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Abstract 

High dimensional nature of the chromosomal conformation contact map (‘Hi-C Map’), even for microscopically small bacterial cell, poses chal- 
lenges f or e xtracting meaningful inf ormation related to its comple x organization. Here w e first demonstrate that an artificial deep neural network- 
based machine-learnt (ML) low-dimensional representation of a recently reported Hi-C interaction map of archetypal bacteria Escherichia coli can 
decode crucial underlying structural pattern. The ML-derived representation of Hi-C map can automatically detect a set of spatially distinct do- 
mains across E. coli genome, sharing reminiscences of six putative macro-domains previously posited via recombination assay . Subsequently , a 
ML-generated model assimilates the intricate relationship between large array of Hi-C-derived chromosomal contact probabilities and respective 
diffusive dynamics of each individual chromosomal gene and identifies an optimal number of functionally important chromosomal contact-pairs 
that are majorly responsible for heterogenous, coordinate-dependent sub-diffusive motions of chromosomal loci. Finally, the ML models, trained 
on wild-type E. coli show-cased its predictive capabilities on mutant bacterial strains, shedding light on the str uct ural and dynamic nuances of 
�MatP30MM and �MukBEF22MM chromosomes. Overall our results illuminate the po w er of ML techniques in unra v eling the comple x rela- 
tionship between str uct ure and dynamics of bacterial chromosomal loci, promising meaningful connections between ML-derived insights and 
biological phenomena. 
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Introduction 

The archetypal bacterium Esc heric hia coli possesses a super-
coiled circular DNA with a length of 1.6 mm and a size of 4.64
Mega basepair (Mb), confined within a (2–4) μm long sphero-
cylinder ( 1 ,2 ). Over the years, our understanding of the E. coli
chromosome has evolved significantly. Initially it was thought
that chromosome is a just like a complex blob of various
macromolecules such as DNA, proteins, RNA, etc. However,
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subsequent findings ( 3–6 ) reveal that, instead of a complex,
blob-like architecture, it consists of a well-organized structure 
with distinct domains known as macro domains(MDs) ( 7–
12 ). In this regard, various chromosome conformation capture 
techniques ( 13–15 ) provide us with crucial information, un- 
raveling the spatial organization of the genome, especially in 

understanding higher-order structures. Recent upgrade in high 

throughput genome sequencing technique (Hi-C) allows to 
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nvestigate the three-dimensional conformation of E. coli
hromosomal DNA ( 16 ). This innovative method generates
 high-resolution contact map, referred to as the Hi-C ma-
rix which captures the proximity and frequency of con-
act between various regions of E. coli chromosome. Further-
ore, the Hi-C matrices for different mutant provide valu-

ble insights into the functions of nucleoid-associated pro-
eins (NAPs) and their roles in maintaining the nucleoid’s
tructure ( 16 ). The resulting chromosomal organization sig-
ificantly influences the dynamic behaviour of chromoso-
al loci. Previous fluorescence based experimental studies
ave revealed that these chromosomal loci move subdiffu-
ively ( 17–20 ), with their motion strongly influenced by ge-
omic coordinates, showcasing a remarkable level of hetero-
eneity in their dynamics ( 19 ). Integrating this Hi-C-derived
ontact information into a polymer-based model has en-
bled development of data-informed integrative studies to
urnish a plethora of structural and dynamical details re-
arding the E. coli chromosome ( 21–24 ). These theoreti-
al studies achieve a level of experimental accuracy that
nhances our comprehension of the intricacies governing
he organization and dynamical behavior of the E. coli 
hromosome. 

The Hi-C-derived chromosomal contact map represents
 multi-dimensional interaction matrix ( 25 ,26 ). Even for a
rokaryotic cell such as E. coli , with singular circular DNA
f 4.6 Mb sequence-length, the Hi-C matrix ( 16 ) manifests
 dimension as large as (928 × 928) at a 5 Kb resolution.
s a result, discerning meaningful information via its visual

nspection of extremely large dimensional heterogenous in-
eraction map can be challenging. In recent years, the state
f the art machine learning (ML) techniques have emerged
s powerful tools for automated extraction of valuable in-
ights from large dimensional data. Notably, most ML-based
nvestigations have centered around eukaryotic chromosomes,
enefiting from extensive data sets spanning various repli-
ation stages and chromosomes. The inherent complexity of
ukaryotic cells, which possess multiple chromosomes, af-
ords opportunities for examining both intra and interchro-
osomal contacts. These studies are mainly focused on (i)

ubcompartment annotation of the genome ( 27 ,28 ) by using
nter-chromosomal contacts, (ii) enhancing the resolution of

i-C ( 29 ,30 ) data and (iii) prediction of contact frequency
aps using DNA sequence information ( 31 ). In contrast, ML-

elated studies for prokaryotic chromosomes are not as well-
eveloped, primarily due to the challenges posed by the lower
esolution and smaller quantity of available data. In light of
his, we pose following questions : 

• What underlies a ML-derived low-dimensional represen-
tation of the Hi-C map of E. coli chromosome? 

• Can we quantitatively extract a subset of minimal chro-
mosomal contact informations that would sufficiently
reconstruct the experimentally observed ( 19 ) heteroge-
neous sub-diffusive motion of chromosomal loci? 

• To what extent would the ML-based learning of wild-
type chromosomal contact information aid in the pre-
diction of Hi-C map of NAP-devoid mutant? 

To address these questions, we first employ an artificial neu-
al network (ANN) based frame-work known as Autoencoder,
n a bid to uncover crucial structural insights embedded within
his large Hi-C matrix. As would be revealed in first part of
esults section, a latent space representation of the Hi-C map
successfully identified various MDs with a high degree of accu-
racy with experimentally derived MDs. In the later part of the
manuscript, in a complementary approach, we integrate Hi-C
contacts into a polymer-based model, predicting diffusive dy-
namics of a large number of chromosomal loci using a super-
vised machine learning technique called Random Forest (RF)
regression. As would be unveiled in the manuscript, the pro-
posed regression model successfully recover the coordinate-
dependent heterogeneous subdiffusion ( 19 ) of chromosomal
loci. Moreover, we extract important features from the input
data that are crucial in maintaining this dynamical behavior
of the loci. By incorporating only these important features re-
lated to Hi-C contacts into the polymer model, we success-
fully reproduce loci dynamics. Finally, we provide our insight
on extent of predictive ability of both structure and dynam-
ics of two NAP-devoid mutants of the chromosome (namely
�MatP30MM and �MukBEF22MM) by ML models (Au-
toencoder and RF) trained on wild-type chromosome. 

Results 

Unsupervised ML model identifies a meaningful 
intrinsic structural pattern embedded within the 

Hi-C matrix of E. coli chromosome 

Overview of ML architecture 
We employed an unsupervised machine learning algorithm
known as Autoencoder ( 32 ,33 ) to unveil the essential struc-
tural insights embedded within the Hi-C matrix. Autoencoder
is a type of unsupervised deep neural network characterized
by a dual structure comprising an encoder and a decoder,
with a bottleneck in between (Figure 1 A). In this architecture,
the encoder converts the input data from a high-dimensional
space to a lower-dimensional representation known as the la-
tent space. Subsequently, the decoder reconstructs the initial
input data from this latent space. This process involves the
adjustment of model parameters, primarily weights and bi-
ases. Consequently, the compressed representation within the
latent space reflects a non-linear transformation of the origi-
nal input data, encapsulating crucial information or patterns
inherent in the input datasets. 

In our ML model, the input comprises a single Hi-C prob-
ability matrix with dimensions 928 × 928 (4640 kb / 5 kb =
928). The Autoencoder architecture is structured with a total
of nine sequential layers featuring neuron counts of 928, 500,
200, 100, L d , 100, 200, 500 and 928, respectively, where L d
denotes the dimension of the latent space. After setting up the
Autoencoder architecture, we need to choose L d judiciously.
To determine this dimension, we computed the Fraction of
Variance Explained (FVE) through reconstruction, which is
defined as 

FVE = 1 −
∑ N 

i =1 ‖ I (i ) − O (i ) ‖ 2 ∑ N 

i =1 | I (i ) − I ‖ 2 (1)

Here, I ( i ), O ( i ) and I represent the input, output, and mean in-
put, respectively, and N = 928 corresponds to the number of
rows in the Hi-C matrix. Figure 1 (B) represents the variation
of the FVE as a function of latent dimension. We opted for a
latent dimension of L d = 3, as it helps to achieve an FVE of
at least 0.85, meaning that the Autoencoder’s reconstruction
accounts for a minimum of 85% of the variance in the in-
put Hi-C data. This choice of latent space dimension not only
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Figure 1 . Arc hitect ure of the A utoencoder and training robustness. ( A ) Schematic of the A utoencoder, an unsupervised machine learning algorithm. It 
consists of an encoder and a decoder and in between there is a bot tlenec k. The encoder transforms high-dimensional input data to a lower-dimensional 
latent space, while the decoder reconstructs the initial input data from the latent space. This process involves adjusting model parameters, primarily 
weights, and biases. Each dimension in the latent space corresponds to a latent variable. Here, χ1 , χ2 and χ3 represent three latent variables. ( B ) The 
variation of FVE with respect to the latent dimension ( L d ). A L d = 3 was chosen, ensuring an FVE of at least 0.85, signifying that the Autoencoder’s 
reconstr uction capt ures a minimum of 85% of the v ariance in the input data. ( C ) Training loss as a function of epochs f or different latent space 
dimensions ( L d ). Notably, the training loss achie v es saturation for all L d > 1 beyond 25 epochs. ( D ) Genome-wide contact probability map between the 
experimental and ML-derived Hi-C matrix. ( E ) Histogram of the absolute difference between experimental and ML-derived contact probability matrices. 
The Pearson correlation coefficient(PCC) is 0.94, and the absolute difference in mean values is 0.023, indicating a substantial agreement in chromosomal 
interactions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ensures effective data representation but also affords flexibil-
ity in visualizing the compressed data. 

To assess the training robustness across various latent space
dimensions ( L d ) concerning the number of epochs, we have
plotted the training loss as a function of epochs for differ-
ent L d (Figure 1 (C)). The figure clearly illustrates that beyond
epochs = 25, the training loss reaches a point of saturation for
all L d > 1. This observation implies that selecting a number of
epochs greater than 25 is a prudent choice. In our model, we
opted for 100 epochs and in the Method section, additional
specifics regarding the training of the Autoencoder are dis-
cussed. In a similar vein, we conducted a comparison between
the input (experimental) and output (reconstructed) matrices.
Figures 1 (D) and (E) compare the genome-wide contact prob-
ability map between the experimental and ML (reconstructed
by the Autoencoder with L d = 3) contact probability matrix,
along with a histogram showing the difference between the
two matrices. Our findings reveal a Pearson correlation coef-
ficient (PCC) of 0.94 between the experimental and ML con-
tact probability matrices. Additionally, the absolute difference
in the mean values is 0.023, indicating a substantively strong
agreement between experimental and ML-derived chromoso-
mal interactions. 

The pattern emergent from latent space of the ML-model re-
cov ers k ey Macro-domains across E. coli genome 
We aim to understand the biological significance of the
lower-dimensional representation ( L d = 3) of the input data.
To achieve this, we generated a scatter plot of the latent
space data and conducted clustering using the K-means al-
gorithm ( 34 ,35 ). Our hypothesis is that each cluster signi- 
fies specific domains within the bacterial chromosome, in- 
herently encoded in the Hi-C matrix. Biologically, these 
large-scale structurally distinct domains are referred to as 
macrodomains(MDs) ( 7–12 ). It is noteworthy that the actual 
molecular mechanisms governing macrodomain organization 

remain incompletely understood, and the precise boundaries 
of these MDs have been found to vary across different re- 
ports ( 7–11 ). For example, in 2000, Niki et al. ( 7 ) identified 

mainly four macrodomains: Ori, Right, Ter and Left. Later,
other experimental studies by Valens et al. ( 8 ) and Espéli 
et al. ( 10 ) identified two more macrodomains, NSR and NSL.
The variations in macrodomain boundaries observed across 
different studies are primarily attributed due to the applied 

method itself ( 12 ). In our study, we have utilized the MDs 
boundary as reported by Espéli et al. ( 10 ) which is more 
recent. 

In Figure 2 (A), a scatter plot illustrates the three dimen- 
sional ( L d = 3, χ1 , χ2 and χ3 ) representation of the latent 
space, with distinct color-coded clusters representing various 
MDs of the chromosome. From experimental study ( 10 ), we 
possess a priori knowledge regarding the base pairs of each 

macrodomain. Additionally, through clustering, we have ob- 
tained base pair information for each macrodomain. Subse- 
quently, we conducted a detailed comparison between exper- 
imentally denoted and (ML)-derived MDs by schematically 
drawing the DNA as a circle (Figure 2 B). The inner and outer 
circles, featuring various color-coded regions, represent the ex- 
perimentally denoted and ML-derived macrodomains, respec- 
tively, with base pair information annotated in kilo bases (kb).
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A

B

C

Figure 2. Representation of the latent space and classification of different macrodomains. ( A ) Three dimensional scatter plot of the latent space variable 
χ1 , χ2 and χ3 . The data has been clustered using K-means clustering. The various color-coded clusters are representing distinct macrodomains (MDs) 
within the bacterial chromosome. ( B ) The comparison between experimentally denoted and machine learning (ML)-derived MDs. The inner and outer 
circles, each encoded by various color-coded regions, delineate the experimentally denoted and ML-derived macrodomains, respectively, with base pair 
information annotated in kilo bases (kb). ( C ) The bar plot of the F1-score for different MDs. The higher values of the F1-Score indicated the better 
classification. 
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 visual inspection indicates substantial agreement between
Ds, barring discrepancies in the NSR, Right, and Ter MDs.
uantitative comparison between actual (experimentally de-
oted) and predicted (ML-derived) MDs is facilitated by the
onfusion matrix (see SI for details). Metrics such as Accu-
acy, Precision, Recall, and F1-Score can be computed from
he confusion matrix as follows. 

Accuracy = 

T P + T N 

T P + T N + F P + F N 

Precision = 

T P 
T P + F P 

Recall = 

T P 
T P + F N 

F1-Score = 2 × Precision × Recall 
Precision + Recall 

here TP , TN , FP and FN stand for ‘True Positive’, ‘True
egative’, ‘False Positive’ and ‘False Negative’, respectively.
igure 2 (C) shows a bar plot of the F1-score for each MD. F1-
cores exceeding 0.92 for the Left, NSL MDs suggest a strong
atch between actual and predicted classes. Conversely, lower
F1-Scores for the other three MDs indicate a moderate align-
ment, consistent with observations in Figure 2 (B). Neverthe-
less, the overall accuracy for all classes stands at 0.82, indica-
tive of a robust correlation between experimentally denoted
and ML-predicted MDs. In summary, our unsupervised ML
model (Autoencoder) offers a potent automated approach for
MDs identification, demonstrating a high degree of accuracy
with experimentally derived MDs. 

ML-based identification of genomic contacts crucial 
for E. coli heterogeneous dynamics 

In the preceding section, we delved into the intrinsic structural
properties of E. coli chromosome embedded within the Hi-C
matrix, which led to an automated discovery of segmented
macrodomains in a ML-derived low-dimensional subspace.
In this section, we now pose the question: Can we identify
the crucial subset of chromosomal contacts in Hi-C map, that
hold key to the heterogenous, cooordinate-dependent diffu-
sivities ( 19 ,22 ) of chromosomal loci? Towards this end, we
employed a ML-based protocol namely Random Forest Re-
gression to extract dynamical information by leveraging the
structural properties of the chromosome, such as the pairwise
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distance between chromosomal beads. This supervised, trees-
based algorithm, initially proposed by Breiman et al. ( 36 ,37 ),
is a potent tool widely used for both classification and regres-
sion tasks. Random Forest Regression operates by randomly
selecting input data from training datasets and creating an en-
semble of trees (forests) based on these features and labels of
the input data. These ensembles of trees are called ‘decision
trees’. The final results are derived by averaging (for regres-
sion) or voting (for classification) from the outputs of these
decision trees. Notably, the Random Forest possesses a dis-
tinctive ability to pinpoint the most crucial features within the
training datasets. 

Data preparation and supervised ML architecture 
We implemented a bead-in-a-spring polymer model to sim-
ulate the bacterial chromosome and generated a set of 200
distinct initial DNA configurations. In brief, the resolution of
each bead is 5 × 10 

3 bp (5 kb), similar to the Hi-C matrix res-
olution ( 16 ). Each bead has a diameter denoted by σ, and the
chromosome is confined within a spherocylindrical bound-
ary that mimics the cell wall. The bonded interactions be-
tween adjacent beads have been modeled by harmonic springs,
while the non-bonded interactions are represented by the re-
pulsive component of the Lennard-Jones potential V nb ( r ) =
4 ε( σ/ r ) 12 , where ε is the potential depth, and r is the distance
between two beads. The Hi-C interactions are also modeled as
effective springs with a spring constant and bond lengths de-
pendent on the strength of the contact probabilities. Follow-
ing energy minimization of the initial configurations, Brow-
nian Dynamics simulations are conducted for each configu-
ration at a temperature of k B T = 1.0 and friction γ = 1.0.
The length and time scales are represented in the unit of σ
(the diameter of each bead) and τBD 

= 

σ 2 γ

k B T 
(Brownian time),

respectively throughout the manuscript. The simulations are
run for a time duration of 10 

3 τBD 

with a time step δt = 1 ×
10 

−4 τBD 

, ensuring proper equilibration of each configuration.
After equilibration, the pairwise distances are computed using
the last snapshot of each run (totaling 200), serving as features
for our machine-learning model. The dynamics of each DNA
bead are quantified by calculating the mean squared displace-
ment (MSD). For this measurement, we simulate each equi-
librium configuration 40 times through Brownian dynamics
simulations, drawing distinct velocities from the Maxwell–
Boltzmann distribution at a desired temperature of k B T = 1.0.
These trajectories, with varying initial velocities, are called iso-
configurational ensembles ( 38 ,39 ). Each ensemble simulation
was carried out for a duration of 100 τBD 

. We computed the
MSD of each particle i and averaged over the different runs
(isoconfigurational ensembles) i.e. 

MSD i (t ) = 

〈 
| � r i (t ) −� r i (0) | 2 

〉 
runs 

(2)

where � r i represents the position of i th particle and angular
bracket signifies the average over isoconfigurational ensem-
bles. So from the equilibrium configuration, we have calcu-
lated the pair-wise distance of the chromosomal beads and
the MSDs of individual beads from the isoconfigurational en-
sembles. These two quantities serve as features and labels, re-
spectively, for our machine-learning algorithm, Random For-
est. By using this technique we can predict the dynamics of
bacterial chromosomal loci and extract the important chro-
mosomal contact features which are necessary to maintain the
dynamics. The entire process of data preparation and the ma-
chine learning architecture are schematically depicted in Fig- 
ure 3 A and B, respectively. 

Comparison between the actual and ML-predicted MSDs of 
different loci and their exponents 
Upon training the Random Forest regression model, we pro- 
ceeded to predict the dynamics of individual chromosome loci.
The selection of specific loci was based on a prior experimen- 
tal study conducted by Javer et al. ( 19 ), which suggested that 
chromosomal loci belonging to the Ter region exhibit slower 
motion, while those in the Ori region demonstrate faster mo- 
tion. To assess the accuracy of ML predictions, we computed 

the PCC, denoted by ρ, between the predicted and actual 
MSD values. Figure 4 A shows the variation of ρ as a func- 
tion of time. Remarkably, the correlation ρ exhibits higher 
values ( > 0.8) for shorter time intervals. However, the correla- 
tion shows a slight decrease for longer duration. Now we will 
delve into the dynamic properties of distinct loci within the 
DNA. Each macro domain is comprised of various loci iden- 
tified by Espeli et al. ( 10 ) based on their genomic coordinates.
Figure 4 B represents the comparison between the actual and 

predicted MSD as a function of time for two distinct loci, Ori2 

and Ter3. This figure distinctly reveals a close alignment be- 
tween the actual MSDs (solid line) and the predicted MSDs 
(dotted line). 

Now, we aim to characterize the type of diffusion for indi- 
vidual loci. In Figure 4 C, we present an equilibrated snapshot 
of the bacterial chromosome, with each color-coded chunk de- 
picting a distinct macrodomain(MD). Each MD is comprised 

of various loci represented as spherical beads. We fitted the 
MSD values (both actual and predicted) of each individual 
loci with a power law: 

MSD i (t ) = 6 Dt α (3) 

where t , D and α are the time, diffusion constant, and expo- 
nent, respectively. Depending on the exponent α, one can cat- 
egorize the type of diffusion; for example, α = 1 corresponds 
to normal diffusion, α < 1 signifies subdiffusion, and α > 1,
indicates superdiffusion. Figures 4 D and E depicts the com- 
parison of MSD exponents between actual and ML-predicted 

values for two different time intervals, namely (0.1 −10) τBD 

(short time) and (10 −100) τBD 

(long time), respectively. From 

these figures, it is evident that for the short time, the actual 
MSD exponents for all loci closely match the predicted ex- 
ponents. However, for the long time, there is a slight devia- 
tion in exponents between the actual and predicted values. As 
the PCC between the actual and predicted MSD values de- 
viates for longer times (as seen in Figure 4 A), this discrep- 
ancy is also reflected in the exponent values. However, for 
both timescales, the observed and predicted dynamics exhibit 
subdiffusion, showcasing significant variability along the ge- 
nomic coordinates, thereby indicating a heterogeneous na- 
ture of the dynamics. We found the ML-model to be robust 
against multiple hyperparameter (see Figure S1a, b) and re- 
lated supplemental results SR1 ). 

To get a better insight into these deviations, we have calcu- 
lated the Pearson correlation coefficient (PCC) between the 
actual and predicted MSD values over a long time range 
(100 −500) τBD 

. Supplementary Figure S2 A shows the PCC 

as a function of time, with the relevant time window high- 
lighted by vertical lines. The figure indicates that PCC values 
decrease over time. As we use structure-based features (pair- 
wise distance) to predict dynamics, the model starts to forget 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae749#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae749#supplementary-data
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A

B

Figure 3. Schematic representation of the Data preparation and the architecture of Random Forest (RF) regression model. ( A ) Data Preparation: At the 
very beginning we generated a set of 200 distinct initial configuration of DNA using bead-in-a-spring polymer model. We ran the Brownian dynamics 
simulation for each configuration for a time span of 10 3 τBD ,to ensure proper equilibration. Following equilibration, pairwise distances were computed 
using the last snapshot of each run (totaling 200), serving as features for our machine-learning model. For the MSD measurement, we simulate each 
equilibrium configuration 40 times through Brownian dynamics simulations, drawing distinct velocities from the Maxwell–Boltzmann distribution at a 
desired temperature of k B T = 1.0. These ensemble (40 trajectory each) are called iso-configurational ensembles. ( B ) Architecture: We utilized the pair 
wise distance between beads and MSDs of each bead. These two quantities serves as features and labels respectively, in our ML model(RF). After 
training of the Random Forest (RF) with this datasets, we predicted the dynamics of individual beads. For training and testing, 75% and 25% of the total 
datasets, were used. Additionally, from the trained model, we extracted important features contributing to the maintenance of dynamical properties. 

i  

t  

d  

A  

s  

a  

s  

u  

l  

T  

t
 

=  

i  

s

I  

f
I  

o  

p  

i  

v  

c  

a  

r  

b  

o  

t  

c  

t  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

nitial structural information over longer timescales, poten-
ially causing a decrease in PCC values. This effect is also evi-
ent in the MSD exponent values ( Supplementary Figure S2 B).
t longer times, the MSD exponents exhibit heterogeneous

ubdiffusion, but there is a deviation between the predicted
nd actual MSD exponents. However, these deviations are not
ubstantial. Converting the reduced time unit to actual val-
es shows that 500 τBD 

= 100 min (1 τBD 

≈ 12 s), which is
onger than the cell division time of E. coli ( ∼75 min) ( 19 ).
herefore, one should consider the replication and segrega-

ion in our model. In our study, we used a time of 100 τBD

 20 min, which is much shorter than the cell division time
n minimal medium. This is also consistent with our previous
tudy ( 22 ). 

dentifying important chromosomal contact features crucial
or loci dynamics 
n general, the RF enlightens us about the quantitative extent
f significance of each feature by evaluating its impact on im-
urity. In classification tasks, impurity is assessed through Gini
mpurity or information gain, while in regression, it involves
ariance reduction ( 36 ,37 ). During the training, within the de-
ision trees, the greater the reduction in impurity caused by
 feature, the more pivotal that feature becomes. In our RF
egression model, we have a total of 928 inter-gene distance-
ased features. Each feature represents the distance between
ne particular DNA beads with all other beads. To explore the
ime-dependent importance of these features, we computed
umulative sums of feature importance. Figure 5 A–D depicts
he cumulative sums of feature importance as a function of
the total number of features for different time points: 0.1 τBD 

,
1.0 τBD 

, 10.0 τBD 

, and 100.0 τBD 

, respectively. In each plot,
the vertical black dotted line highlights the number of fea-
tures that contribute to 85% of the total feature importance
score. We named the particular number of features as top fea-
tures . A closer examination of the black dotted lines reveals
that the number of top features is dynamic i.e. varying with
time. 

To get deeper insights into the feature importance, we have
selected the top features at a particular time (t PCC 

max ) when the
PCC between the actual and predicted MSDs becomes maxi-
mum. In this context, we pinpointed a total of 466 top fea-
tures representing the 85% of the total feature important
score. Within the set of 466 top features , we computed the
percentage-wise contributions from each macrodomain. Fig-
ure 5 E represents the bar plot of the % of top features with
respect to different macrodomains. Quite interestingly the
percentage-wise contribution of top features is not uniform
with respect to the various macrodomains. Specifically, Ori
MD exhibits the most substantial contribution, whereas Right
MD demonstrates a comparatively smaller contribution. In
the same spirit, we also identified the top features that re-
main common across different times, totaling 207 in number.
Subsequently, we have also plotted the percentage-wise con-
tributions of common top features from each macrodomain
( Supplementary Figure S3 ). The plot shows a very similar
trend as Figure 5 E. 

To understand this nonuniform contributions of MDs in
feature importance, we have plotted the distribution of the
MSD values for different MDs at the specific time point (t PCC 

max ) .

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae749#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae749#supplementary-data
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A

D E

B C

Figure 4. Comparison between the actual and predicted MSD values and their exponents. ( A ) Pearson Correlation Coefficient (PCC) between actual and 
predicted MSDs as a function of time. During shorter time intervals, PCC demonstrates higher values ( > 0.8). Conversely, there is a marginal decrease in 
the PCC for longer time intervals. ( B ) Comparison of actual and predicted MSDs as a function of time for two particular loci Ori2 and Ter3. The dotted line 
represents the predicted MSDs, while the solid line depicts the actual MSDs. These plots illustrate a notable concordance between the observed and 
predicted MSDs. ( C ) Equilibrated snapshots of the simulated chromosome. The macrodomains are highlighted by distinct color-coded chunks, and the 
loci associated with each macrodomain are depicted through a spherical bead representation. Comparing the MSD exponents between observed and 
predicted values is illustrated for two distinct time intervals: ( D ) (0.1 −10) τBD (short time) and ( E ) (10 −100) τBD (long time). Notably, all loci exhibit 
heterogeneous subdiffusive motion, irrespective of the time intervals. During the short time, the actual MSD exponents for all loci closely align with the 
predicted exponents. However, for the long time, a slight deviation in exponents between the actual and predicted values becomes apparent. In all the 
plots, both the MSD and time are expressed in terms of σ2 and τBD respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 F shows the distribution of the MSD values for all
the MDs and the standard deviation of each distribution is
reported in the legend of the plot. Notably, the plot reveals
a significantly broader distribution of MSD values for Ori
MD in comparison to Right MD. In the context of our ma-
chine learning model, where MSD values serve as labels for
supervised learning, these findings imply that the RF regres-
sion model requires a greater number of features to construct
accurate decision trees when faced with a broad distribution
of training data, and conversely, fewer features are needed in
the case of a narrower distribution 

Can chromosome dynamics be reconstructed using only ML-
derived important features? 
For a more comprehensive grasp of functional implication of
the ML-derived top features , we decided to consider only these
particular distance-based chromosomal contact features from
Hi-C map and incorporate them in our particle-based DNA
model. Precisely, originally totaling 17 302 Hi-C contacts, we
have now reduced it to 12 233, resulting in a notable reduction
of approximately 29% . 

By incorporating these subset of Hi-C contacts, we con-
ducted a new set of simulations and compared the outcomes
with our initial modelling results. We named the previous set
as ‘actual’ and the current one as ‘UTF’ (using top features).
Figure 6 A showcases a heat map of Hi-C contact probability,
where the upper and lower triangular matrices represent sim- 
ulated (UTF) and experimental contact probabilities, respec- 
tively. The high PCC of 0.90 between these matrices signifies 
robust agreement. In terms of dynamics, we have also calcu- 
lated the MSD exponent of each loci. Figure 6 B and C presents 
bar plots of the MSD exponent for all loci at two timescales: 
(0.1 −10) τBD 

and (10 −100) τBD 

, respectively. At a shorter time 
scale, the MSD exponent between the actual and UTF aligns 
well. However, deviations emerge at longer timescales. These 
deviations are believed to originate from the dynamic nature 
of top features . From Figure 5 A–D, it is clear that the num- 
ber of top features varies largely over time. But in our new 

set of simulations (UTF), we have only incorporated the top 

features related Hi-C contacts, at a particular time when the 
PCC between the actual and predicted MSDs becomes maxi- 
mum. This modelling approach may overlook crucial features 
relevant for later times, impacting the accuracy of the expo- 
nent. Additionally, Figure 4 A shows that the PCC between the 
actual and predicted MSDs is lower at a longer time. These 
effects will always provide the deviation of the exponent at 
a larger time scale irrespective of the time-dependent features 
engineering. 

Nevertheless, the deviations of the exponent are not so 

huge. Based on this observation, we can assert that RF re- 
gression is a powerful technique for predicting dynamics and 

engaging in feature engineering. The concept of important 
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A

D E F

B C

Figure 5. Important features specific to each macrodomain. Cumulative sums of feature importance as a function of the total number of features for 
different time points ( A ) 0.1 τBD , ( B ) 1.0 τBD , ( C ) 10.0 τBD and ( D ) 100.0 τBD respectively. Each plot includes a vertical black dotted line indicating the 
number of features responsible for 85% of the overall feature importance score (referred to as top features ). The number of top features is varying with 
time. ( E ) The bar plot of the percentage-wise contributions of top features with respect to different macrodomains. Notably, Ori MD exhibits a 
predominant share of top features , while Right MD sho w cases a comparatively smaller proportion of these top features . ( F ) Distribution of the MSD 

v alues f or all the MDs at the specific time point. T he standard de viation of each distribution is reported in the legend of the plot. Notably, Ori MD sho ws 
a wider distribution compared to Right MD. 
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eatures allows us to extract the effective Hi-C contacts that
an qualitatively provide the structure and dynamics. 

robing prediction ability of ML-model on 

AP-devoid Mutant 

o what extent can ML recreate Hi-C matrix of Mutant chro-
osome? 
. coli intricately maintains a chromosome architecture char-
cterized by distinct macrodomains. Several proteins are re-
ponsible for this structural management. These proteins,
nown as nucleoid-associated proteins (NAPs), contribute
o the orchestration of chromosomal organization ( 40 ,41 ).

ithin this category, certain NAPs exhibit localized binding
o chromosomes, while others engage in nonspecific binding.
hese multifaceted NAPs play discernible roles in shaping the
verall organization of the chromosome. Among the NAPs,
atP stands out as a key player responsible for isolating the

er MD from the rest of the chromosome. Specifically, MatP
xhibits specific binding to 23 sites within the Ter MD, known
s matS sites ( 11 ,42 ). Notably, in the absence of MatP, there
s an enrichment in long-range contacts within the Ter MD
nd its adjacent domains ( 16 ). Another essential protein in
he realm of chromosomal structure maintenance is MukBEF,
hich actively facilitates long-range contacts outside the Ter
D ( 43 ). Interestingly, when MukBEF is absent, a reduction

n long-range contacts is observed across all MDs except for
he Ter MD ( 16 ). 

We decided to investigate the extent of feasibility
f recreating Hi-C matrices for two distinct mutants,
amely �MatP30MM and �MukBEF22MM, using the
L model(Autoencoder) that we had trained on wildtype
(WT30MM) Hi-C map. This approach would allow us to as-
sess the extent of intrinsic information within the WT matrix
that contributes to the accuracy of reconstructing the chromo-
some contact map of mutants. Importantly, we do not intend
to retrain the model with mutant data. Rather, the ML model
(Autoencoder) aims to utilize the pre-optimized weight and
bias values derived from the WT Hi-C data to generate the
mutant Hi-C matrices. 

In Figure 7 A and Supplementary Figure S4 A, we compare
the contact probability maps of the experimental and recre-
ated Hi-C matrices for �MatP30MM and a histogram il-
lustrating the matrix differences respectively. The substantial
agreement between these matrices is emphasized by a PCC
value of 0.92 and an absolute difference in mean values of
0.027. For a more detailed examination of the Hi-C matrices,
we computed PCC within distinct macrodomains (MDs) (Fig-
ure 7 B). The correlation is notably high between individual
MDs and their adjacent MDs, contrasting with the lower cor-
relation observed for MDs that are farther apart. While the
experimental and recreated matrices may seem similar at first
glance, a closer examination through a heat map of their dif-
ferences reveals specific dissimilarities (Figure 7 C). Notably,
there is a butterfly-shaped region in the Ter and its adjacent
domains, highlighted within the magenta box. These findings
imply that the recreated Hi-C fails to accurately capture the in-
teractions within the Ter and its flanking domains. Similarly, in
Figure 7 D, Supplementary Figure S4 B, and Figure 7 E, we de-
pict the contact probability map, distribution of the difference
in the contact matrix, and MDs-wise PCC between the experi-
mental and recreated Hi-C matrices of �MukBEF22MM. The
overall PCC (0.92), mean difference values (0.03), and indi-
vidual PCC of each MD indicate a robust agreement between

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae749#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae749#supplementary-data
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A B

C

Figure 6. Reproduce the str uct ure and dynamics by using important features. ( A ) The heat map between the experimental and simulated (UTF) contact 
probability matrix for WT30MM. A PCC value of 0.90 between these matrices indicates strong agreement. The bar plot of the MSD exponent for 
different loci at two timescales: ( B ) (0.1 −10) τBD and ( C ) (10 −100) τBD , respectively. At a shorter time scale, the MSD exponent between the actual and 
UTF matches quite well. However, at a larger time scale, they start to deviate. 

A

D E F

B C

Figure 7. Recreation of the Hi-C matrix for different mutant by using machine learning trained model on wild type Hi-C matrix. ( A ) Heat map between the 
experimental and ML recreated contact probability matrix for �MatP30MM. A Pearson correlation coefficient(PCC) value of 0.92 indicates a reasonably 
strong agreement between them. ( B ) Within the heat map of the contact probability matrix, individual PCC values for each MD are presented. The PCC 

are notably high between individual MDs and their adjacent MDs. ( C ) The heat map of the difference matrix (experimental and ML recreated) reveals a 
butterfly-shaped region inside the Ter and its flanking domains, denoted by the magenta box. This observation suggests that the ML-recreated matrix 
fails to accurately capture the interactions within the Ter and its nearby domains. (D–F) depict similar plots as in (A), (B) and (C), respectively. The only 
difference is that here we compare the experimental and ML recreated Hi-C matrix for �MukBEF22MM. From figure (F), it is evident that there are 
long-range contacts across all MDs e x cept the Ter, suggesting that the ML-derived matrix cannot accurately capture the long-range reduction of contacts 
for all MDs except the Ter. 
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hese matrices. However, a closer examination of the differ-
nce heatmap (Figure 7 F) reveals long-range contacts across
ll MDs, except for the Ter MD (highlighted by the magenta
ox). This observation suggests that the recreated matrix fails
o appropriately capture the long-range reduction of interac-
ions for all domains except the Ter. 

The unsupervised ML model operates within the con-
traints of the information it has been exposed to during
raining, unable to generate entirely novel insights beyond
ts training data. Essentially, it excels at recognizing patterns
ithin the provided datasets. Consequently, when the model

s trained solely on the WT Hi-C matrix without exposure to
utant data, it inevitably falls short in accurately capturing

he modified interactions specific to mutants compared to the
T type. For instance, in the recreation of the �MatP30MM
i-C matrix, the model fails to adequately capture the nu-

nced interactions within the Ter and its flanking MDs. Sim-
larly, for the �MukBEF22MM Hi-C matrix, the model fails
o accurately represent the reduction in long-range interac-
ions for all MDs, except the Ter. Interestingly, the WT train-
ng model manages to capture various other intrinsic informa-
ion crucial for recreating mutant Hi-C matrices. To support
his, we have trained the same model with a random matrix
hose diagonal elements are 1 and all other elements are be-

ween (0 −1) (see Method section). Attempting to reconstruct
he �MatP30MM with this trained model resulted in an ex-
remely poor PCC of 0.03 ( Supplementary Figure S5 ). To-
ether these results suggest that our unsupervised ML model
Autoencoder) provides a powerful way to reconstruct the Hi-
 of the mutant which is semi-quantitatively accurate. 

ow close does the ML-derived model replicate the dynamics
f different mutants? 
n our earlier discussion on the intrinsic structural patterns
ithin the Hi-C matrix, we observed that the WT train-

ng model effectively captures the mutant Hi-C matrices in
 semi-quantitative manner. Now, our focus is on predict-
ng the dynamics of chromosomal loci for various mutants
sing the training model on WT data. In this scenario, the
odel utilizes previously trained ‘decision trees’ to predict

he dynamics. Supplementary Figure S6 shows the PCC( ρ)
etween the actual and predicted MSDs over time for both
T and mutant ( �MatP30MM and �MukBEF22MM) chro-
osomes. The figure indicates that the correlations for both
utants are lower compared to the WT chromosome. Addi-

ionally, the correlation for �MukBEF22MM deviates more
rom WT compared to �MatP30MM, suggesting that the

T training model is less accurate in capturing loci dynam-
cs for �MukBEF22MM. A closer examination of the Hi-C
atrices for WT and mutant cases reveals distinct patterns.
or �MatP30MM, the contact probability in the Ter and

ts flanking domains deviates from the WT matrix. In con-
rast, for �MukBEF22MM, the contact probability for all
acrodomains deviates from the WT matrix, except for Ter
D. This suggests that when training the model with the WT
atrix, it captures information more useful for predicting the
ynamics of �MatP30MM compared to �MukBEF22MM.
onsequently, when predicting the chromosome dynamics for
MatP30MM using WT training data, the deviation in cor-

elation is less compared to �MukBEF22MM. 
To understand the differences in the dynamics derived from

 trained model with WT, we have calculated the key fea-
ures for mutant bacteria using the same protocol as for wild-
type bacteria. After training a random forest regression model
with distance-based features and MSD values as labels for
mutant bacteria, we have identified the important features
for these two mutants. Supplementary Figures S7 A and S7 B
show the MD-wise feature importance of the top features
for �MatP30MM and �MukBEF22MM, respectively. These
plots suggest that the MD-wise contribution of the top fea-
tures is similar to that of wild-type bacteria. However, quite
interestingly, the total number of top features for mutant bac-
teria differs from that of wild-type bacteria. Specifically, the
number of top features is 383 for �MatP30MM, compared
to 466 for wild-type bacteria, and 323 for �MukBEF22MM.
To better understand the contribution of top features , we have
computed the MD-wise contribution of the top features with
respect to the total number of features (928) instead of the
total number of top features . Supplementary Figure S7 C rep-
resents the percentage-wise contribution of top features for
each MD for wild-type and mutant bacteria. This plot indi-
cates that for mutant bacteria, the percentage-wise contribu-
tion for each MD is lower compared to wild-type bacteria.
These observations suggest that the top features governing the
dynamics in mutant bacteria are different from those in wild-
type bacteria. This difference might be a crucial factor for the
deviation in the dynamics predicted from wild-type training
data for mutant bacteria. 

Discussions and summary 

The organization and dynamics of the bacterial DNA are
very complex and not yet fully explored. To address this,
the utilization of the Hi-C integrated ( 21–24 ,44 ) and cross-
linked ( 45 ,46 ) based polymer model offers a versatile means
of exploring the organization and dynamics of E. coli DNA.
In this study, we present a comprehensive approach, employ-
ing a set of machine learning (ML) algorithms to gain insights
into the structural and dynamical aspects of bacterial chro-
mosome. By leveraging a combination of Autoencoder-based
structural analysis, and RF regression for predicting chromo-
somal dynamics, our work provides valuable insights into an
intricate pattern of bacterial chromosomal organization and
it emergent dynamics. 

In the first part of the study, we mainly focused on ex-
tracting essential structural information, that is hidden un-
derneath the Hi-C matrix, using an unsupervised deep neural
network known as Autoencoder. The low-dimensional repre-
sentation of the Hi-C data interestingly identifies chromoso-
mal macrodomains (MDs) as key structural pattern in an au-
tomated way (Figures 2 ). Notably, the comparison between
MDs derived from our ML model (Autoencoder) and those
experimentally identified reveals a high correlation, suggesting
meaningful connections between the ML-derived insights and
real-world biological phenomena. However, Figure 2 B sug-
gests that there are significant differences exist between the
ML-derived and the experimentally denoted MDs, particu-
larly in the Right and Ter regions. We speculated that uti-
lizing a higher-dimensional latent space could enhance the
results. To test this hypothesis, we clustered the data in a
four-dimensional latent space ( L d = 4). In Supplementary 
Figure S8 (A), a comparison between the ML-derived and ex-
perimentally identified MDs for a latent dimension of L d =
4 is presented, revealing notable improvements in MDs clas-
sification compared to L d = 3. Furthermore, we quantified
this enhancement by computing the F1-score for each MD.

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae749#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae749#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae749#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae749#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae749#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae749#supplementary-data
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Supplementary Figure S8 B shows the comparison of F1-scores
across different MDs for two latent dimensions ( L d = 3,
4). While there is a slight decrease in the F1-score for Left,
NSL and Ori, significant improvements are observed for the
other three MDs. The overall accuracy is 0.87 for L d = 4, com-
pared to 0.82 for L d = 3. Although the higher dimension latent
space provides the improvement in the results, the visualiza-
tion of the latent space in 4d is not possible. Therefore, we kept
all of the analysis in latent dimension L d = 3. Additionally,
there exist various other Autoencoder techniques like Denois-
ing Autoencoder ( 47 ), Variational Autoencoder ( 48 ), etc. The
usage of these advanced techniques could potentially improve
the overall identification of the MDs. Moreover, when recre-
ating the Hi-C matrix for various mutants using wild-type
(WT) training data (Figures 7 ), our model demonstrates the
ability to capture diverse intrinsic information crucial for re-
constructing mutant Hi-C matrices. Significantly, the observed
structural properties closely align with established experimen-
tal findings, underscoring the effectiveness of our approach in
capturing biologically relevant phenomena. 

In general, the partitioning of the eukaryotic chromo-
some into A and B compartments is achieved through prin-
cipal component analysis (PCA) ( 15 ,26 ). We have also em-
ployed PCA to identify macrodomains for E. coli . Subse-
quently, we clustered the data for the first three princi-
pal components (PC-1, PC-2 and PC-3) using the K-means
clustering algorithm. Supplementary Figure S9 (A) presents a
schematic representation of the macrodomains derived from
machine learning (Autoencoder), PCA and experimental data.
To compare how the PCA and ML-derived macrodomains
match with experimentally identified macrodomains, we cal-
culated the F1-Score for both methods (PCA, Autoencoder).
Supplementary Figure S9 (B) shows a comparison of the F1-
Scores for macrodomains derived from these two techniques.
This figure suggests that the Autoencoder outperforms PCA
in identifying macrodomains, particularly for four specific re-
gions: NSR, Left, NSl and Ori. However, for two other re-
gions, PCA performs better than the Autoencoder. Neverthe-
less, the overall accuracy for identifying macrodomains using
PCA is 67% , while the overall accuracy for the Autoencoder
is 82% . Thus, the utilization of the ML-based non-linear tech-
nique Autoencoder provides a superior method for identifying
macrodomains compared to the traditional linear technique
PCA. There are also other advantages of using the Autoen-
coder over PCA, such as the ability to recreate the mutant ma-
trix from wild-type training data. This helps in understanding
the inherent information contained in the wild-type matrix,
which is important for studying mutant bacteria. While PCA
allows for the projection of mutant data along the principal
components of the wild-type matrix, it does not enable the
recreation of the mutant matrix. 

After delving into the structural insights extracted from the
Hi-C data, the second part of our study focused on harness-
ing the power of ML to predict the crucial subsets of chro-
mosomal contact features that can optimally explain the pre-
viously reported heterogeneous subdiffusion of chromosomal
loci. We employed a Hi-C embedded polymer model for the
E. coli chromosome, representing short and long-range Hi-C
contacts as effective springs with spring constants dependent
on contact probabilities. Subsequently, we utilized RF regres-
sion, a powerful supervised machine learning algorithm, to
predict the dynamics and MSD exponent of individual chro-
mosomal loci. Our results demonstrated a high correlation be-
tween the predicted and actual MSD values for shorter time 
scales (Figures 4 ). These observations highlight the efficacy of 
our machine learning model in capturing the complex rela- 
tionship between structural features and dynamic behavior.
However, at a large time scale, the correlation between the 
actual and predicted values decreases. We hypothesized that 
at larger time scales, the system loses its initial structural in- 
formation, leading to a reduction in correlation. Despite this 
decrease, it remained relatively modest. 

We systematically evaluated the robustness of our RF re- 
gression model by varying hyperparameters ( Supplementary 
Figures S1) . The consistent performance across different hy- 
perparameter values affirmed the reliability of our machine- 
learning approach. An essential aspect of our study involved 

extracting top features through feature importance analysis,
providing valuable insights into the critical elements influenc- 
ing chromosomal dynamics. However, these top features are 
dynamic rather than static, exhibiting variations over time 
(Figure 5 A–D). The distribution of top features at a particu- 
lar time across different macrodomains revealed non-uniform 

contributions (Figure 5 E). Particularly, the Ori macrodomain 

exhibited a more substantial contribution compared to the 
right macrodomain. This non-uniformity was further eluci- 
dated by examining the distribution of MSD values for differ- 
ent macrodomains, with Ori displaying a broader distribution 

(Figure 5 F). These findings indicate that the model requires 
more features to accurately capture dynamics when faced with 

a broader distribution of training data. Moreover, by incor- 
porating the top features associated with Hi-C contacts into 

a polymer-based model, we can effectively reconstruct both 

the experimental Hi-C matrix and the dynamical behavior of 
chromosomal loci at a short time scale (Figures 6 ). These find- 
ings strongly imply the utility of our RF regression model for 
feature engineering, specifically in extracting the important 
Hi-C contacts that play a crucial role in influencing chromo- 
somal dynamics. However, our model does have limitations; 
for instance, it may not fully capture interactions specific to 

mutants as it is trained solely on wild-type data. 
Our work enhances the broader understanding of bacte- 

rial chromosome via computational modeling with ML tech- 
niques. The identification of macrodomains and the predic- 
tion of chromosomal dynamics offer a comprehensive view of 
the intricate interplay between structure and function in bacte- 
rial genomes. However, our approach can be extended beyond 

the realm of bacterial chromosomes. We are optimistic about 
the broader applicability of our methodologies in addressing 
more complex systems, including proteins and glass, to extract 
structural insights and predict dynamics. In the realm of glassy 
systems, there has recently been a plethora of studies predict- 
ing dynamics using a combination of structural properties and 

diverse machine-learning algorithms ( 49–56 ). While many of 
these studies leverage a multitude of structural features for dy- 
namic predictions, we hope that our approach may offer an 

effective avenue for predicting dynamics and facilitating fea- 
ture engineering. 

Methods 

The training of the Autoencoder 

The Autoencoder in our study consists of nine fully connected 

sequential layers. We have used a single Hi-C contact prob- 
ability matrix for training the Autoencoder. We utilize the 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae749#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae749#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae749#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae749#supplementary-data
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fication No. RTI 4007. 
eaky rectified linear unit (ReLU) activation function for each
ayer, except for the last layer. Given that our Hi-C contacts
all within the range of 0 to 1, the sigmoid activation func-
ion is applied to the final layer. To optimize the weights and
iases of each node, we utilize the Adam optimizer ( 57 ) to
inimize the loss function. We choose binary cross-entropy

BCE) ( 27 ,58 ) as a loss function which is defined as 

−
N ∑ 

i =1 

(
O i log 

(
ˆ O i 

)
+ ( 1 − O i ) log 

(
1 − ˆ O i 

))
(4)

here ˆ O , and O are the model output, target output, and N
 928 respectively. The Autoencoder is trained with a batch

ize of 30 for input data and a learning rate of 0.001. Notably,
n training the Autoencoder on the Random matrix, we have
sed the same architecture, modifying only the dimension of
he latent space L d . Our observations indicate that achieving a
earson Correlation Coefficient (PCC) value of 0.79 between
he actual random matrix and the Autoencoder-derived ma-
rix necessitates setting L d to 40 ( Supplementary Figure S10) .
ll aspects related to the Autoencoder, including training and

mplementation, are conducted using the Python implementa-
ion of Tensorflow ( 59 ) and Keras ( 60 ). 

raining-testing split 

n our ML model (RF), we allocate 75% of the data for
raining and 25% for testing. This partitioning ensures that
he dimensions of the training and testing data are as fol-
ows: features training [ m , n ] = [runs × 928, 928] = [150 ×
28, 928], labels training [ m ] = [runs × 928] = [150 × 928] and
eatures testing [ m , n ] = [runs × 928, 928] = [50 × 928, 928],
abels testing [ m ] = [runs × 928] = [50 × 928]. 

imulation model details 

e have applied our previously established bead-spring
odel ( 21 ,22 ) for integrating Hi-C data in E. coli chromo-

ome, where each bead corresponds to 5 × 10 

3 bp (5 kb). The
armonic interaction between adjacent beads is governed by
 spring constant of k spring = 300 k B T / σ2 , where σ denotes
he bead diameter. The inclusion of Hi-C contacts in the poly-
er chain introduces an effective spring with a spring constant
ependent on contact probabilities. This process involves: (i)
ransforming the Hi-C probability matrix into a distance ma-
rix using the formula: 

D i j = σ/P i j (5)

here i and j are the row and column index of the matrix
espectively. (ii) By using D ij , we have calculated the effective
pring constant as: 

k i j = k 0 e 
− (D i j −σ ) 2 

w 2 (6)

ere, k 0 serves as the upper bound of the spring constant, and
 

2 is a constant value. However, previous studies ( 61 ,62 ) on
ukaryotes suggest that the relationship between D ij and P ij 

ollows D i j = σ/P 1 / 3 i j or D i j = σ/P 1 / 4 i j . We have also verified
hat these types of relationships yield similar dynamic behav-
or of the chromosomal loci with proper optimization of w 

2

alue. In our simulation, we have maintained the values of k 0

nd w 

2 consistent with our previous study ( 21 ,22 ), specifically
 0 = 10 k B T / σ2 and w 

2 = 0.3. The potential related to Hi-C
contacts, denoted as E Hi − C 

( r ij ), is expressed as: 

E Hi −C (r i j ) = 

1 

2 

k i j (D i j − r i j ) 2 (7)

In our simulation, contacts with a spring constant k ij <

10 

−7 are disregarded to avoid unnecessary low-value contacts.
additionally, the nonbonded interactions between beads are
modeled using the repulsive part of the Lenard-Jones poten-
tial, i.e., E nb = 4 ε( σr ) 

12 . All particles are confined within a
spherocylinder, mimicking the cell wall, with a length of L =
45.754 σ and diameter d = 12.181 σ. The confinement poten-
tial is defined as: 

E res (r, R 0 ) = 

1 

2 

k res 

∣∣∣� r − � R 0 

∣∣∣
2 
�

∣∣∣� r − � R 0 

∣∣∣ (8)

Here, R 0 represents the center of the spherocylinder, and k res

is the spring constant controlling confinement softness (set to
310 k B T / σ2 ). The step function � activates if any particle sur-
passes the confinement boundaries. The total Hamiltonian of
the system is given by: 

H tot = E b + E Hi −C + E nb + E res (9)

Here, E b , E Hi − C 

, E nb and E res represent the potentials for
bonded, Hi-C restraining, non-bonded, and confinement re-
straining interactions, respectively. All the simulations were
conducted using an modified version of open-source software
GROMACS 5.0.6 ( 63 ), while for the implementation of ran-
dom forest regression, we utilized the Python library known
as scikit-learn ( 64 ). 

Calculation of Hi-C contacts 

We have calculated the Hi-C matrix using our simulation tra-
jectories. For each time series configuration, we have com-
puted the pairwise distance D ij between each bead and then
converted the distance into a probability value using the for-
mula P ij = σ/ D ij , where σ is the diameter of each bead, and
i and j are the bead indices. Finally, we have averaged these
probability values over all the frames and trajectories. 

Data availability 

All data are present within the manuscript. The code and
accompanying documentation for training the Autoencoder
and Random Forest regression model can be accessed through
GitHub at the following URL: https:// github.com/ palash892/
Hi-C _ ML _ structure-dynamics (also archived in Zenodo at
https:// doi.org/ 10.5281/ zenodo.13312410 ). 
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Supplementary Data are available at NAR Online. 
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