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Peroxisome Proliferator–Activated Receptor δ 
Suppresses the Cytotoxicity of CD8+ T Cells by 
Inhibiting RelA DNA-Binding Activity 
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�
 ABSTRACT 

The molecular mechanisms regulating CD8+ cytotoxic T lymphocytes 
(CTL) are not fully understood. Here, we show that the peroxisome 
proliferator–activated receptor δ (PPARδ) suppresses CTL cytotox-
icity by inhibiting RelA DNA binding. Treatment of ApcMin/+ mice 
with the PPARδ agonist GW501516 reduced the activation of normal 
and tumor-associated intestinal CD8+ T cells and increased intestinal 
adenoma burden. PPARδ knockout or knockdown in CTLs increased 
their cytotoxicity against colorectal cancer cells, whereas over-
expression of PPARδ or agonist treatment decreased it. Corre-
spondingly, perforin, granzyme B, and IFNγ protein and mRNA 
levels were higher in PPARδ knockout or knockdown CTLs and lower 

in PPARδ overexpressing or agonist-treated CTLs. Mechanistically, 
we found that PPARδ binds to RelA, interfering with RelA–p50 
heterodimer formation in the nucleus, thereby inhibiting its DNA 
binding in CTLs. Thus, PPARδ is a critical regulator of CTL effector 
function. 

Significance: Here, we provide the first direct evidence that PPARδ plays 
a critical role in suppressing the immune response against tumors by 
downregulating RelA DNA-binding activity. This results in decreased 
expression of perforin, granzyme B, and IFNγ. Thus, PPARδ may serve 
as a valuable target for developing future cancer immunotherapies. 

Introduction 
Naı̈ve CD8+ T cells can be activated via their T-cell receptor (TCR) by 
dendritic cells presenting cognate antigens. The TCR, consisting of variable 
αβ chains noncovalently associated with nonpolymorphic CD3 proteins, is 
crucial for signaling downstream pathways (1). TCR signaling alone results 
in a nonresponsive state (anergy) in which T cells are refractory to restim-
ulation. Co-ligation of other cell surface receptors, such as CD28, provides 
additional signals required to avoid anergy and result in a productive T-cell 
activation (1). Following antigen–receptor–mediated activation, CD8+ 

T cells proliferate and differentiate into effector cells, such as cytotoxic T 
lymphocytes (CTL), which are key players in cancer immunotherapy (2, 3). 
CTLs defend against virally infected and malignant cells (2) by secreting 
death-inducing effector molecules like perforin, granzymes, and Fas-ligand, 
as well as chemokines and effector cytokines like IFNγ and TNFα (2). 

Peroxisome proliferator–activated receptors (PPAR) are nuclear hormone re-
ceptors that regulate the expression of multiple genes. PPARs influence T-cell 
survival, activation, and CD4+ T helper cell differentiation (4). PPARα and 
PPARγ agonists have shown promise in enhancing T-cell therapies by modu-
lating metabolic pathways. Adaptive immune responses of T and B cells have 
been studied in animal models using genetic manipulation and by activating the 
receptors with synthetic ligands. Treatment with the PPARα agonist, fenofibrate, 
improved the efficacy of CD8+ T-cell therapy for melanoma in a patient-derived 
xenograft mouse model, likely through switching from glycolysis to fatty acid 
oxidation (5). Bezafibrate, a PPARγ agonist, improved the efficacy of PD-1 
blockade by promoting differentiation of näıve to effector T cells, upregulating 
fatty acid oxidation, and inhibiting apoptosis of effector T cells (6). PPARδ (also 
known as PPARβ) plays a multifaceted role in cancer (7–9). As a transcription 
factor, PPARδ directly binds to peroxisome proliferator responsive elements 
(PPRE) within the promoters of target genes as a heterodimer with retinoid X 
receptor (7, 8). PPARδ represses some genes indirectly through interactions with 
other transcription factors (e.g., NF-κB) or transcriptional repressors such as 
B-cell lymphoma 6 that do not require DNA binding (7, 10). PPARδ can impact 
T-cell development and function (4) and protect activated human CD3+ T cells 
from undergoing apoptosis (11). A recent study implicated PPARδ as an addi-
tional regulator of a metabolic program that supports the growth of thymocytes 
and mature CD4+ T cells (12). The GOT2–PPARδ axis promotes spatial re-
striction of CD4+ and CD8+ T cells from the tumor microenvironment in a 
pancreatic cancer mouse model (13). The underlying mechanisms by which 
PPARδ exerts its actions in T cells are poorly elucidated, and it is not clear 
whether PPARδ directly regulates the cytotoxicity of CD8+ T cells. 
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The NF-κB family, including RelA (p65), RelB, c-Rel, NF-κB1 (p50), and NF- 
κB2 (p52), is crucial for innate and adaptive immune responses and TCR 
signaling (14). NF-κB is essential for T-cell development, survival, and ef-
fector differentiation (15). RelA plays a vital role for regulatory T-cell acti-
vation and stability (16). Mice lacking IKKβ were unable to reject 
subcutaneously injected tumors that wild-type mice otherwise eliminated 
(17). Anergic CD8+ T cells have impaired NF-κB activation, with defects in 
RelA phosphorylation and acetylation (18). Effector molecules like perforin, 
granzyme B, Fas-ligand, IFNγ, and TNFα, needed for cell killing, are targets 
of RelA (19–25). CTLs are potent effectors in many anticancer immune 
responses and are critical for the currently successful immunotherapies. This 
study investigates how PPARδ modulates CTL cytolytic activity. 

Materials and Methods 
Animals 
All animal experiments were conducted in accordance with our animal 
protocols, approved by the Institutional Animal Care and Use Committee at 
MUSC. ApcMin/+ mice were obtained from The Jackson Laboratory. PPARδ 
null ApcMin/+ mice (Ppard�/�/ApcMin/+) and their control mice (Ppard+/+/ 
ApcMin/+) were generated from the same litter mates by breeding Ppard�/�/ 
Apc+/+ on a mixed genetic background (C57BL/6 � 129/SV) with Ppard+/+/ 
ApcMin/+ on a C57BL/6 genetic background (The Jackson Laboratory) as 
described (26). PPARδ was deleted in the whole organism by deleting exons 
4 to 5. Male mice were used for isolation of splenic CD8+ T cells. 

Reagents and antibodies 
A PPARδ agonist GW501516 was obtained from Ramidus AB. A second 
PPARδ agonist GW0742 was obtained from Tocris. The following antibodies 
were purchased from Cell Signaling Technology: anti-cleaved PARP (#5625, 
RRID: AB_10699459), anti–cleaved caspase 7 (#9491, RRID: AB_2068144), 
anti–cleaved caspase 3 (#9664, RRID: AB_2070042), anti–granzyme B 
(#17215, RRID: AB_2798780), anti-GAPDH (#8884, RRID: AB_11129865), 
anti-perforin (#62550, RRID: AB_3095060), anti-perforin (mouse-specific; 
#44865), and anti–NF-κB1/p50 (#13586, RRID: AB_2665516). Anti–β-actin 
(#A3854, RRID: AB_262011) antibody was purchased from Sigma. Anti- 
RelA (#SC-372, RRID: AB_632037), anti-PPARδ (#SC-74517, RRID: 
AB_1128604), and anti–lamin A (#SC56137, RRID: AB_2136168) antibodies 
were obtained from Santa Cruz Biotechnology. Anti-IFNγ (#MM700B) an-
tibody was purchased from Invitrogen. Anti-CPT1A (#A5307, RRID: 
AB_2766119) and anti-PGC1α (#A19674, RRID: AB_2862726) antibodies 
came from ABclonal Science. Horseradish peroxidase–linked enhanced 
chemiluminescence mouse (#NA934) and rabbit IgG (#NA931) were pur-
chased from GE Healthcare Life Sciences. A GFP expression plasmid 
pmaxGFP was obtained from Lonza. The pcDNA3–human PPARδ plasmid 
was kindly provided by Dr. Imad Shureiqi (University of Michigan). Two 
siRNAs targeting human PPARδ (#4390826 and #4390825) were purchased 
from Ambion. 

Isolation of immunocytes from intestines 
All fat and Peyer’s patches were removed from excised intestines under a 
dissecting microscope for intestinal immune cell preparation. Mouse normal 
intestinal tissues and adenomas were minced and digested with RPMI 1640 
medium containing 5% FBS, 1 mmol/L MgCl2, 1 mmol/L CaCl2, 2.5 mmol/L 
HEPES, and 200 U/mL collagenase I (Gibco). The immune cells from 

intestinal tissues were enriched by using a discontinuous (44% and 67%) 
Percoll (GE) separation method. Isolated immune cells were subjected to 
flow cytometry. 

Flow cytometry analysis 
For carboxyfluorescein diacetate succinimidyl ester (CFSE) cell proliferation, 
immune cells isolated from normal intestinal tissues or tumors were labeled 
with 0.5 μmol/L CFSE. CFSE-labeled immune cells were cultured in RPMI 
1640 medium with 10% FBS for 24 hours. Then, these cells were incubated 
with the following antibodies in staining buffer at the following dilution for 
30 minutes on ice: CD45-PE-Cy7 (1:250, BioLegend, Cat. #103114, RRID: 
AB_312979), CD8-PE (1:50, BioLegend, Cat. #100706, RRID: AB_312745), 
CD4-AF700 (1:100, BioLegend, Cat. #100536, RRID: AB_493701), CD3– 
PerCP 5.5 (1:100, Invitrogen, Cat. #45-0031-82), and V450 (1:1,500, Invi-
trogen, Cat. #65-0863-14). To analyze INFγ expression on CD8+ T cells, 
intestinal immune cells were stained with cell surface markers as described 
above. Then, the cells were fixed and permeabilized using a Cytofix/Cyto-
perm kit (BD Biosciences, Cat. #554714) followed by intracellular cellular 
staining with antimouse INFγ-FITC antibody (1:50, BD Biosciences, Cat. 
#554411, RRID: AB_395375) in permeabilization buffer for 30 minutes on 
ice. After incubation with antibodies, the cells were analyzed on a Fortessa X- 
20 cytometer (BD Biosciences). Dead cells were excluded using V450 
staining. The flow cytometric profiles were analyzed by counting 30,000 
events using FlowJo X software (Tree Star, RRID: SCR_008520). 

Cell culture and transfection 
Colon cancer cell lines LS174T, HCA7, HT29 (RRID: CVCL_0320), and 
HCT116 (RRID: CVCL_0291) were secured from the ATCC. All cell lines 
were authenticated by providers utilizing short tandem repeat profiling. Cells 
were grown in McCoy’s 5A medium with L-glutamine (Corning Cellgro, 
#10-050-CV) and 10% FBS (GE Healthcare, #SH30071.3) at 37°C under 5% 
CO2. According to the manufacturer’s instructions, human CD8+ T cells 
were isolated from frozen human peripheral blood mononuclear cells using a 
MojoSort Human CD8 T Cell Isolation Kit (BioLegend, #480012). Cells 
were activated and expanded by Dynabeads Human T-Activator CD3/ 
CD28 (Thermo Fisher Scientific, #11161D) in ImmunoCult-XF medium 
(STEMCELL Technologies) in the presence of 50 IU/mL human recombi-
nant IL2 (PeproTech, #200-02). Murine CD8+ T cells were isolated from 
spleens from wild-type (Ppard+/+) and PPARδ-null (Ppard�/�) mice using a 
mouse CD8a+ T Cell Isolation Kit, (Miltenyi Biotec, #130-104-075) 
according to the manufacturer’s instructions. Cells were activated and ex-
panded by Dynabeads Mouse T-Activator CD3/CD28 (Thermo Fisher Sci-
entific, #11452D) in ImmunoCult-XF medium (STEMCELL Technologies) 
in the presence of 50 U/mL human recombinant IL2 (PeproTech, #200-02). 
Plasmids or siRNAs were transfected into T cells with Amaxa Human or 
Mouse T Cell Nucleofector Kit using a Nucleofector II device (Lonza). 

Immunoblotting 
Cells were harvested in lysis buffer consisting of 50 mmol/L Tris pH 7.4, 
150 mmol/L NaCl, 1% NP-40, and 5 mmol/L EDTA. Following 30-minute 
incubation in lysis buffer at 4°C, lysates were cleared by centrifugation at 
16,000 � g for 10 minutes at 4°C, and then protein concentrations were 
determined by DC Protein Assay (Bio-Rad). Peroxidase conjugated donkey 
antirabbit and sheep antimouse (1:10,000; GE Healthcare NA934 and 
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NA931, respectively) antibodies were incubated for 1 hour at room tem-
perature. ECL prime kit (GE Healthcare) was used to detect chem-
iluminescence on an Azure Imaging System C300 (Azure Biosystems). 
Densitometry analyses were performed using the ImageJ software (1.54 g, 
RRID: SCR_003070). 

In vitro cytotoxicity assay 
For human or mouse colon tumor cells, human or mouse CTLs were 
cocultured, respectively, with 2 � 104 indicated epithelial cells in the 96-well 
round-bottomed plates at ratios (E:T ¼ 2:1) for 18 hours. The cytotoxicity of 
CTLs against tumor cells was measured using a CytoTox 96 Non-Radioactive 
Cytotoxicity Assay (Promega) to measure lactate dehydrogenase (LDH) re-
lease according to the manufacturer’s instructions. Percent cytotoxicity was 
calculated by the following formula: percent cytotoxicity ¼ 100 � experi-
mental LDH release (OD490)/maximum LDH release (OD490). The maxi-
mum LDH release was defined as the value of OD490 from cells incubated 
with lysis solution. 

Dual-Luciferase Reporter Assay 
Plasmids or siRNAs were transfected into human or mouse CTLs with 
Amaxa Human or Mouse T cell Nucleofector Kit using a Nucleofector 
II device (Lonza). NF-κB firefly luciferase reporter was driven by a 5X 
NF-κB responsive element inserted into the Cis-reporter backbone 
(Stratagene). pRL-SV40 (Renilla luciferase, Promega) was used as a 
control. After transfection, cells were treated with 1 μmol/L GW501516 
as indicated for 24 hours. Cells were lysed using cell lysis buffer pro-
vided in the kit (Promega, catalog no. E1960). Luciferase activity was 
measured using a Dual-Luciferase Reporter Assay kit (Promega) with a 
Monolight 3010 luminometer (BD Biosciences/Pharmingen). The rel-
ative luciferase activity was determined and normalized to Renilla lu-
ciferase activity. 

Measurement of RelA and p50 DNA-binding activity 
The DNA-binding capacity of nuclear or purified RelA and p50 was quan-
titatively measured using Active Motif’s TransAM NF-κB p65 Kit (#40096), 
following the vendor’s instructions. 

Nuclear extraction 
Nuclear extracts were obtained using Abcam’s Nuclear Extraction Kit 
(#ab113474) according to the vendor’s instructions. 

Coimmunoprecipitation and GST pulldown assay 
All coimmunoprecipitation experiments were performed using nuclear ex-
tracts isolated from CTLs. The nuclear extracts were diluted in a coimmu-
noprecipitation buffer (20 mmol/L HEPES, pH 7.5, 150 mmol/L NaCl, 1% 
Triton X-100, 1 mmol/L EDTA, and 10% glycerol) and precleared with 
protein A/G agarose (Pierce, #20421) before incubation with anti-p65 (Cell 
Signaling Technology, #8242, RRID: AB_10859369) or anti-PPARδ (Santa 
Cruz, #SC-74517, RRID: AB_1128604 ) antibody and protein A/G agarose at 
4°C overnight. 

GST pulldown experiments were performed with purified proteins. A GST- 
tagged NF-κB1 p50 protein was incubated with p65 or PPARδ or both 
in coimmunoprecipitation buffer described above in the presence of 
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mouse colorectal cancer cell lines CT26 and MC38 cells (2-hour 
incubation, right) after CTLs were incubated with colorectal cancer 
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Glutathione Sepharose 4B (Amersham, #17-0756-01) at 4°C for 3 hours. The 
beads from GST pulldown or coimmunoprecipitation experiments were 
centrifuged and washed three times with the coimmunoprecipitation buffer. 

After centrifugation, the pellet was resuspended in 1� SDS-PAGE sample 
buffer and boiled for 5 minutes. The samples were then subjected to Western 
blot analysis. 
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Electrophoreticmobility shift assay 
Electrophoreticmobility shift assay (EMSA) was performed using a LightShift 
EMSA Optimization and Control Kit (Thermo Fisher Scientific, #20148X) 
following the manufacturer’s protocol. Nuclear extracts (5 μg) from human 
CTLs were incubated with NF-κB oligonucleotide (50-AGTTGAGGGGAC- 
TTTCCCAGGC-30, Rockland, #K-025) and electrophoresed on a 4% non-
denaturing polyacrylamide gel and stained with SYBR Green using EMSA kit 
(Thermo Fisher Scientific, #E33075). After staining, proteins were trans-
ferred to polyvinylidene difluoride membranes for Western blot analyses 
using antibodies against RelA, p50, or PPARδ. 

ELISA 
The levels of IFNγ in CTL cell culture medium were determined using 
R&D Systems’ Human IFN-gamma DuoSet ELISA (#DY285B-05) or 
Mouse IFN-gamma DuoSet ELISA (#DY485-05) kits, following the 
vendor’s instructions. 

Chromatin immunoprecipitation–qPCR assay 
Chromatin immunoprecipitation (ChIP) was performed using a ChIP assay 
kit (Upstate USA, Inc.). Briefly, the indicated cells were treated with 1% 
formaldehyde-containing medium for 10 minutes at 37°C to crosslink pro-
teins to DNA. Crosslinked chromatins were sonicated to reduce the DNA 
length to 200 to 1,000 bp. At this point, samples of total chromatin were 
taken as a positive control (input chromatin). The cell lysates were pre-
cleared by incubation with Protein G-Sepharose beads and then incubated 
with an anti-p65 (Cell Signaling, #8242, RRID: AB_10859369) antibody or 
anti–acetyl-Histone H3 (Lys27) antibody (Cell Signaling, #8173, RRID: 
AB_10949503) overnight at 4°C. DNA–protein complexes were collected 
with Protein G-Sepharose beads followed by several rounds of washing, 
eluted, and reverse cross-linked. Following treatment with Protease K, the 
samples were extracted with phenol chloroform and precipitated with eth-
anol. The recovered DNA was resuspended in Tris-HCl-EDTA buffer and 
used for the qPCR amplification. The primer pairs amplify regions close to 
the transcription start sites. Acetyl-Histone H3 (Lys27) binding was used as a 
positive control. Samples were tested using the 30-untranslated region (30- 
UTR) primer pairs. The primer sequences are as follows: Ifng-forward, 50- 
GCT GAG ATT ACA GGC ATA CAC C-30, Ifng-reverse, 50-AGC ACT TTG 
GGA GGT TGA G-30; Prf1-forward, 50-CAT AAG CCC CTG TTC CTG 
TAA G-30, Prf1-reverse, 50-TCT CAT GGG TCA CAC TTT GG-30; Gzmb- 
forward, 50-GTT GCC TCA CCC AGA AAG T-30, Gzmb-reverse, 50-TGG 
TGT CTG CCC AAA TAG C-30. The primer sequences for the 30-UTR 
regions are as follows: Ifng-forward, 50-GCT TTA ATG GCA TGT CAG 
ACA G-30, Ifng-reverse, 50-TTG GGT ACA GTC ACA GTT GTC-30; Prf1- 
forward, 50-TGG TGA GAA CAG TGA GCT TG-30, Prf1-reverse, 50-AAT 
GGG AAT ACG AAG ACA GCC-30; Gzmb-forward, 50-ACA GGA AGC 
AAA CTA AGC CC-30, Gzmb-reverse, 50-CAC CTC TCC CAG TGT AAA 
TCT G-30. 

RNA and qPCR 
Total RNA was isolated from cultured cells using the RNeasy Mini Kit 
(Qiagen, #74106) and was reverse transcribed to cDNA using iScript cDNA 
Synthesis Kit (Bio-Rad, #1708891). qRT-PCR was performed with iQ SYBR 
Green Supermix (Bio-Rad, #1706682) using QuantStudio 7 Flex Real-time 
PCR System (Life Technologies). Primers were synthesized by Integrated 

DNA Technologies. The sequences of the specific PCR primers are as 
follows: 

human Prf1-forward: 50-GGA GTG CCG CTT CTA CAG-30, 

human Prf1-reverse: 50-CGT AGT TGG AGA TAA GCC TGA G-30; 

mouse Prf1-forward: 50-CAG TAG AGT GTC GCA TGT ACA G-30, 

mouse Prf1-reverse: 50-GAG ATG AGC CTG TGG TAA GC-30; 

human Gzmb-forward: 50-GTA CCA TTG AGT TGT GCG TG-30, 

human Gzmb-reverse: 50-CAT GCC ATT GTT TCG TCC ATA G-30; 

mouse Gzmb-forward: 50-CCT CCA GGA CAA AGG CAG-30, 

mouse Gzmb-reverse: 50-CAG TCA GCA CAA AGT CCT CTC-30; 

human Ifng-forward: 50-GCA TCG TTT TGG GTT CTC TTG-30, 

human Ifng-reverse: 50-AGT TCC ATT ATC CGC TAC ATC TG-30; 

mouse Ifng-forward: 50-CCT AGC TCT GAG ACA ATG AAC G-30, 

mouse Ifng-reverse: 50-TTC CAC ATC TAT GCC ACT TGA G-30; 

human Ppard-forward: 50-GCT TCC ACT ACG GTG TTC ATG-30, 

human Ppard-reverse: 50-CTT CTC GTA CTC CAG CTT CAT G-30; 

mouse Tnfa-forward: 50-CTT CTG TCT ACT GAA CTT CGG G-30, 

mouse Tnfa-reverse: 50-CAG GCT TGT CAC TCG AAT TTT G-30. 

Statistical analysis 
Two independent in vivo experiments were conducted using three mice for 
each group in each experiment. ANOVA with two factors and two modal-
ities were used to compare outcomes among multiple groups of mice. Factor 
1 is an experiment with two modalities (experiment 1 and experiment 2), 
and factor 2 is treatment with two modalities (control and GW501516). Each 
in vitro experiment was done at least three times. Unpaired two-tailed Stu-
dent t tests were used to assess the difference between the mean ± SD of the 
two groups. P values were considered significant at *, P < 0.05; **, P < 0.02. 

Data availability 
Data were generated by the authors and available on request. 

Results 
PPARδ inhibits the proliferation and IFNγ expression of 
CD8+ T cells in vivo and the cytotoxicity of CD8+ T cells 
in vitro 
We first examined the role of PPARδ in CD8+ T-cell regulation by treating 
male ApcMin/+ mice with a PPARδ agonist (GW501516). GW501516 treat-
ment significantly decreased CD8+ T -cell proliferation (Fig. 1A) and IFNγ- 
expressing CD8+ T cells (Fig. 1B) in intestinal tumors and matched normal 
tissues compared with the control group, suggesting PPARδ regulates CD8+ 

T-cell activation. GW501516 treatment also significantly increased tumor 
burden (Fig. 1C). 

To evaluate the role of PPARδ in CD8+ T-cell cytotoxicity, we isolated 
splenic CD8+ T cells from wild-type (Ppard+/+) and PPARδ-null (Ppard�/�) 
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mice. CD8+ T cells were first stimulated with magnetic αCD3/CD28 beads 
and IL2 to become CTLs and then coincubated with murine colorectal 
cancer cell lines (CT26 or MC38). In this coculture system, activated CD8+ 

T cells recognize antigens presented in the context of cancer cell MHC class I 
molecules (27), allowing us to measure their cytotoxicity. Ppard�/�-CD8+ 

T cells showed increased cytotoxicity compared with wild-type Ppard+/+ 

CD8+ T cells [Fig. 1D (left)]. Cancer cells cocultured with Ppard�/� CTLs 
had higher expression of apoptotic markers (cleaved PARP, cleaved caspase 
7, and cleaved caspase 3) than those cocultured with wild-type cell CTLs 
[Fig. 1D (right); Supplementary Fig. S1A]. Overexpression of PPARδ in wild- 
type and Ppard�/� CTLs inhibited their cytotoxicity and the expression of 
apoptotic markers (Fig. 1E; Supplementary Fig. S1B). These results dem-
onstrate that PPARδ is capable of regulating CD8+ T-cell cytotoxicity. In 
human CTLs, PPARδ knockdown with two different siRNAs increased the 
killing of HCT116 cells and the expression of apoptotic markers (Supple-
mentary Fig. S1C). In contrast, overexpression of PPARδ decreased the 
killing of HCT116 cells and apoptotic marker expression (Supplementary 
Fig. S1D). Additionally, GW501516 and GW0742, two unique PPARδ ago-
nists suppressed the cytotoxicity of CTLs and the expression of apoptotic 
markers (Supplementary Fig. S1E). Thus, PPARδ negatively regulates CD8+ 

T-cell killing of tumor cells. 

PPARδ downregulates the expression of perforin, 
granzyme B, and IFNγ in CTLs 
To determine how PPARδ controls CTL effector function, we first examined 
its expression in CD8+ T cells. Stimulation of näıve CD8+ T cells by αCD3/ 
CD28 significantly increased PPARδ expression, and then exposure to IL2 
containing medium led to another boost in upregulation (Fig. 2A; Supple-
mentary Fig. S2A). 

We then investigated if PPARδ regulates molecules that mediate CTL 
cytotoxicity (28). After coculture of Ppard�/� CTLs with cancer cells, we 
observed higher granzyme B levels in cancer cells than those cocultured with 
wild-type CTLs (Fig. 1D), suggesting that Ppard�/� CTLs express more 
granzyme B because cancer cells do not express granzyme B. Indeed, 
Ppard�/� CTLs showed increased expression of granzyme B, perforin, and 
secreted IFNγ compared with wild-type cells (Fig. 2B; Supplementary Fig. 
S2B). Overexpression of PPARδ in CTLs reduced the expression of these 
proteins in both Ppard�/� and wild-type CTLs (Fig. 2C; Supplementary Fig. 
S2C). GW501516 treatment reduced the expression of these proteins in 
Ppard+/+ but not in Ppard�/� CTLs, demonstrating GW501516’s specificity 
(Fig. 2D; Supplementary Fig. S2D). In human CTLs, PPARδ knockdown 
using two different siRNAs led to increased levels of these proteins, whereas 
overexpression decreased them (Fig. 2E; Supplementary Fig. S2E). 
GW501516 or GW0742 treatment also reduced these protein levels (Sup-
plementary Fig. S2F). The upregulation of PGC1α and CPT1A, both of 
which are PPARδ-regulated, confirms PPARδ activation by these agonists 
(Supplementary Fig. S2F). 

To understand how PPARδ downregulates perforin, granzyme B, and IFNγ, 
we performed real-time PCR. The mRNA levels of all three genes (Prf1, 
Gzmb, and Ifng) were significantly higher in Ppard�/� CTLs than that in 
wild-type cells (Fig. 2F), whereas Tnfa remained unchanged (Fig. 2F). In 
human CTLs, PPARδ inhibition by siRNAs increased mRNA levels of these 
genes, whereas overexpression decreased them (Fig. 2G and H). GW501516 

or GW0742 treatment also reduced mRNA levels of these genes (Supple-
mentary Fig. S2G). These results indicate that PPARδ may regulate the 
transcription of perforin, granzyme B, and IFNγ. 

PPARδ binds to RelA in the nucleus, interfering with 
RelA–p50 heterodimer formation in CTLs 
PPARδ can bind to PPREs within gene promoters to regulate transcription. 
However, a computer sequence analysis did not identify potential PPREs in 
the promoters (2 kb upstream of the transcription starting site) of Gzmb and 
Ifng, implying an indirect mechanism. All three genes are known to be 
directly regulated by the NF-κB family member RelA (19, 20, 25). Previous 
reports show that PPARδ can inhibit NF-κB activation by physically inter-
acting with RelA (29, 30). Using a CHIP–qPCR assay, we found that both 
PPARδ and RelA bound to the regions near the transcription start site in the 
promoters of all three genes (Supplementary Fig. S3A and S3B), suggesting a 
direct interaction. Co-immunoprecipitation confirmed that PPARδ is part of 
a protein complex with RelA and NF-κB1/p50 in the nucleus of CTLs 
(Fig. 3A). This protein complex binds to a consensus NF-κB DNA probe 
in vitro (Fig. 3B). GW501516 treatment facilitated PPARδ binding to RelA in 
the nucleus (Fig. 3C; Supplementary Fig. S4A). PPARδ knockdown with 
siRNAs enhanced p50 binding to RelA in human CTLs [Fig. 3D (left); 
Supplementary Fig. S4B]. Similarly, more p50 was associated with RelA in 
Ppard�/� cells than in Ppard+/+ cells [Fig. 3D (right); Supplementary Fig. 
S4B]. Overexpression of PPARδ (Fig. 3E; Supplementary Fig. S4C) or 
GW501516 treatment (Fig. 3F; Supplementary Fig. S4D) inhibited p50 
binding to RelA. A GST pulldown assay showed that PPARδ inhibited the 
binding of RelA to GST-tagged p50 but did not bind GST-p50 itself (Fig. 3G; 
Supplementary Fig. S4E). Control experiments confirmed that neither RelA 
nor PPARδ interacted with GST protein (Fig. 3G). These results demonstrate 
that PPARδ interferes with RelA/p50 heterodimer formation. 

PPARδ downregulates RelA DNA 
binding/transcriptional activity in CTLs 
RelA and p50 DNA-binding activities are higher in Ppard�/� CTLs (Fig. 4A) 
and in human CTLs treated with PPARδ siRNA (Supplementary Fig. S5A) 
than in their corresponding control cells. Overexpression of PPARδ (Fig. 4B) 
or adding recombinant PPARδ (Supplementary Fig. S5B) suppressed RelA or 
p50 DNA-binding activities. GW501516 treatment of CTLs also reduced 
these activities (Fig. 4C). In NF-κB-luciferase reporter assays, PPARδ over-
expression or GW501516 treatment decreased firefly luciferase activity. In 
contrast, PPARδ knockdown increased it (Fig. 4D). Luciferase activity was 
also higher in Ppard�/� CTLs compared with Ppard+/+ cells (Supplementary 
Fig. S5C). GW501516 treatment led to a dose- and time-dependent nuclear 
translocation of PPARδ but not RelA in both human (Fig. 4E; Supplemen-
tary Fig. S5D) and murine (Supplementary Fig. S5E) CTLs . Because PPARδ 
did not affect the DNA-binding activity of purified RelA in vitro (Supple-
mentary Fig. S5F), we hypothesize that PPARδ disrupts RelA/p50 hetero-
dimer formation, thus inhibiting its DNA-binding activity. CHIP–qPCR 
assays showed that PPARδ siRNA knockdown increased RelA binding to the 
promoters of Prf1, Gzmb, or Ifng genes. The siRNA knockdown of PPARδ 
increased the binding of RelA to the promoters of all three genes (Fig. 4F). 
Conversely, GW501516 treatment (Supplementary Fig. S5G) or PPARδ 
overexpression (Supplementary Fig. S5H) reduced RelA binding to the 
promoters of all three genes. 
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RelA, IFNγ, and granzyme B are critical for the 
cytotoxicity of CTLs 
Overexpression of RelA increased the expression of perforin, granzyme B, 
and IFNγ in CTLs (Fig. 5A; Supplementary Fig. S6A), whereas RelA 
knockdown using siRNA reduced their expression (Fig. 5B; Supplementary 
Fig. S6B), confirming these genes are RelA targets. RelA overexpression also 
enhanced CTL cytotoxicity toward tumor cells (Fig. 5C; Supplementary Fig. 
S6C), whereas RelA knockdown decreased it (Fig. 5D; Supplementary Fig. 
S6D), highlighting RelA’s critical role in CTL cytotoxicity. Overexpression of 
PPARδ attenuated the effects of RelA overexpression on the expression of 
these genes, indicating dynamic interactions between PPARδ and RelA 
(Fig. 5A). PPARδ overexpression alone also decreased the expression of 
perforin, granzyme B, and IFNγ (Fig. 5A). Neutralizing antibodies against 
IFNγ or granzyme B suppressed CTL cytotoxicity and reduced apoptotic 
markers in tumor cells. Combined treatment with both antibodies had more 
effect on CTL cytotoxicity than any single antibody alone (Fig. 5E; Supple-
mentary Fig. S6E). These results demonstrate the importance of IFNγ and 
granzyme B in regulating CTL cytotoxicity. 

Discussion 
After reviewing the results of previous studies, we concluded that the specific 
effects of RelA-mediated gene regulation on T-cell immunity needed to be 
clarified with regard to PPARδ. Both PPARα and PPARγ can interfere with 
RelA’s transcriptional activity (10). For the first time, we provide direct 
evidence that PPARδ inhibits CTL cytotoxicity by downregulating RelA 
DNA-binding activity, thereby reducing the expression of perforin, gran-
zyme B, and IFNγ. This suggests that PPARδ ligands have the opposite effect 
on T-cell therapy compared with PPARα and PPARγ ligands, supporting a 
protumorigenic role for PPARδ in immune cells. Despite some controversy, 
most published studies indicate that PPARδ significantly contributes to tu-
morigenesis in several cancers (reviewed in ref. 31, 32). 

Our study revealed that PPARδ competes with p50 for binding to RelA in the 
nucleus of CTLs, acting as a transrepressor (Fig. 5F). Ligand-bound cytosolic 
PPARδ translocates to the nucleus, where it disrupts the RelA–p50 inter-
action (Fig. 5F). CTLs can kill tumor cells through at least three distinct 
pathways (28). In direct cell–cell contact, the CTLs release lytic granules 
containing perforin and granzymes into the intercellular space of tumor 
cells, leading to cell death in a caspase-dependent and -independent manner 
(33). Alternatively, cell killing can be mediated by cytokines secreted by 
CTLs, like IFNγ and TNFα. Our in vivo study shows that GW501516 
treatment reduces tumor-associated CD8+ T-cell activation, as evidenced 
by decreased proliferation and IFNγ expression (Fig. 1A and B). Our in vitro 
results show that Ppard�/�-CD8+ T cells secreted more IFNγ than 
Ppard+/+-CD8+ T cells (Fig. 2C), indicating that PPARδ modulates CD8+ 

T-cell activation and subsequent effector function. 

PPARδ affects NF-κB at multiple levels, including (i) inhibiting nuclear 
translocation of RelA in rat heart tissue (34), (ii) reducing RelA acetylation in 
human HaCaT keratinocytes (35), and (iii) interacting with RelA in a ligand- 
dependent manner in microglia (29) and cardiomyocytes (30). Our study 
shows that nuclear PPARδ binds to RelA in the absence of ligand, and this 
interaction is enhanced following ligand treatment of human and mouse 
CD8+ T cells (Fig. 3). PPARδ competes with p50 for RelA binding. Because 
PPARδ does not affect the DNA-binding activity of purified p65 or 

p50 in vitro (Supplementary Fig. S4E), we postulated that PPARδ disrupts 
RelA/p50 dimer formation, reducing its DNA-binding activity. This dimer 
has the highest affinity for NF-κB sites and transcriptional activity compared 
with all other NF-κB dimers (36). These findings enhance our understanding 
of the regulation of RelA by PPARδ and provide insight into the molecular 
mechanism by which PPARδ modulates genes controlled by RelA in CD8+ 

T cells. Identifying other RelA target genes regulated by PPARδ in CD8+ 

T cells and determining if PPARδ interferes with other RelA heterodimers 
will further elucidate PPARδ’s role in CD8+ T cells. Not all RelA-targeted 
genes expressed in CD8+ T cells are regulated by PPARδ (data not shown), 
suggesting it only controls a specific subset of genes in CTLs. 

The modulation of CTL cytotoxicity by PPARδ presents a new oppor-
tunity for cancer immunotherapy. Advances in checkpoint inhibitors 
and genetically modified immune cells have shifted our thinking about 
cancer treatment toward mobilizing the host’s immune system to target 
cancer cells (37). Despite significant success, many patients do not 
benefit from these therapies (primary resistance), and some responders 
relapse (acquired resistance). Enhancing endogenous T-cell function is 
being explored to combat resistance. PPARδ’s ability to reduce CTL 
cytotoxicity makes it a potential target for combination therapies to 
improve CTL effector function. However, PPARδ’s roles vary depending 
on the context (e.g., healthy vs. diseased tissues; ref. 32). PPARδ can help 
normal cells endure metabolic challenges, and its agonists may be used to 
treat metabolic syndrome-associated abnormalities (7). Future thera-
peutic agents targeting PPARδ must be carefully designed to avoid risks 
and off-target effects, primarily on normal cells. Chimeric antigen re-
ceptor T-cell therapy may benefit from targeting PPARδ to enhance 
T-cell function, but using PPARδ antagonists requires careful evaluation, 
as ligand-free PPARδ is functional. PPARδ could also be a challenging 
target because it regulates the expression of many genes by different 
mechanisms. For example, PPARδ agonists GW501516 and GW0742 
have been shown to inhibit CTL cytolytic activity but also induce the 
expression of PGC1α (supplementary Fig. S2A) that promotes fatty acid 
oxidation (38), both of which may impact CD8+ T-cell antitumor im-
munity (39–41). 

Here, we report a novel function of PPARδ in CTLs. Our understanding of 
PPARδ’s interactions with its endogenous ligands, lipid transporters, other 
nuclear receptors, coactivators, and repressors remains incomplete. Gaining 
detailed knowledge of PPARδ’s actions in CTLs and other immune cell types 
will help elucidate the molecular mechanisms by which CTLs eradicate 
cancer cells and aid the development of new therapeutic strategies, possibly 
both for cancer prevention/interception and treatment. 
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