
R E S E A R C H Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The 
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available 
in this article, unless otherwise stated in a credit line to the data.

Akita et al. Echo Research & Practice           (2024) 11:23 
https://doi.org/10.1186/s44156-024-00059-8

Echo Research & Practice

*Correspondence:
Yuichi J. Shimada
ys3053@cumc.columbia.edu

Full list of author information is available at the end of the article

Abstract
Background Hypertrophic cardiomyopathy (HCM) can cause myocardial fibrosis, which can be a substrate for fatal 
ventricular arrhythmias and subsequent sudden cardiac death. Although late gadolinium enhancement (LGE) on 
cardiac magnetic resonance (CMR) represents myocardial fibrosis and is associated with sudden cardiac death in 
patients with HCM, CMR is resource-intensive, can carry an economic burden, and is sometimes contraindicated. In 
this study for patients with HCM, we aimed to distinguish between patients with positive and negative LGE on CMR 
using deep learning of echocardiographic images.

Methods In the cross-sectional study of patients with HCM, we enrolled patients who underwent both 
echocardiography and CMR. The outcome was positive LGE on CMR. Among the 323 samples, we randomly 
selected 273 samples (training set) and employed deep convolutional neural network (DCNN) of echocardiographic 
5-chamber view to discriminate positive LGE on CMR. We also developed a reference model using clinical parameters 
with significant differences between patients with positive and negative LGE. In the remaining 50 samples (test set), 
we compared the area under the receiver-operating-characteristic curve (AUC) between a combined model using the 
reference model plus the DCNN-derived probability and the reference model.

Results Among the 323 CMR studies, positive LGE was detected in 160 (50%). The reference model was constructed 
using the following 7 clinical parameters: family history of HCM, maximum left ventricular (LV) wall thickness, LV end-
diastolic diameter, LV end-systolic volume, LV ejection fraction < 50%, left atrial diameter, and LV outflow tract pressure 
gradient at rest. The discriminant model combining the reference model with DCNN-derived probability significantly 
outperformed the reference model in the test set (AUC 0.86 [95% confidence interval 0.76–0.96] vs. 0.72 [0.57–0.86], 
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Introduction
Hypertrophic cardiomyopathy (HCM) is one of the most 
common genetic cardiomyopathies [1]. The prevalence of 
clinically expressed HCM and genetic carrier of HCM is 
about 1 in 200 individuals [1]. Severe left ventricular (LV) 
hypertrophy, the main feature of this disease, can result 
in myocardial ischemia and subsequent fibrosis, which 
can be a substrate for fatal ventricular arrhythmia caus-
ing sudden cardiac death (SCD) [2–4]. 

Late gadolinium enhancement (LGE) on cardiac mag-
netic resonance imaging (CMR) typically represents 
myocardial fibrosis [5]. In patients with HCM, LGE is 
strongly associated with ventricular arrhythmia and 
subsequent SCD [6–9]. Appropriate use of implantable 
cardioverter-defibrillator (ICD) reduces disease-specific 
mortality [10–12]. The identification of subpopulation at 
high risk of SCD by LGE on CMR is important in HCM. 
However, not all patients with HCM undergo CMR as it 
is not widely accessible, is time-consuming, requires par-
ticular expertise for image acquisition and interpretation, 
and can be an economic burden for the patients and/
or third-party payers [13]. Also, the risk-benefit balance 
needs to be carefully assessed in pediatric patients (who 
might require sedation or intubation) or those who have 
claustrophobia [14]. Furthermore, the use of some gado-
linium enhancement agents is contraindicated in patients 
with end-stage renal disease [15–17]. For these reasons, 
it is clinically valuable to determine which patients with 
HCM would have a high pre-test probability of having 
LGE, thereby accelerating the appropriate use of CMR.

Deep learning is a rapidly evolving approach in a vari-
ety of medical settings including cardiovascular imag-
ing [18–22]. This novel technology has the potential to 
overcome human limitations such as intra- and inter-
observer variability [23, 24]. In the HCM population, pre-
vious studies demonstrated that deep learning-derived 
discrimination models using echocardiographic images 
can distinguish HCM from other cardiovascular dis-
eases which cause LV hypertrophy [25–27]. Our recent 
study reported that deep convolutional neural network 
(DCNN) analysis of echocardiographic images can dis-
criminate genotype positivity in patients with HCM [20]. 
However, despite the clinical importance, no previous 

studies examined the ability of deep learning to discrimi-
nate LGE on CMR in HCM. Therefore, we performed 
the present study to determine whether DCNN analysis 
of echocardiographic images can discriminate LGE on 
CMR in patients with HCM.

Methods
Study design and population
We conducted a cross-sectional study in HCM popula-
tion between cases with LGE and controls without LGE. 
These patients were enrolled from the Columbia HCM 
Center at Columbia University Irving Medical Center 
(CUIMC) (New York, NY) between January 2008 and 
January 2022 and were consecutively included in this 
study if both transthoracic echocardiography (TTE) 
and CMR were performed. The diagnosis of HCM was 
established by echocardiographic evidence of LV hyper-
trophy (maximum LV wall thickness ≥ 15  mm) that was 
out of proportion to systemic loading conditions [2]. We 
excluded patients with HCM phenocopies such as Fabry 
disease, Danon disease, and cardiac amyloidosis by per-
forming additional testing (e.g., genetic testing, tech-
netium-99  m pyrophosphate scintigraphy imaging, and 
heart biopsy) when needed [2]. For patients with a family 
history of HCM, LV wall thickness ≥ 13 mm was consid-
ered diagnostic of HCM [2]. We excluded patients who 
underwent septal reduction therapy (i.e., septal myec-
tomy, alcohol septal ablation –– interventions that may 
cause myocardial fibrosis) or heart transplant before ini-
tial TTE or CMR. We also excluded patients with sub-
optimal TTE images which were ineligible for DCNN 
analysis. The baseline characteristics were collected 
at the time of TTE which was performed closest to the 
date of CMR. The review board of CUIMC (AAAR5873) 
and Tokushima University Hospital (3217-5) approved 
the study protocol and all participants provided written 
informed consent to participate in the study before taking 
part. This study was developed following the Transparent 
reporting of a multivariable discriminant model for indi-
vidual prognosis or diagnosis (TRIPOD) statement [28] 
and also the Proposed Requirements for Cardiovascular 
Imaging-Related Machine Learning Evaluation (PRIME) 
checklist (Table S1) [29]. 

P = 0.04). The sensitivity, specificity, positive predictive value, and negative predictive value of the combined model 
were 0.84, 0.76, 0.78, and 0.83, respectively.

Conclusion Compared to the reference model solely based on clinical parameters, our new model integrating 
the reference model and deep learning-based analysis of echocardiographic images demonstrated superiority in 
distinguishing LGE on CMR in patients with HCM. The novel deep learning-based method can be used as an assistive 
technology to facilitate the decision-making process of performing CMR with gadolinium enhancement.

Keywords Hypertrophic cardiomyopathy, Echocardiography, Deep learning, Late gadolinium enhancement, Cardiac 
magnetic resonance
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Outcome measure and acquisition of cardiac magnetic 
resonance images
The primary outcome was positive LGE on CMR. The 
existence but not extent of LGE was utilized as the pri-
mary outcome measure of the present study as LGE 
may affect the prognosis even if it is small [30] and also 
because there has been no consensus on an arbitrary 
cut-off percentage to define extensive LGE. Patients with 
LGE only located in the right ventricular insertion site 
were regarded as negative LGE, since the clinical sig-
nificance or correlation with the prognosis of this find-
ing has not been established [30–32]. CMR was ordered 
at the discretion of the treating physicians. CMR studies 
were performed on a 1.5-T field strength scanner (HDXt 
platform, General Electric Healthcare, Chicago, Illinois) 
with a dedicated 8-channel cardiac coil. The imaging 
protocol included localizer images with cine-balanced 
steady-state free precession imaging in the short axis, 
long axis, LV 4-chamber, and 3-chamber views. The myo-
cardial late enhancement sequences were performed in 
LV short axis and 2-chamber views 8 to 15 min after the 
0.2 mmol/kg injection of intravenous gadobutrol (Gada-
vist, Bayer HealthCare Pharmaceuticals Inc., Whippany, 
New Jersey). Short axis late enhancement views were 
obtained with both 2-dimensional single slice per breath-
hold imaging and 3-dimensional volumetric ventricular 
imaging. Inversion times were determined on an indi-
vidual basis to null the normal myocardial signal. The 
images were reviewed by expert readers using dedicated 
CMR analysis software (cmr42, Circle Cardiovascular 
Imaging Inc., Calgary, Alberta, Canada). Late myocardial 
enhancement images were analyzed using 2-dimensional 
views and coregistered 3-dimensional and long axis views 
for correlation when indicated [33]. The presence or 
absence of LGE was determined by the reading cardiac 
radiologist.

Acquisition of the echocardiographic images
Standard TTE examinations were performed utilizing a 
commercially available ultrasound system (iE33, Phil-
ips Medical Systems, Andover, Massachusetts) as a part 
of routine clinical care in accordance with the guide-
line recommendations [34, 35]. The two-dimensional 
TTE images of all subjects were obtained from the api-
cal 5-chamber views as this view can visualize most of 
the HCM-specific findings including LV outflow tract 
obstruction, interventricular septum, LV apex, and left 
atrium dilatation. The samples with good or adequate 
imaging quality on the basis of the visualization of the LV 
walls and endocardial borders were selected. TTE images 
were stored digitally as a Digital Imaging and Communi-
cation in Medicine (DICOM) file and analyzed offline.

Import of the echocardiographic images
All DICOM images were cropped to 360 × 360 mono-
chrome pixels and then down-sampled to 120 × 120 pix-
els. Simultaneously, metadata presented in the periphery 
of the images was removed. To adjust for differences in 
frame rate and heart rate between patients, 10 equally-
spaced images per 1 cardiac cycle were chosen with the 
use of a semi-automatic heartbeat analysis algorithm. The 
starting frame was defined by the R wave on the electro-
cardiogram as recordings of TTE images were triggered 
by the R wave. The methodological details are provided 
in Supplemental Methods and have been published pre-
viously [18, 20]. 

Deep learning algorithm
Positive LGE was discriminated by a DCNN algorithm 
using the apical 5-chamber view of each subject (Fig. 1). 
First, 50 samples were randomly selected as the inde-
pendent test set and separated out. These 50 samples 
were not used for the model development. Second, the 
remaining 273 samples (the training set) were used for 
developing the discriminant model by performing 5-fold 
cross-validations within the training set (Figure S1). 
Model training was performed on a graphics processing 
unit (GeForce GTX 2080 Ti, NVIDIA, Santa Clara, Cali-
fornia, USA) (Figure S2) [36]. The details are provided in 
Supplemental Methods. Deep learning was performed 
with the Python 3.6 programming language with Keras 
2.2.4.

Development of reference model and combining with 
DCNN-derived probability
In baseline characteristics, continuous variables were 
presented as mean ± standard deviation if normally dis-
tributed and as median [25th − 75th percentile] if not 
normally distributed. To compare the characteristics 
between patients with positive and negative LGE on 
CMR, the unpaired Student’s t-test was used for normally 
distributed continuous variables and the Mann-Whitney-
Wilcoxon test for other continuous and ordinal variables. 
χ2 test was used for categorical variables.

As there were no existing models for discriminating 
positive and negative LGE in patients with HCM using 
clinical parameters, we developed a logistic regres-
sion model as a reference model to compare with the 
DCNN-derived model. The logistic regression model was 
developed using baseline characteristics with significant 
differences between patients with positive and negative 
LGE, including demographics, past medical history, fam-
ily history, echocardiographic data, and CMR character-
istics. This reference model was developed in the training 
set.

In the test set, the following steps were taken to com-
pare the area under the receiver-operating-characteristic 



Page 4 of 10Akita et al. Echo Research & Practice           (2024) 11:23 

curve (AUC) of the reference model and that of a new 
model combining the reference model with the DCNN-
derived model. First, a logistic regression model was 
constructed in the test set to estimate the correlation 
coefficients and the constant, combining the reference 
model and the DCNN-derived probability. Second, the 
AUC of the reference model and that of the combined 
model in the test set were compared using Delong’s 
test. The sensitivity, specificity, positive predictive value 
(PPV), and negative predictive value (NPV) in the test 
set were also calculated at the cut-off point with the best 
Youden index. Additionally, the calibration plot compar-
ing the discriminative probability of the combined model 
and the actual prevalence of LGE on CMR in the test set 
was drawn. Decision curve analysis was also performed 
to examine how the combined model of the DCNN 
model plus the reference model could impact decision-
making in the clinical settings. Statistical significance was 
declared if the 2-sided P value was < 0.05. For statistical 
analyses for baseline characteristics, developing the refer-
ence and combined model, and comparing the AUCs of 
them, R Studio version 2021.09.0 (Posit Software, Boston, 
Massachusetts) was utilized.

Results
Among 340 CMR samples, 17 samples (5%) were 
excluded because the quality of TTE images obtained 
at the closest date to the CMR was inadequate for the 
DCNN analysis. A total of 323 CMR samples from 
patients with HCM — 160 positive LGE and 163 negative 
LGE — were included in the final analysis. The median 
time difference between TTE and CMR was 57 [25th 

− 75th percentile, 17–303] days. The training set com-
prised 273 samples, of which 135 (49%) had positive LGE. 
The independent test set comprised 50 samples, of which 
25 (50%) had positive LGE.

Baseline characteristics are presented in Table  1. The 
proportion of patients with a family history of HCM 
was higher in the positive LGE group. In the echocar-
diographic parameters, LV end-diastolic diameter, maxi-
mum LV thickness, interventricular septal thickness, left 
atrium diameter, and the proportion of patients with LV 
ejection fraction < 50% were greater, and the peak pres-
sure gradient via LV outflow tract was lower in the posi-
tive LGE group. In the CMR parameters, LV end-systolic 
volume was significantly greater in the positive LGE 
group. Therefore, the reference model included the fol-
lowing covariates: family history of HCM, maximum LV 
wall thickness, LV end-diastolic diameter on TTE, LV 
end-systolic volume in CMR, LV ejection fraction < 50%, 
left atrial diameter, and LV outflow tract pressure gradi-
ent at rest.

The AUC of the DCNN-derived probability of the dis-
criminant model developed in the training set was 0.74 
(95% confidence interval [CI] 0.60–0.88) in the inde-
pendent test set. After combining the reference model 
with the DCNN-derived probability for discriminating 
positive LGE, the combined model significantly outper-
formed the reference model (AUC 0.86 [95% CI 0.76–
0.96] vs. 0.72 [95% CI 0.57–0.86], Delong’s test P = 0.04) 
(Fig.  2). Table  2 summarizes the sensitivity, specificity, 
PPV, and NPV of each model. The correlation coefficients 
and constant for constructing the combined model are 
shown in Supplemental Results. The coefficients of each 

Fig. 1 Graphical images of the deep convolutional neural network analysis. Using echocardiographic 5-chamber view images in patients with hyper-
trophic cardiomyopathy, the deep convolutional neural network-based discrimination model which differentiates positive and negative late gadolinium 
enhancement on cardiac magnetic resonance was developed. CMR, cardiac magnetic resonance; DCNN, deep convolutional neural network; HCM, 
hypertrophic cardiomyopathy; LGE, late gadolinium enhancement; TTE, transthoracic echocardiography
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Positive LGE
(n = 160)

Negative LGE (n = 163) P value

Demographics
Age (years) 54 ± 16 55 ± 18 0.50
Female 56 (35) 75 (46) 0.06
Race/Ethnicity 0.34
European ancestry 79 (49) 92 (57)
African American 21 (13) 23 (14)
Asian 5 (3) 2 (1)
Native American 2 (1) 4 (3)
Unidentified 53 (33) 41 (25)
Height (cm) 170 ± 10 170 ± 12 0.51
Weight (kg) 82 ± 19 83 ± 18 0.46
BMI (kg/m2) 28 ± 6 29 ± 5 0.20
Systolic blood pressure (mmHg) 127 ± 18 130 ± 21 0.12
Diastolic blood pressure (mmHg) 72 ± 11 73 ± 11 0.42

Past medical history
NYHA functional class ≥ 3 29 (18) 28 (17) 0.94
Hypertension 72 (45) 74 (45) > 0.99
Prior AF 34 (21) 22 (14) 0.09
Prior sustained VT/VF 2 (1) 0 (0) 0.47
Prior NSVT 26 (17) 19 (12) 0.27
Prior syncope 28 (18) 30 (19) 0.95

Family history
Family history of SCD 20 (13) 24 (15) 0.67
Family history of HCM 38 (24) 23 (14) 0.04

Medications
β-blocker 98 (62) 93 (57) 0.47
Non-dihydropyridine calcium channel blocker 32 (20) 28 (17) 0.61
Loop diuretic 14 (9) 16 (10) 0.89
Aspirin 53 (33) 42 (26) 0.17
Anticoagulation 26 (16) 15 (9) 0.08
Thiazide 10 (6) 21 (13) 0.07
ACE inhibitor 19 (12) 10 (6) 0.11
ARB 13 (8) 28 (17) 0.02
Potassium spearing diuretic 6 (4) 4 (3) 0.73
Clonidine 0 (0) 6 (4) 0.04
Statin 64 (40) 57 (35) 0.41
Digoxin 2 (1) 1 (1) 0.98
Disopyramide 10 (6) 1 (1) 0.01
Amiodarone 5 (3) 2 (1) 0.43

Genetic testing (n = 155) n = 84 n = 71
Pathogenic or likely pathogenic 37 (45) 21 (30) 0.08

Echocardiographic characteristics
LVDd (mm) 45 ± 6 43 ± 6 0.003
LVDs (mm) 27 ± 7 26 ± 6 0.29
Maximum wall thickness (mm) 18 ± 5 16 ± 5 0.002
IVST (mm) 18 ± 5 16 ± 5 0.001
LVPWT (mm) 12 ± 3 12 ± 3 0.90
Left atrial diameter (mm) 44 ± 7 42 ± 6 0.02
LV ejection fraction 64 ± 10 67 ± 5 0.002
LV ejection fraction < 50% 12 (8) 1 (1) 0.004
LV outflow tract gradient at rest (mmHg) 0 [0–28] 23 [0–55] < 0.001
LV outflow tract gradient with Valsalva (mmHg) 33 [0–54] 38 [0–77] 0.57

Table 1 Baseline clinical characteristics of the study sample



Page 6 of 10Akita et al. Echo Research & Practice           (2024) 11:23 

clinical parameter used in the reference model are shown 
in Table S2. The calibration plot in the test set is shown in 
Figure S3. The decision curve analysis (Figure S4) showed 
that the net benefit of the combined model was higher 
than the reference model in the clinically reasonable 
range of threshold probability.

Discussion
Summary of findings
In the present cross-sectional study of 160 cases with 
LGE and 163 cases without LGE among patients with 
HCM, the discriminative ability of the novel model 
combining the clinical-derived reference model and the 
DCNN-derived probability significantly outperformed 
that of the reference model in the independent test set. 
The present study serves as the first investigation demon-
strating the additional value of deep learning-based anal-
ysis of echocardiographic images in discriminating LGE 
on CMR in patients with HCM.

Clinical importance of discriminating LGE on CMR in HCM
LGE in HCM typically represents myocardial fibrosis [2–
5]. The prevalence of LGE in the adult HCM population 
has been reported to be between 50 and 70%, which is in 
agreement with our finding (50%) [37]. Although LGE in 
HCM has been associated with an increased risk of SCD 
from ventricular arrhythmias [6–9], these potentially 
lethal arrhythmias can be appropriately aborted by ICD 
[10–12]. Identification of high-risk HCM subpopulations 
through detecting LGE on CMR contributes to reduced 
disease-specific mortality by subsequently facilitating 
ICD implantation [6–9]. However, in certain circum-
stances, patients have difficulties in undergoing CMR 
with gadolinium enhancement for SCD risk stratification 
due to accessibility, cost, MRI-incompatible implanted 
devices, and end-stage renal disease [13, 15–17]. More-
over, it is often challenging to perform MRI in pediatric 
patients and those with claustrophobia as they might 

require sedation or intubation [14]. Thus, it is clinically 
important to specify patients with HCM who have a high 
pre-test probability of LGE on CMR because CMR would 
be more likely to change their clinical management in 
such cases. Our new discrimination model based on deep 
learning analysis of echocardiographic images would 
help physicians and patients determine the utility of 
CMR more accurately. Furthermore, patients who cannot 
undergo CMR may benefit from this model of discrimi-
nating LGE as it would prompt considering alternative 
tests that can be implemented for further risk stratifica-
tion (e.g., Holter monitoring) in high-risk patients.

Clinical utility of the deep learning-based model in 
comparison with the reference model
In general, the threshold probability (x-axis) of the deci-
sion curve represents the minimum probability which 
would be required for a clinician and/or patient to order/
undergo the management option of interest. In the pres-
ent study, the management option of interest is CMR 
with gadolinium enhancement. The threshold probability 
is typically determined by balancing the perceived risk 
and benefit of the management of interest. In our study, 
the risk can be defined as complications of CMR with 
gadolinium enhancement such as claustrophobia event 
(0.7%) [14], allergic reaction (0.4%) [38], and nephrogenic 
systemic fibrosis (0.1%; prevalence of end-stage renal 
disease in HCM is 2–3% [39] and nephrogenic systemic 
fibrosis occurs in 3–7% after gadolinium enhancement in 
patients with end-stage renal disease, [17] thus the risk 
is ~ 0.1% in the overall HCM population), accounting 
for ~ 1.2% of overall patients with HCM. The benefit can 
also be defined as the prevention of SCD by ICD through 
accurate detection of LGE on CMR. Given that the prev-
alence of LGE was approximately 50–70% [37] and that 
4.7% of patients with positive LGE experienced SCD, 
[9] the benefit can be roughly calculated as 2.4–3.3%. 
Assuming that CMR complications and SCD are equally 

Positive LGE
(n = 160)

Negative LGE (n = 163) P value

Mitral valve SAM 59 (40) 73 (49) 0.33
Degree of mitral regurgitation* 2.0 [1.0–2.5] 2.0 [1.0–2.5] 0.92

CMR characteristics
LV mass (g) 202 ± 64 180 ± 78 0.09
LV end-diastolic volume (mL) 153 ± 39 148 ± 38 0.26
LV end-systolic volume (mL) 61 ± 27 53 ± 20 0.004
Stroke volume (mL) 92 ± 26 94 ± 23 0.60

Data are given as n (%), mean ± SD, or median [25th − 75th percentile]
*Degree of mitral regurgitation was converted to numerical values according to the following rule: none = 0, trace = 1, trace to mild = 1.5, mild = 2, mild to 
moderate = 2.5, moderate = 3, moderate to severe = 3.5, severe = 4

ACE, angiotensin-converting-enzyme; AF, atrial fibrillation; ARB, angiotensin II receptor blocker; ASA, alcohol septal ablation; BMI, body mass index; CMR, cardiac 
magnetic resonance; HCM, hypertrophic cardiomyopathy; IVST, interventricular septum thickness; LGE, late gadolinium enhancement; LVDd, left ventricular end-
diastolic diameter; LVDs, left ventricular end-systolic diameter; LV, left ventricle; LVPWT, left ventricular posterior wall thickness; NSVT, non-sustained ventricular 
tachycardia; NYHA, New York Heart Association; SAM, systolic anterior motion; VT/VF, ventricular tachycardia or ventricular fibrillation

Table 1 (continued) 
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important, the threshold probability of approximately 
36–50% (= from 1.2/3.3 to 1.2/2.4) would be a reason-
able estimation. In the decision curve analysis, our new 
model demonstrated greater net benefit than the refer-
ence model or performing CMR for all patients within 
and beyond this range of threshold probability, highlight-
ing the clinical utility of our approach.

Prior studies to discriminate LGE on CMR
The literature has documented various methods to pre-
dict LGE on CMR. A clinical model including a history 
of non-sustained ventricular tachycardia, reduced LV 
systolic function, and maximal echocardiographic LV 
wall thickness was able to discriminate extensive LGE 
[40]. However, the study excluded patients at high risk 
for SCD, limiting the generalizability [40]. Recently, two 
studies estimated the likelihood and extent of LGE based 
on electrocardiographic findings. The first study was 

Fig. 2 Comparison of receiver-operating-characteristic curves in the test set. To discriminate late gadolinium enhancement on cardiac magnetic reso-
nance in patients with hypertrophic cardiomyopathy (HCM), the reference model (green dotted line) and the combined model (red solid line) were devel-
oped. The reference model included family history of HCM, maximum left ventricular (LV) wall thickness, LV end-diastolic diameter on echocardiography, 
LV end-systolic volume, LV ejection fraction < 50%, left atrial diameter, and LV outflow tract pressure gradient at rest. The combined model was developed 
by combining the reference model and deep convolutional neural network-based probability. DCNN, deep convolutional neural network; HCM, hyper-
trophic cardiomyopathy; LV, left ventricular
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relatively small (n = 42 including controls) and limited to 
patients who were 7–31 years old [41]. The second study 
used the Selvester QRS score to determine the presence 
and extent of LGE. Yet, it was limited by an extensive 
scoring system [42]. 

In addition to these clinical and electrocardiogram-
based discriminant models, two studies developed dis-
criminant models for LGE using CMR findings without 
gadolinium enhancement. One study utilized e-prime 
obtained from CMR for the discrimination of LGE [43]. 
Another study utilized balanced steady-state free pre-
cession cine sequences for the discrimination of LGE 
through deep learning algorithms [44]. Although these 
studies discriminated LGE based on CMR without gad-
olinium enhancement, they did not address the issue 
of limited accessibility, contraindications, and cost/
resources associated with CMR itself.

These prior studies collectively underscore the clini-
cal importance of discriminating LGE on CMR with 
other, less resource-intensive and more readily available, 
modalities. In this context, the ability of our deep learn-
ing-based approach to analyze echocardiographic images 
obtained in routine clinical care underscores the feasibil-
ity and generalizability of this novel method.

Advantages of deep learning-based approach over the 
reference model
The reference model using the clinical parameters with 
significant differences between positive and negative 
LGE patients showed modest accuracy for the discrimi-
nation of LGE on CMR in the present study. In this ref-
erence model, 5 out of the 7 parameters were based on 
echocardiographic parameters, the measurement of 
which is occasionally interpreter-dependent, resulting in 
intra- and inter-observer variabilities [23, 24]. Addition-
ally, even after going through specialized trainings, the 
interpretation of echocardiographic images can be sub-
jective and affected by human fatigue. By contrast, deep 
learning has a potential to overcome such variability in 
the assessment of echocardiographic measurements by 
humans because deep learning-based models allow for an 
accurate, consistent, rapid, and automated interpretation 

of echocardiographic images while reducing the risk of 
human errors [45, 46]. Furthermore, the present DCNN 
approach not only utilizes spatial information but also 
encompasses temporal data by incorporating the addi-
tional dimension of time.

Deep learning algorithm has shown a high potential 
to revolutionize the process of diagnosis and prognos-
tication in the fields of dermatology, [47] radiology, [48] 
and cardiology [18–20]. In the HCM population, a prior 
study reported that deep learning algorithms of echocar-
diographic images can distinguish HCM from cardiac 
amyloidosis and hypertensive LV hypertrophy [25–27]. 
The present study represents the first study to exhibit the 
additional value of deep learning-based analysis of echo-
cardiographic images to discriminate positive LGE on 
CMR in patients with HCM.

Potential limitations
The findings in the present study should be interpreted 
with several limitations in mind. First, the study sample 
consisted of patients who were enrolled in a tertiary care 
center and underwent CMR. Therefore, the inferences 
may not be generalizable to populations with less severe 
clinical manifestations or those who did not undergo 
CMR. Second, the sample size was relatively small for 
a study using DCCN, especially when the cohort was 
divided into the training and test sets. Third, a larger 
number of variables may show statistically significant dif-
ferences and become included in the reference model if 
the sample size was larger. Fourth, LGE was treated as a 
binary variable (presence or absence) and quantification 
was not performed to identify the extent of LGE. Further 
investigations with larger sample sizes may enable us to 
estimate not only the presence but also the extent and 
location of LGE. Fifth, although extensive LGE is a class 
IIb recommendation for ICD implantation in the 2024 
American guidelines, [2] this is not included in the Euro-
pean guidelines [3] and the presence or absence of LGE 
do not directly guide the decision of ICD implantation. 
Sixth, even if the pre-test probability for the presence of 
LGE is low, the patient should still undergo CMR when 
there are other appropriate indications, such as poor 

Table 2 Comparison of the predictive performances between two models in the test set
Prediction model AUC

(95% CI)
P value* Sensitivity†

(95% CI)
Specificity†
(95% CI)

PPV†
(95% CI)

NPV†
(95% CI)

Reference model 0.72
(0.57–0.86)

Reference 0.64
(0.43–0.82)

0.80
(0.59–0.94)

0.76
(0.53–0.92)

0.69
(0.49–0.85)

DCNN model + Reference model 0.86
(0.76–0.96)

0.04 0.84
(0.64–0.95)

0.76
(0.55–0.91)

0.78
(0.58–0.91)

0.83
(0.61–0.95)

*P value was calculated to compare the AUC of the reference model with that of the combined model, using Delong’s test

†The threshold probabilities of the reference model and the combined model to calculate each sensitivity, specificity, PPV, and NPV were 0.51 and 0.45, respectively, 
according to the cut-off points with the best Youden index

AUC, area under the receiver-operating-characteristic curve; CI, confidence interval; DCNN, deep convolutional neural network; NPV, negative predictive value; PPV, 
positive predictive value
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echocardiographic windows, the need to evaluate apical 
aneurysm/thrombus, and need for assessing myocardial 
perfusion. Seventh, the time difference between the CMR 
and the closest TTE was not the same, which might have 
resulted in disease progression in some patients. Eighth, 
not all patients with HCM underwent genetic testing. 
Ninth, myocardial samples were not available to confirm 
that the areas with LGE on CMR correspond with LV 
fibrosis. Last, by nature of the study design, no associa-
tion with subsequent clinical outcomes such as SCD was 
evaluated.

Conclusions
Compared to the reference model solely based on clini-
cal parameters, our new model integrating the reference 
model and deep learning-based analysis of echocardio-
graphic images demonstrated the superiority of dis-
tinguishing LGE on CMR in patients with HCM. For 
patients and treating physicians, the novel deep learn-
ing-based method in the present study can be used as an 
assistive technology to inform the decision-making pro-
cess of performing CMR with gadolinium enhancement. 
These findings should also facilitate further investigations 
to specify which echocardiographic features the deep 
learning models are mainly utilizing to improve the dis-
crimination of LGE on CMR in patients with HCM.
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