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Abstract
Objective ‒ Long COVID is a major health concern because
many patients develop chronic neuropsychiatric symptoms,
but the precise pathogenesis is unknown. Matrix metallo-
proteinase-9 (MMP-9) can disrupt neuronal connectivity and
be elevated in patients with long COVID.
Methods ‒ In this study, MMP-9 was measured in the
serum of long COVID patients and healthy controls, as
well as in the supernatant fluid of cultured humanmicroglia
cell line stimulated by recombinant severe acute respiratory
syndrome coronavirus 2 Spike protein, as well as lipopoly-
saccharide (LPS) and neurotensin (NT) used as positive con-
trols. MMP-9 was measured by commercial enzyme-linked
immunosorbent assay.
Results ‒ MMP-9 was significantly elevated in the serum
of long COVID patients compared to healthy controls.
Moreover, there was significant release of MMP-9 from a
cultured human microglia cell line stimulated by LPS, NT,

or Spike protein. We further show that pretreatment with
the flavonoids luteolin and tetramethoxyluteolin (methlut)
significantly inhibited the release of MMP-9 stimulated by
the Spike protein.
Conclusion ‒ MMP-9 from Spike protein-stimulated micro-
glia could contribute to the development of long COVID and
may serve as a target for treatment including the use of
luteolin.
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Abbreviations

CDC Centers for Disease Control and Prevention
ECM extracellular matrix
ELISA enzyme-linked immunosorbent assay
LPS lipopolysaccharide
MMP-9 matrix metalloproteinase-9
NT neurotensin
SARS-CoV-2 severe acute respiratory syndrome corona-

virus 2

1 Introduction

Long COVID has been considered the “Next National Health
Disaster” in the United States [1]. As many as 50% of those
infected with severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2) may develop long COVID [2], espe-
cially neuropsychiatric symptoms [3] known as Neuro
COVID [4,5] that may last up to 2 years, [6], and maybe
more common in patients with other chronic neurologic
diseases [7]. However, the precise pathogenesis of long
COVID has yet to be fully elucidated [8].

SARS-CoV-2 Spike protein may enter the brain from the
nose through the nasal neural mucosa following the olfac-
tory nerve tract [9]. While the exact brain pathogenetic
mechanisms remain unclear, evidence points to the invol-
vement of neuroinflammation [10,11], especially
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perivascular inflammation [12] and blood–brain barrier
(BBB) disruption [12,13], leading to neuronal damage
[14]. Autopsy studies of patients with COVID-19 showed
severe neuronal loss in the capillaries of the choroid
plexus [15], as well as neuronal necrosis and glial cell
hyperplasia [16]. A 2-year longitudinal study using plasma
proteomics to probe long COVID reported that pathways
related to neuron generation and differentiation were
persistently suppressed [17].

A critical component of neuronal connectivity is the
extracellular matrix (ECM) that can be disrupted by matrix
metalloproteinases (MMPs). MMPs are important in tissue
formation, neuronal network remodeling, and BBB func-
tion [18]. Matrix metalloproteinase-9 (MMP-9) has emerged
as an important molecule in neuropsychiatric [19,20] and
neurodegenerative disorders [21]. MMP-9 can disrupt the
polysaccharide scaffolding of the brain matrix and digest
tight junction proteins, thus disrupting neuronal connec-
tivity [22]. MMP-9 can cause vascular inflammation and
increase BBB permeability [23]. MMP-9 levels were ele-
vated in the serum of COVID-19 patients and were asso-
ciated with disease severity [24,25].

We investigated serum levels of MMP-9 in long COVID
patients, whether recombinant SARS-CoV-2 Spike protein
could stimulate the release of MMP-9 from cultured human
microglia and whether the flavonoid luteolin could inhibit
this process.

2 Methods

2.1 Patients

Patients (n = 13, 6 females and 7 males, mean age was 57
years old) were recruited from Southern Florida. Study
participants were recruited from a companion longitu-
dinal study of residents of South Florida who tested posi-
tive for SARS-CoV-2. Nova Southeastern University IRB No:
2020-590 (approved January 6, 2021, expires January 11,
2025). Individuals were recruited from those who tested posi-
tive for COVID-19 in Broward County andwere included in the
Florida Department of Health Bureau of Epidemiology COVID-
19 surveillance data, or in the records of Community Health of
South Florida Inc. (CHI), a Federally Qualified Health Center in
Miami-Dade County or in the records of participating commu-
nity-based provider offices. The inclusion/exclusion criteria
for unrecovered individuals were fatigue, as well as one addi-
tional symptom that began after positive SARS-CoV-2 test and
that the participant self-reported experiencing “a good bit of

the time,” “most of the time,” or “all of the time” during the
past month. Individuals were 18–65 years old andwere able to
consent to the phenotyping study. The unrecovered group had
moderate to severe illness as indicated by Patient-Reported
Outcomes.

Measurement Information System-29 [26] score of 45
or lower on the physical sub-score, fatigue that does not
resolve with rest and one additional symptom from the Cen-
ters for Disease Control and Prevention (CDC) SI screener.
Individuals were excluded from the study if they had medical
or psychiatric conditions diagnosed before testing positive for
SARS-CoV-2. Examples of exclusions were: severe chronic
obstructive pulmonary disease, organ failure, chronic infec-
tion, rheumatic and chronic inflammatory disease, chronic
lung disease, or major neurologic disease. In addition, the
following were assessed during clinical visits and patients
were excluded if there was evidence of abnormal diastolic
function or cardiomyopathy and/or O2 saturation of 92% or
below on the 6min exercise. Serum from healthy subjects
(n = 13, 6 females and 7 males, mean age was 57 years old)
was purchased from BioIvt Elevating Science (Hicksville, NY).

2.2 Human microglia cell culture

The immortalized human microglia-SV40 cell line (hTERT;
T0251) derived from primary human microglia was pur-
chased from Applied Biological Materials Inc. (ABM Inc.;
Richmond, BC, Canada) and cultured in Prigrow III medium
supplemented with 10% fetal bovine serum and 1% peni-
cillin/streptomycin in type I collagen-coated T25-flasks (BD
PureCoat™ ECM Mimetic Cultureware Collagen I peptide
plates, Becton Dickinson, Bedford, MA) as recommended
by the supplier. Microglia-SV40 maintains their phenotype
and proliferation rates for about ten passages, during which
all experiments were carried out using multiple thaws and
sub-cultured cells. Experiments were carried out in type I
collagen-coated plates (Becton Dickinson). Cell viability was
determined by trypan blue (0.4%) exclusion.

2.3 Cell treatments

SV40 microglia (2.5 × 105 cells) were stimulated with recombi-
nant full-length SARS-CoV-2 Spike protein (Abcam, Waltham,
MA, USA) at 10 ng/mL or lipopolysaccharide (LPS) and neuro-
tensin (NT) (from Sigma-Aldrich, St. Paul, MN, USA) at 10 ng/mL
and 10 nM, respectively, for 24 h. MMP-9 was measured in the
supernatant fluid by enzyme-linked immunosorbent assay
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(ELISA) (BioTechne, Minneapolis, MN) kits according to the
manufacturer’s instructions. Control cells were treated with
an equal volume of culture medium in all experiments. We
pre-incubatedmicroglia with either luteolin ormethlut (50 μM
from CAS Biosciences, NY, USA) in dimethylsulfoxide (<1%
final concentration) for 10min before incubation with Spike
protein for 24 h and then measured MMP-9 in the cell culture
supernatant by ELISA.

2.4 Statistical analysis

All experimental conditions were performed in triplicate
and all experiments were repeated at least three times
(n = 3). Results from cultured cells are presented as mean ±

SD. Comparisons between control and stimulated cells were
performed using either parametric tests (unpaired 2-tailed,
Student’s t-test, for independent samples) or Mann–Whitney
non-parametric test depending on the normality of distribution
that was checked with the Shapiro–Wilk’s test. Comparisons
among groups were performed with one-way analysis of var-
iance (ANOVA) followed by post-hoc analysis by Dunnett’s
Multiple Comparison Test or the Wilcoxon post-hoc paired
rank sum test. All statistical analyses were performed by using
GraphPad Prism version 10.0.3 (275) (GraphPad Software,
Boston, MA, USA).

Ethical statement: The research related to human use has
been complied with all the relevant national regulations,
institutional policies and in accordance the tenets of the
Helsinki Declaration, and has been approved by the authors’
institutional review board or equivalent committee; and the
specific national laws have been observed.

Informed consent: Informed consent has been obtained
from all individuals included in this study.

3 Results

We first measured serum MMP-9. There were significantly
increased levels of MMP-9 in the serum of long COVID
patients compared to healthy control subjects (Figure 1).

We then investigated whether SARS-CoV-2 Spike pro-
tein could stimulate the release of MMP-9 from cultured
human SV-40 microglia cell line. Incubation with the Spike
protein (1, 5, and 10 ng/mL) for 24 h significantly increased
the release of MMP-9 from microglia (Figure 2). LPS and NT
used as “positive” triggers also significantly increased MMP-
9 release compared to unstimulated control cells (Figure 2).

We then investigated the possible inhibitory effect of
the flavonoids luteolin (3′,4′,5,7-tetrahydroxyflavone) and
tetramethoxyluteolin (3′,4′,5,7-tetramethoxyflavone, methlut).
Pre-incubation of the microglia with either flavonoid (50 μM)
for 10min significantly inhibited the release of MMP-9 stimu-
lated by the Spike protein (Figure 3).

Figure 1: Scattergram of serum values of MMP-9. MMP-9 was measured
in the serum of long COVID patients (n = 13, mean age 57 years) and
healthy control subjects (n = 13, mean age 57 years) using commercial
ELISA kit. *p < 0.05; t-test compared to control subjects.

Figure 2:MMP-9 release from human microglia stimulated by SARS-CoV-
2 Spike protein. SV-40 microglia (2.5 × 105 cells) were stimulated with
recombinant full-length SARS-CoV-2 Spike protein (FL-Spike, 1, 5, 10 ng/mL),
LPS (10 ng/mL), or NT (10 nM) for 24 h, and MMP-9 was measured in the
supernatant fluid by ELISA. LPS and NT were used as “positive triggers.”
C = control. All conditions were performed in triplicate for each dataset
and repeated three times (n = 3). Results are presented as mean ± standard
error of the mean (SEM). Statistical significance is indicated as *p < 0.05
and ***p < 0.001.
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4 Discussion

Here we show that MMP-9 is elevated in the serum of long
COVID patients. Elevated serum MMP-9 levels have been
reported in COVID-19 [27] and were associated with symptom
severity [24,25]. MMP-9 polymorphisms were also reported to
increase the susceptibility to COVID-19, especially when accom-
panied by neurologic symptoms [13]. Blood MMP-9 levels were
also reported to be higher in the acute phase of Neuro COVID
patients [13]. MMP-9 has been associated with reduced BBB
integrity [13,18].

We also show that microglia release MMP-9 when sti-
mulated by SARS-CoV-2 Spike protein. We had previously
reported that SARS-CoV-2 Spike protein stimulated cul-
tured human microglia to secrete IL-1β, IL-18, and S100β,
associated with brain damage [28]. Additional evidence
indicates that the Spike protein can directly activate micro-
glia [29–31] leading to proinflammatory effects.

SARS-CoV-2 has not been shown to infect brain cells
[32–34]. The neurological issues of long COVID may, there-
fore, be attributed to the SARS-CoV-2 Spike protein [35]
stimulating microglia [36,37]. Perivascular inflammation
with lymphocytic and microglial infiltration was noted in
the brains of 52 deceased patients with COVID-19 [38].
Microglia have been considered key players in the devel-
opment of neuroinflammatory [39] and neurodegenerative

disorders [40,41]. The duration of long COVID may depend
on the length of antigen presence since it was reported that
Spike protein was detected in CD16+ monocytes in long
COVID patients up to 15–24 months post-infection [42]
and inside extracellular vesicles for up to 1 year [43,44].
Recent papers reported that the SARS-CoV-2 Spike protein
could be detected in long COVID patients for 6–12 months
[45]. One study reported the presence of antibodies against
Spike protein in the cerebrospinal fluid of 12 patients with
COVID-19 [46], as well as its presence in “reservoirs” [47]
including the “skull–meninges–brain axis” [48].

Our results also show that the flavonoids luteolin and
methlut could inhibit the release of MMP-9 stimulated by
the Spike protein. We had previously shown that these
flavonoids could inhibit cultured human microglia stimu-
lated by NT to release IL-1β [49] and reduce “brain fog”
associated with long COVID [50]. In particular, nobiletin
(hexamethoxyflavone) was reported to inhibit MMP-9 [51].
Another paper reported that methoxylated flavones inhibited
tumor necrosis factor-mediated induction of MMP-9 [52].

Others have reported that polyphenolic compounds
can lower MMP-9 levels in vivo and in vitro [53–55]. In
particular, resveratrol prevented ischemic brain injury in
a mouse model by inhibiting the activation of proinflam-
matory microglia via the MMP-9 pathway [56]. Interest-
ingly, minocycline has been reported to reduce MMP-9
effects in rodents [57–59]. Statins have also been reported
to have a beneficial effect by reducing hippocampal MMP-9
levels in a rat model of cognitive decline [60] and patients
with acute ischemic stroke [61]. In fact, MMP-9 inhibitors
have been considered for the treatment of traumatic brain
injury [62].

There are limitations in this study: (a) we do not know
the original severity of COVID-19 in the patients studied, (b)
the results were compared to healthy controls and not
recovered long COVID patients, and (c) the source of
MMP-9 in the serum of long COVID patients is also not
exactly known since SARS-CoV-2 could also stimulate the
release of MMP-9 from cultured macrophages [63] and sev-
eral cell types in the brain [64]. Another paper reported
that cultured human mast cells can also produce MMP-
9 [65].

We believe MMP-9 from Spike protein-stimulated micro-
glia could contribute to the development of long COVID and
may serve as a target for treatment including the use of
luteolin, especially in a liposomal form in olive pomace oil to
increase absorption (PureLutR).

Funding information: This research was partly funded by
a CDC grant 75D30120C09554 to NGK. “COVID-19 – Understanding
the Post-Viral Phase (COVID-UPP)” and by donations from an

Figure 3: Inhibition of SARS-CoV-2 Spike protein-stimulated release of
MMP-9 from human microglia by flavonoids. SV-40 microglia (2.5 × 105

cells) was stimulated with recombinant full-length SARS-CoV-2 Spike
protein (FL-Spike, 10 ng/mL) for 24 h after pre-incubation (10 min) with
either luteolin or methlut (50 μM). MMP-9 was measured in the super-
natant fluid by ELISA. All conditions were performed in triplicate for each
dataset and repeated three times (n = 3). Results are presented as mean
± SEM. Conditions with flavonoids were compared to the one with FL-
Spike protein. Statistical significance is indicated as *p < 0.05; **p < 0.01;
****p < 0.0001.
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