5%, respectively at a sample size of 40. Comparing this multimodal analysis to
unimodal analyses, only MDMR on structural connectivity achieves similar results with a 83.1%
rejection rate at the same sample size and combining all three unimodal analyses via MC-MDMR
yields a rejection rate of 82.9%. These results suggest that multimodal structural and functional
analysis via SiMMR and KMR is better able to detect changes in brain connectivity than any
unimodal analysis or the combination of unimodal analyses. Supplementary Figure 4 shows that
using the Frobenius distance for functional connectivity matrices leads to lesser rejection rate for
both multimodal and unimodal analyses of rsFC and n-back FC.

4.2. NIMH Family Study
We also apply SiMMR to mobile health data collected as part of the National Institute of Mental
Health (NIMH) Family Study of Affective Spectrum Disorders, an observational cohort study of

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad033#supplementary-data
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subjects recruited from the greater Washington, DC, metropolitan area (Merikangas et al. 2014).
All participants provided informed consent, and the study was approved by the Combined Neu-
roscience Institutional Review Board at the National Institutes of Health. Each participant was
evaluated for mental disorders via a comprehensive semistructured diagnostic interview, with
mental disorders defined by Diagnostic and Statistical Manual for Mental Disorders, IVth Edition
(DSM-IV) criteria. Further details on the recruitment and exclusion criteria can be found in
Merikangas et al. (2014).

4.2.1. Mobile health data preprocessing
For our study, we examine the subset of 384 participants with actigraphy and ecological momen-
tary assessment (EMA) data. Physical activity data were collected via accelerometers (Actiwatch
Spectrum, Philips Respironics, Murrysville, PA, USA), which produced activity counts for every
minute of the day measured via movement-related voltage signals recorded by the accelerometer.
Participants completedEMAfour times aday approximately four hours apart through a smartphone
during the same 2-week assessment period when accelerometry data are being collected. For our
analyses, we include self-reportedmood variables in EMA, which consist of 7-point Likert scales to
measure the degree towhich participants felt active, anxious, energetic, sad, distracted, and irritable.
Further details on the actigraphy, EMAdata collection, and activity data processing were presented
in Johns et al. (2019), Lamers et al. (2018), Merikangas et al. (2019), and Shou et al. (2017).
For our analysis, we include 77 subjects with at least 1 week of data. We summarize the activity

and EMA time series by averaging time points within eachweekday across 2weeks. The time points
consist of 1,440min per day for activity data and 4 times per day for EMAdata. For time points with
missing data for eitherweek, we use the single availablemeasurement.We exclude subjects fromour
analyses who are missing both measurements for any time point of EMA data. Our mobile health
dataset consists of 77 participants with 10,080 activity time points and 28EMA time points for each
of the six EMA variables. Demographic details are available in Table 2.

4.2.2. Application of SiMMR
A previous study used mobile health data from the NIMH Family Study to understand the joint
relationship between physical activity and mood, and to identify diagnosis-related differences in
the association between activity, energy, mood, and sleep (Merikangas et al. 2019). This study
summarized the activity data into four bins per day to align with the EMA measurements, which
only included measures of sadness and energy. We use SiMMR to identify diagnosis effects while
leveraging the full activity time series aswell as all six EMAvariables. For eachmodality,we calculate
dissimilarity matrices using the Euclidean distance between time series. Our analysis is performed
by using SiMMR to simultaneously regress activity and the EMAvariables on diagnosis statuswhile
controlling for age and sex. KMR cannot be applied in this setting since our covariate of interest
is categorical. To assess rejection rate across resamples in this application, we use the approach
previously described in Section 4.1.2.

4.2.3. Results
Figure 3c demonstrates that SiMMR-PC can detect diagnosis-related changes jointly among phys-
ical activity and EMA measurements of mood with a high rejection rate at larger sample sizes.
Multimodal analysis using SiMMR-PC(3) has a rejection rate of 83.2% at sample size 50, which far
outperforms unimodal MDMR analyses where the highest rejection rate is 57.1% fromMDMR on
EMA-measured feelings of irritability. EMA-measured feelings of anxiety and sadness andmeasures
of physical activity as assessed by accelerometers also show associations with diagnosis, having
rejection rates of 56.6%, 38.6%, and 25.5%, respectively at sample size 50. Other unimodal analyses
show notably lower rejection rates across sample sizes considered. Combining these unimodal
analyses via MC-MDMR yields a low rejection rate as a result withMC-MDMR having a rejection
rate of 26.2% for the same number of subjects. These observations suggest that joint analysis of
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Figure 4. SiMMR-PC results across number of PCs and related exploratory analyses in real data
applications. (a) shows the rejection rate across resamples for SiMMR-PC test statistics across number of
PCs compared to SiMMR-D (dashed line). (b) displays the distance correlation (DistCor) among
modalities in each application using the full sample. (c) shows the percent of variation explained by PCs
across the 1,000 resamplings of size 50 in each application. PNC, Philadelphia Neurodevelopmental
Cohort; EMA, ecological momentary assessment.

physical activity and mood measurements using SiMMR can identify diagnosis-related changes
more effectively than use of existing methodologies for unimodal or combined unimodal analyses.

4.3. Selection of SiMMR-PC
In our applications, selection of the number of PCs included in SiMMR-PC is important to detect
associations of interest. Figure 4a shows that in our application to PNCcortical thickness and sulcal
depth, SiMMR-D outperforms SiMMR-PC across all numbers of PCs considered. Figure 4b shows
in our PNC connectivity study that SiMMR-D and SiMMR-PC show comparable performance at
varying numbers of PCs. However, Fig. 4c shows that SiMMR-PC(3) and SiMMR-PC(4) have
higher power for detection of diagnosis than SiMMR-D at higher sample sizes in theNIMHFamily
Study application. To investigate possible explanations for these results, we compute the distance
correlation (Székely et al. 2007) between each modality using data from all subjects. Figure 4a
shows that the distance correlation between PNC cortical thickness and sulcal depth is relatively
low (0.39) and the distance correlations among certain EMA measurements in the NIMH Family
Study are considerably higher (>0.60 for certain pairs of modalities). Figure 4c further shows
that the percent of variation explained by the first few PCs across resamplings of 50 subjects
is considerably higher in the NIMH Family Study application. These findings demonstrate that
distance correlation and scree plots from PCA can inform when to use SiMMR-PC and how to
select the number of PCs included. Based on our observations, we suggest use of SiMMR-PC in
applications with high distance correlation amongmodalities and choosing PCs that explain a large
portion of the variation amongMDS scores.
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5. DISCUSSION
The emergence of technology and organized efforts for collection of multiple types of health data
provides a great opportunity to jointly examine associations between multimodal assessments
and health outcomes. To integrate and perform inference in multimodal settings, we develop a
flexible distance-based testing framework called SiMMR,which can incorporate data fromarbitrary
semimetric spaces. We demonstrate in simulation and real data that our test statistics can identify
associationswith relatively small sample sizes and across awide rangeof data structures.Wepropose
two alternative test statistics that provide higher power in certain settings, generally outperforming
existing distance-based methods.
We find that relative performance of SiMMR versus unimodal analysis depend on the included

modalities and their correlation. In our simulations and applications, the benefit of performing
SiMMR is limited when modalities show lesser correlation. Furthermore, in simulations where
most modalities are not associated with simulated covariates, we found that our multimodal tests
decreased in performance as more data modalities were added. We also observe through our
application to PNC cortical structure that modalities with weak associations can reduce power of
a multimodal analysis, even when the correlation between modalities is known to be important
(Vandekar et al. 2016). Our results emphasize that knowledge about the data structure should
inform whether application of SiMMR is appropriate and the choice of modalities to include.
Comparing SiMMR test statistics and KMR, SiMMR-PC generally outperforms SiMMR-D

when the correlation among modalities is high and the effect of interest is sufficiently complex.
SiMMR-D and KMR show comparable performance across our simulations and applications;
however, KMR could not be applied when considering categorical outcomes and cannot be applied
when using non-Euclidean dissimilarity metrics. For selection among SiMMR-PC statistics, we
found that the first three or four PCs provided optimal power across most of our settings, with
additional PCs needed in simulations with complex correlation structures. We used standard scree
plots to choose among PCs that explain the most variation; however, other investigations have
suggested that PCs explaining less variationmay bemore closely associatedwith outcomemeasures
(Liu et al. 2020). While our choices of SiMMR-PC statistics performed well across our analyses,
further investigation may suggest alternative data-driven approaches for choosing the optimal
number of PCs.
Wechoose touseEuclidean and log-Euclideandistances throughout our analyses; however, other

distances could be employed. Several studies have compared choices of distance in various data
types including positive semidefinite matrices (Dryden et al. 2009), time series (Wang et al. 2013),
andbrain connectivitymaps (Shehzad et al.2014). Future investigations could further examinehow
the choices of distance measures influences SiMMR results, particularly when different types of
distances (e.g. Euclidean and non-Euclidean) are chosen.
The SiMMR-PC test statistic performs multivariate regression through the principal compo-

nents of the outcome variable, which is related to previous work in multivariate regression. In
particular, SiMMR-PC resembles PC-based test statistics in the multiple phenotype setting with
multiple outcome variables and a single covariate (Liu and Lin 2019); but these statistics do not
apply to our settings with multiple covariates. Our investigation is closely related to previous work
performing likelihood ratio tests on PCs, which also tested other approaches such as regularization
and shrinkage applied to covariance estimates (Ullah and Jones 2015). Future studies of SiMMR
could incorporate other PC-based statistics and alternative high-dimensional test statistics.

6. SOFT WA R E
SiMMR is implemented as an R package. SiMMR and the simulation code used in this article are
available at https://github.com/andy1764/SiMMR. Analysis codes for our data applications are
available on request from the corresponding author (chenandr@musc.edu).
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