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A B S T R A C T

Background: The associations of sweetened beverages (SBs) and added sugar (AS) intake with adiposity are still debated. Metabolomics could provide
insights into the mechanisms linking their intake to adiposity.
Objectives:We aimed to identify metabolomics biomarkers of intake of low- and no-calorie sweetened beverages (LNCSBs), sugar-sweetened beverages
(SSBs), and ASs and to investigate their associations with body mass index, body fat percentage, and waist circumference.
Methods: We analyzed 3 data sets from the Dortmund Nutritional and Anthropometric Longitudinally Designed (DONALD) cohort study, of children
who provided 2 urine samples (n ¼ 297), adolescents who provided a single urine sample (n ¼ 339), and young adults who provided a single plasma
sample (n ¼ 195). Urine and plasma were analyzed using untargeted metabolomics. Dietary intakes were assessed using 3-d weighed dietary records. The
random forest, partial least squares, and least absolute shrinkage and selection operator were jointly used for metabolite selection. We examined asso-
ciations of intakes with metabolites and anthropometric measures using linear and mixed-effects regression.
Results: In adolescents, LNCSB were positively associated with acesulfame (β: 0.0012; 95% confidence interval [CI]: 0.0006, 0.0019) and saccharin (β:
0.0009; 95% CI: 0.0002, 0.0015). In children, the association was observed with saccharin (β: 0.0016; 95% CI: 0.0005, 0.0027). In urine and plasma,
SSBs were positively associated with 1-methylxanthine (β: 0.0005; 95% CI: 0.0003, 0.0008; and β: 0.0010, 95% CI 0.0004, 0.0015, respectively) and 5-
acetylamino-6-amino-3-methyluracil (β: 0.0005; 95% CI: 0.0002, 0.0008; and β: 0.0009; 95% CI: 0.0003, 0.0014, respectively). AS was associated with
urinary sucrose (β: 0.0095; 95% CI: 0.0069, 0.0121) in adolescents. Some of the food-related metabolomics profiles were also associated with adiposity
measures.
Conclusions:We identified SBs- and AS-related metabolites, which may be important for understanding the interplay between these intakes and adiposity
in young individuals.
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Introduction

High consumption of sweetened beverages (SBs) or “soft drinks”
and added sugars (ASs), particularly among children and adolescents
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has emerged as an important nutrition and public health issue [1]. SBs
are generally divided into 2 categories, sugar-sweetened beverages
(SSBs) and low-calorie and no-calorie sweetened beverages
(LNCSBs). SSBs are a major source of ASs in the diet [2] and are
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argued to contribute to excess caloric intake and poor nutrition [3,4].
Regular consumption of SBs is associated with various health condi-
tions, such as weight gain, obesity, type 2 diabetes, cardiovascular
diseases, and some cancers [5–7]. However, some of these associations
are not consistent across studies [8,9].

Dietary intake is typically assessed by self-reported dietary ques-
tionnaires, which are fraught with measurement errors [10]. Indeed,
underreporting of SB and AS intake because of social desirability bias
has been described [11]. In recent years, biomarkers of dietary intake
have been proposed as one of the ways to improve dietary exposure
assessment [12]. To date, however, few reliable biomarkers have been
identified and validated for use in epidemiologic studies [13–15]. Some
gains include the 24-hour urinary sucrose and fructose, which has been
applied in calibrating total sugar intakes in diverse populations [16,17]
although it does not distinguish intrinsic from AS. In our previous work
[18], we outlined that the 13C:12C carbon isotope ratio (δ13C),
measured in whole blood, red blood cells, hair, breath, and plasma
correlates with AS and SSB intake. However, sucrose from C4
photosynthetic plants (e.g., corn, sugarcane) moderately correlates with
δ13C compared with sucrose from C3 plants (e.g., sugar beets, most
fruits). Thus, the utility of this biomarker is limited by the source of the
sucrose [19]. Consistent with the earlier reviews [18,19], an updated
review on validity of biomarkers of food intake emphasizes the sus-
tained interest in discovery and validation of new biomarkers, partic-
ularly for foods like SSBs [20].

One issue that may have influenced the progress of biomarkers of
dietary intake such as for SBs and AS is that many candidates are
selected based on putative mechanisms. However, given the afore-
mentioned potentially complex metabolism of these foods, targeting
single or multiple selected pathways may be suboptimal. Large-scale
metabolite measurement through untargeted metabolomics ap-
proaches across multiple data sets and biosamples could help uncover
biomarkers of SBs and AS. Further, because metabolites of these foods
might exist in a continuum in body fluids, profiling of the plasma and
subsequently the urine could be an important research advance. Be-
sides, changes in the metabolome are likely to represent important
drivers of the relationship between the intake of intake of SBs and AS
and adiposity. Interestingly, limited studies have investigated untar-
geted metabolomics biomarkers of SSB intake [21–24], as well as the
metabolic changes of SSB intake with adiposity [24].

Leveraging 3 data sets across 2 biosamples within a well-
characterized cohort of children and adolescents, we aimed to
explore metabolomics biomarkers of SBs and AS intake and to
investigate their associations with 3 anthropometric measures of
adiposity: BMI, body fat percentage (%BF), and waist circumference
(WC).

Methods

Study design
The Dortmund Nutritional and Anthropometric Longitudinally

Designed (DONALD) study is an open cohort in Dortmund, Germany,
that has been recruiting infants in their first year of life since 1985.
Participants undergo their first examination at 3 mo of age, followed by
3 additional visits in their first year of life, 2 visits in the second year,
and then annually until young adulthood. Regular examinations
include dietary intake, anthropometrics, urine samples (starting at age
3–4 y), blood samples (starting at age 18 y), and interviews on lifestyle,
sociodemographics, and medical history. A more detailed description
of the DONALD study is described elsewhere [25]. The DONALD
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study was approved by the Ethics Committee of the University of Bonn
and conducted according to the guidelines of the Declaration of Hel-
sinki. Written informed consent was obtained from the parents and
from adolescents aged 16 y and above.

Study population
This analysis included 3 study samples, hereinafter termed children

urine, adolescent urine, and young adult plasma. The eligible partici-
pants for children urine were individuals with two 3-d weighed dietary
records (3d-WDRs) and 2 urine collections, and for adolescent urine,
individuals with one 3d-WDR and 1 urine collection. Young adult
plasma comprised individuals with 3 or more 3d-WDR assessments
within the last 5 years preceding the date of blood draw. Figure 1
provides an overview of the 3 study samples and the analytical plan.
Supplemental Figure 1 provides a detailed flowchart and the overlap of
participants across the samples.

Measures

Dietary intake assessment
Study participants themselves, or assisted by their parents, weighed

all foods and beverages consumed as well as leftovers using electronic
food scales to the nearest 1 g. In situations where weighing is not
feasible, for example, out-of-home consumption, participants estimated
their intakes semiquantitatively using common household measures
(e.g., spoons, cups, portions). Participants provided information on
specific food items, their brands, ingredients, and preparation. Trained
dieticians entered the dietary records in the database after reviewing
them for completeness and plausibility. Using a continuously updated
in-house food composition database [26], food group intakes were
determined. The nutritional content of staple foods was based on
German food composition tables, while the energy and nutrient values
of commercial food products were determined by recipe simulation.

Four food groups were included in this analysis: SSB included a
diverse group of nondairy beverages with AS, including sweetened
fruit juice drinks, sodas, sport energy drinks, and other flavored,
carbonated, and noncarbonated soft drinks. LNCSB included afore-
mentioned beverages but artificially sweetened with low- or no-caloric
sweeteners, without AS. SBs included both SSB and LNCSB. AS
included all sugars added to foods either during processing or
manufacturing or during preparation or at the table [27]. The individual
average of food intake from 3 recording days in grams per day was
calculated.

Anthropometric measurements
Experienced nurses conducted different sets of anthropometric

measurements. BMI (in kg/m2) and WC (centimeters) were determined
by standard procedures. In children, BMI standard deviation scores
(SDSs) were calculated using the national age- and sex-specific BMI
percentiles as per Kromeyer–Hauschild method [28]. %BF was esti-
mated from 4 skinfold thickness measurements (biceps, triceps, iliaca,
and scapula), following age- and sex-specific equations by Deurenberg
et al. [29]. Anthropometric measurements for this analysis were taken
on, or nearest to, the date of urine collection and blood draw.

Other covariates assessment
Habitual leisure time physical activity was assessed using a ques-

tionnaire based on the Adolescent Physical Activity Recall Question-
naire [30], considering participation in organized (e.g., club sport, gym)
and unorganized sports (e.g., cycling) over the previous year. Energy



FIGURE 1. Study design and analysis. (A) Analytic samples and data collection. Children urine included 2 dietary assessments and 2 urine collections.
Adolescent urine included single dietary assessment and urine collection. Young adult plasma included multiple (3–6) dietary assessments within 5 y preceding a
single blood draw. (B) Study analytic plan. %BF, body fat percentage; 3d-WDR, 3-d weighed dietary record; LASSO, least absolute shrinkage and selection
operator; T1–T6, dietary assessments; WC, waist circumference.
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expenditure from these activities was quantified in metabolic equiva-
lent of task hours per week. Self-reported smoking and alcohol status in
adolescents and young adults was categorized into current, former, or
never. Lifestyle factors (physical activity, smoking, and alcohol use)
were assessed in adolescents and young adults only.

Urine samples
The 24-h urine samples were collected on the third day of their

dietary assessment, following a standardized protocol. Within this
period, urine was collected in preservative-free plastic containers and
stored at less than �12�C until transferred to the study center where
they were stored at �22�C until thawed and analyzed.

Blood samples
A fasting blood sample was drawn from participants and centri-

fuged at 4�C for 15 min (3100 U/min, 2000 G). Serum, plasma (citrate,
EDTA) and buffy coat aliquots (500 μL each) were subsequently stored
at �80�C. EDTA plasma was used in this study.

Metabolite profiling
Two independent laboratories, Metabolon and International Agency

for Research on Cancer (IARC), performed untargeted metabolomics
analysis, as shown in Figure 1. Metabolon used ultra–high-perfor-
mance liquid chromatography-tandem mass spectroscopy to identify
metabolites in adolescent urine and young adult plasma samples.
Briefly, Metabolon carried out a set of standardized procedures from
sample accession and preparation to analysis, raw data extraction and
peak identification, following their internal standards [31]. In profiling
the plasma samples, both metabolomics and lipidomics techniques
were applied. In adolescent urine samples, 1407 features were anno-
tated: 940 with known biochemical identity and 467 with no assigned
chemical identity. In plasma samples, 1042 features were annotated:
811 with known chemical identity and 231 unknown.

IARC performed untargeted metabolite profiling using a ultra–high-
performance liquid chromatography-tandem mass spectroscopy system
(Q Exactive; Thermo Fischer Scinetific). Children urine samples (n ¼
600, representing 2 collections per participant at 2 time points) were
analyzed next to each other in random order, and sample pairs were
randomized across the batch. There were 4 independent analytical
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batches consisting of 2 individual 96-well plates. The mass spec-
trometer was operated in a positive/negative switching polarity. Pre-
processing was performed using Compound Discoverer 3.3 software
(Thermo Fisher Scientific) with minimum peak intensity threshold at
500,000, mass tolerance at 5 ppm, and feature alignment between
samples performed with maximum retention time window of 0.05 min
and mass tolerance of 5 ppm. Unlike Metabolon’s approach, metabolite
features from IARC were first analyzed with dietary intake, and only
features related to dietary intake were subsequently annotated. A
detailed description of the analytical, quality control standards, and
annotation procedures for both laboratories, is provided in Supple-
mental Methods.
Statistical analyses

Participant characteristics
We calculated the median (25% and 75% percentile) for continuous

variables and count (percentage) for categorical variables.

Preprocessing metabolomics data
We excluded metabolites that had missing values in >30% of the

consumers of each food group. Missing values were imputed with half
of the minimum value observed within each batch, with the assumption
of missing due to low concentration below the instrument’s detection
limit. Subsequently, these were natural log-transformed and standard-
ized to have a mean of zero and unit variance. We corrected analytical
batch effects by ber bagging method using the ‘dbnorm’ R package
[32].

Metabolites selection
We applied 3 machine learning (ML) methods to first select and

validate food-related metabolites, acknowledging the high dimen-
sionality of the data sets and correlation among metabolites. These
were random forest (RF), partial least squares (PLS), and least absolute
shrinkage and selection operator (LASSO) with a bagging strategy. The
PLS and RF were implemented using the multivariate modeling with
minimally biased variable selection in R algorithm, a statistical vali-
dation framework that integrates a recursive ranking and backward
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elimination of variables within a repeated double cross-validation
scheme [33]. The models were tuned following author recommenda-
tions [33] and were repeated 50 times to identify a stable set of me-
tabolites ranked based on their importance to predict the respective
dietary variable. The LASSO models were implemented using a
variable-selection oriented LASSO bagging algorithm, combining
LASSO regression with bootstrap aggregating to enhance stability and
robust selection of biomarkers [34]. We generated 1000 bootstrap
samples from the original data sets, and LASSO models were fitted on
each sample using 5-fold cross-validation, all other parameters as per
author description [34]. We applied the curve elbow point method to
detect sharp drops in the observed frequency of variable selection.
Metabolites with selection frequencies at and above the last elbow
point were retained, if more than 1 point existed. For downstream
analyses, we considered only metabolites selected by �2 ML methods
to reduce the likelihood of selecting metabolites due to noise or
method-specific bias. An overview of these steps is provided in Sup-
plemental Figure 2.

Associations of food groups with metabolites
We used multivariable linear regression and linear mixed-effects

models to examine the association of dietary intake and individual me-
tabolites, for cross-sectional and repeated measures, respectively. In all
regression models, we regressed each metabolite on intake (grams per
day) adjusting for age, sex, and energy intake. For adolescents and young
adults, we further adjusted for lifestyle factors (physical activity, alcohol,
and smoking status). In children urine samples, the linear mixed-effects
models included a random intercept for each participant. Because of the
analytic design of long-term dietary assessment, plasma models were
additionally adjusted for the difference in time between dietary assess-
ment and blood draw (i.e., difference¼ age at blood draw –mean age of
dietary assessments) and the number of dietary assessments. To account
for multiple testing, we applied the Benjamini–Hochberg procedure to
control the false discovery rate at 5%.

Associations of food-related metabolites with anthropometric
measurements

To assess the associations of the food-related metabolites and
adiposity, separate linear regression and linear mixed-effects models
were constructed for each adiposity measure (BMI, %BF, andWC). We
modeled these as response variables and sets of food-related metabo-
lites and covariates [age, sex, energy intake, birthweight, and time
difference (in days) between biosample collection and anthropometric
measurements, and additionally, in adolescents and young adults,
physical activity, alcohol, and smoking status] as predictor variables. In
children urine samples, a random intercept for each participant was
specified. To assess multicollinearity of the predictor variables, we used
the variance inflation factor, and whenever appropriate, removed
redundant metabolites with variance inflation factor of >10 [35],
progressively starting from the highest. Considering the strong corre-
lation between anthropometric measurements, we applied the modified
Bonferroni method [36] to adjust the significance level for multiple
testing.
Missing covariates
We used the K-Nearest Neighbor algorithm to impute the missing

values in birthweight, physical activity, alcohol, and smoking status,
with 10 nearest neighbors based on nonmissing values in other cova-
riates (sex, age, BMI, energy intake, birthweight, physical activity, and
alcohol and smoking status) implemented in the VIM R package. All
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statistical analyses were conducted using R 4.1.3 (The R Foundation
for Statistical Computing).

Results

Participant characteristics
The median ages at biosample collection were 7.0 y (T1) and 8.0 y

(T2) for children, 18.0 y for adolescents, and 18.1 y for young adults.
Sex distribution was 52.9% female for T1 and 51.5% for T2 in children;
49.0% for adolescents; and 55.4% for young adults (Table 1).
Metabolite selections
There was good agreement in metabolite selections across the ML

approaches. The PLS consistently selected more metabolites and
shared common selections with the LASSO bagging algorithm,
compared with the RF. The metabolite selections are provided for
children urine, adolescent urine, and young adult plasma in Supple-
mental Tables 1–3, respectively.
Associations of food groups with urine metabolites in
children

LNCSB, SSB, SBs, and AS were associated with 4, 18, 18, and 28
metabolite features, respectively (Supplemental Table 4). Of the 8
biochemically identified metabolites, 7 associations were food specific
(LNCSB positively associated with saccharin; SSB negatively associ-
ated with 4-pyridoxic acid; SBs negatively associated with kynurenic
acid; and AS positively associated with theobromine, 7-methylguanine,
aspartyphenylalanine, and negatively associated with uric acid). There
was 1 common food-metabolite association: SSB, SBs, and AS were all
associated with higher urinary concentrations of decadienoyl carnitine
C10:2 (Table 2).
Associations of food groups with urine metabolites in
adolescents

Figure 2 summarizes metabolites associated with SBs and AS.
LNCSB intake was associated with 11 metabolites (6 of them were
specific to LNCSB), SSB intake with 37 metabolites (12 specific), SBs
intake with 34 metabolites (9 specific), and AS intake with 32 me-
tabolites (24 specific). All food-specific and nonspecific associations in
adolescent urine samples can be found in Supplemental Table 5.

Briefly, LNCSB intake was associated with higher concentrations of
acesulfame (β: 0.0012; 95% confidence interval [CI]: 0.0006, 0.0019)
and saccharin (β: 0.0009; 95% CI: 0.0002, 0.0015). SSB intake was
associated with higher concentrations of caffeine metabolites: 1-meth-
ylxanthine (β: 0.0005; 95% CI: 0.0003, 0.0008) and 5-acetylamino-6-
amino-3-methyluracil (AAMU; β: 0.0005; 95% CI: 0.0002, 0.0008).
Notably, SSB and SB intakes were also associated with elevated con-
centrations of unknown metabolites X-17679 (β: 0.0010; 95% CI:
0.0008, 0.0013; and β: 0.0010; 95% CI: 0.0007, 0.0012); X-19497 (β:
0.0005; 95% CI: 0.0003, 0.0008; and β: 0.0005; 95% CI: 0.0003,
0.0008); and X-17328 (β: 0.0005; 95% CI: 0.0003, 0.0008; and β:
0.0006; 95% CI: 0.0003, 0.0008), respectively. Other noteworthy as-
sociations included N1-methyl-2-pyridone-5-carboxamide (2PYr) with
SSBs (β: 0.0004; 95% CI: 0.0002, 0.0007) and SBs (β: 0.0004; 95%
CI: 0.0002, 0.0007) and N,N-dimethylalanine with SSBs (β: 0.0005;
95% CI: 0.0002, 0.0007) and SBs (β: 0.0005; 95% CI: 0.0003, 0.0008).
AS intake was associated with higher concentrations of sucrose (β:
0.0095; 95% CI: 0.0069, 0.0121), X-17679 (β: 0.0098; 95% CI:



TABLE 1
Basic characteristics of the study population1

Children urine Adolescent urine Young adult plasma

n T1, n ¼ 297 n T2, n ¼ 270 n Urine, n ¼ 339 n Plasma, n ¼ 195

Sex: female 297 157 (52.9) 270 139 (51.5) 339 166 (49.0) 195 108 (55.4)
Age at biosample collection (y) 297 7.0 (7.0, 7.2) 270 8.0 (8.0, 8.2) 339 18.0 (17.0, 18.1) 195 18.1 (18.1, 18.2)
BMI (kg/m2) 297 15.8 (15.0, 17.1) 270 16.2 (15.1, 17.5) 339 21.9 (19.9, 24.0) 195 22.2 (20.1, 24.5)
Body fat percentage 296 17.3 (14.7, 20.4) 270 17.5 (14.8, 21.1) 339 22.6 (18.4, 27.1) 195 23.6 (19.2, 28.1)
LNCSB (g/d) 297 0.0 (0.0, 1022.3) 270 0.0 (0.0, 443.3) 339 0.0 (0.0, 0.0.0) 195 0.0 (0.0, 54.2)
Sugar-sweetened beverage
(g/d)

297 44.0 (0.0, 163.3) 270 55.8 (0.0, 166.9) 339 133.3 (0.0, 418.3) 195 124.9 (51.2, 324.4)

Total sweetened beverages
(g/d)

297 66.7 (0.0, 198.3) 270 66.7 (0.0, 216.9) 339 166.7 (0.0, 508.3) 195 163.8 (72.8, 408.4)

Added sugar (g/d) 297 46.5 (33.7, 64.7) 270 49.9 (35.0, 72.3) 339 62.2 (35.7, 89.9) 195 62.2 (43.8, 82.2)
Added sugar (% energy) 297 12.5 (9.4, 16.3) 270 12.5 (9.1, 17.2) 339 11.6 (7.4, 16.0) 195 12.5 (9.6, 15.3)
TEI (kcal/d) 297 1527.3 (1310.0, 1736.2) 270 1635.2 (1402.2, 1840.3) 339 2126.9 (1748.5, 2582.1) 195 1978.1 (1697.0, 2390.1)
Dietary assessments 297 1.0 270 1.0 339 1.0 195 4.0 (4.0, 5.0)
Physical activity (MET-h/w) — — — — 215 34.0 (14.1, 54.8) 184 30.1 (12.1, 52.9)
Smoking status — — — — 211 142
Never — — — — — 155 (73.5) — 98 (69.0)
Former — — — — — 23 (10.9) — 21 (14.8)
Current — — — — — 33 (15.6) — 23 (16.2)

Alcohol status — — — — 179 153
Never — — — — — 24 (13.4) — 20 (13.1)
Former — — — — — 27 (15.1) — 31 (20.3)
Current — — — — — 128 (71.5) — 102 (66.7)

Abbreviations: LNCSB, low- and no-calorie sweetened beverages; MET-h/w, metabolic equivalent of task-hours per week; TEI, total energy intake.
1 Data are given as n (%) and median (25%, 75%) for categorical and continuous variables, respectively. In children analytic sample, of the 297 participants in

T1, 270 had repeated measures (T2). Although blood samples are collected at the age of 18 y or older, the dietary assessments in “young adults” mostly occurred
during adolescence. Differences in n are due to missing data.

TABLE 2
Multivariable linear regression estimates of the associations of food groups with urine metabolites in children (n ¼ 297)

Food Metabolite HMBD ID β 95% CI

Lower Upper

LNCSB Saccharin HMDB0029723 0.0016 0.0005 0.0027
SSB Decadienoyl carnitine (C10:2) 0.0014 0.0009 0.0019

4-pyridoxic acid HMDB0000017 �0.0006 �0.0011 �0.0002
SBs Decadienoyl carnitine (C10:2) 0.0013 0.0008 0.0017

Kynurenic acid HMDB0000715 �0.0008 �0.0013 �0.0003
AS Decadienoyl carnitine (C10:2) 0.0120 0.0085 0.0155

Theombromine HMDB0002825 0.0080 0.0044 0.0116
7-Methylguanine HMDB000089 0.0055 0.0020 0.0092
Aspartylphenylalanine HMDB0000706 0.0050 0.0016 0.0084
Uric acid HMDB0000289 �0.0038 �0.0072 �0.0003

Abbreviations: AS, added sugar; CI, confidence intervals; HMBD ID, human metabolome database identification; LNCSB, low- and no-calorie sweetened
beverages; SB, total sweetened beverage; SSB, sugar-sweetened beverage.
Models adjusted for age, sex, and energy intake, with a random intercept for each participant. Only biochemically identified metabolites with false discovery
rate–adjusted q value <0.05 are shown. Complete list is given in Supplemental Table 1.
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0.0073, 0.0124), and 1-methylxanthine (β: 0.0084; 95% CI: 0.0057,
0.0111).
Associations of food groups with plasma metabolites
The associations of SBs and AS intakes with plasma metabolites are

provided in Table 3. LNCSB intake was associated with 3 metabolites
(2 of them specific to LNCSB intake), SSB with 11 metabolites (5
specific), SBs with 15 metabolites (8 specific), and AS with 3 metab-
olites (1 specific). Notably, 1-methyxanthine and AAMU were posi-
tively associated with SSBs (β: 0.0010; 95% CI: 0.0004, 0.0015; and β:
0.0009; 95% CI: 0.0003, 0.0014); SBs (β: 0.0010; 95% CI: 0.0005,
0.0015; and β: 0.0008; 95% CI: 0.0003, 0.0013); and AS (β: 0.0089;
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95% CI: 0.0029, 0.0150; and β: 0.0091; 95% CI: 0.0031, 0.0151),
respectively. Moreover, SSBs and SBs were associated with higher
concentrations of caffeine (β: 0.0010; 95% CI: 0.0004, 0.0015; and β:
0.0009; 95% CI: 0.0005, 0.0014) and 1-3-dimethylurate (β: 0.0009;
95% CI: 0.0003, 0.0014; and β: 0.0008; 95% CI: 0.0004, 0.0013),
respectively. All food-specific and nonspecific associations in plasma
can be found in Supplemental Table 6.
Associations of food-related metabolites with
anthropometric measures

In children, 4 AS-related metabolite features, but of unknown
biochemical identities, had mixed associations with BMI SDS and %



FIGURE 2. The associations of food groups with urine metabolites in adolescents. All models were adjusted for age, sex, energy intake, physical activity,
alcohol and smoking status. Metabolites with false discovery rate–adjusted q value <0.05: AS, n ¼ 32; LNCSB, n ¼ 11; SSB, n ¼ 37, and SBs, n ¼ 34. The
histogram bars represent the log-transformed P values: turquoise, positive association; light red, negative. *Metabolites not confirmed based on authentic
standard, but Metabolon are confident in its identity. AS, added sugar; LNCSB, low- and no-calorie sweetened beverage; SB, total sweetened beverage; SSB,
sugar-sweetened beverage.
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BF (Table 4). One metabolite feature “214.08427@3.876” was posi-
tively associated with both BMI SDS (β: 0.08; 95% CI: 0.01, 0.014)
and %BF (β: 0.59; 95% CI: 0.16, 1.02).

In adolescent urine samples, acesulfame was positively associated
with BMI (β: 0.82; 95% CI: 0.43, 1.22) and %BF (β: 0.92; 95%CI: 0.36,
1.47). 2PYr was positively associated with BMI (β: 0.63; 95% CI: 0.21,
1.05),%BF (β: 0.86; 95%CI: 0.27, 1.44), andWC (β: 1.98; 95%CI: 0.64,
3.32). Decanoylcarnitine (C10) was also positively associated with BMI
(β: 1.09; 95%CI: 0.62, 1.56),%BF (β: 1.56; 95%CI: 0.92, 2.20), andWC
(β: 4.41; 95% CI: 2.85, 5.96). Two metabolites were inversely associated
with all adiposity measures: N,N-dimethylalanine with BMI (β: �0.61;
95% CI: �1.03, �0.18); %BF (β: �1.18; 95% CI: �1.78, �0.58); and
WC (β: �2.27; 95% CI: �3.66, �0.89); and 3-hydroxyhexanoate with
BMI (β:�0.96; 95%CI:�1.49,�0.42);%BF (β:�1.43; 95%CI:�2.15,
�0.71); and WC (β: �3.14; 95% CI: �4.86, �1.42) (Table 4).

In young adult plasma samples, 2 unknown metabolites showed
positive associations: X-17340 with BMI (β: 1.02; 95% CI: 0.31, 1.74)
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and %BF (β: 1.26; 95% CI: 0.26, 2.26); and X-24337 with BMI (β:
0.76; 95% CI: 0.18, 1.33) only. Carotene diol (1) was inversely asso-
ciated with WC (β: �2.04; 95% CI: �3.50, �0.58) (Table 4).

Post-hoc exploration and analysis of bias
We sought to understand the overlapping of caffeine-related me-

tabolites with SSB and AS across biosamples and whether these as-
sociations were confounded by other dietary sources of caffeine, such
as coffee, chocolate, and other powdered instant beverages, including
tea. Indeed, caffeine and caffeine-related metabolites measured in our
study were associated with coffee intake, further providing plausibility
of our results (Supplemental Table 7), but the main findings were
robust to further adjustment with these foods (Supplemental Table 8).
Next, we determined the correlation between SSB and AS intake and
found a moderately strong Pearson correlation in adolescent urine (r:
0.65; 95% CI: 0.58, 0.71) and in young adult plasma (r: 0.78; 95% CI:
0.72, 0.83) samples.



TABLE 3
Multivariable linear regression estimates of the associations of food groups with plasma metabolites (n ¼ 195)

Food Metabolite HMBD ID β 95% CI

Lower Upper

LNCSB Octadecanedioylcarnitine (C18-DC)1 �0.0022 �0.0034 �0.0009
Adipoylcarnitine (C6-DC) HMDB61677 �0.0022 �0.0035 �0.0008
3-bromo-5-chloro-2,6-dihydroxybenzoic acid1 0.0020 0.0007 0.0033

SSB 1-methylxanthine HMDB10738 0.0010 0.0004 0.0015
Caffeine HMDB01847 0.0010 0.0004 0.0015
1,3-dimethylurate HMDB01857 0.0009 0.0003 0.0014
AAMU HMDB04400 0.0009 0.0003 0.0014
X-16087 �0.0008 �0.0014 �0.0003
3-CMPFP HMDB61643 �0.0008 �0.0014 �0.0002
X-13866 �0.0007 �0.0013 �0.0002
Cyclopropyl 10:1 fatty acid (1)1 �0.0007 �0.0013 �0.0001
Carotene diol (1) �0.0006 �0.0011 �0.0001
4-cholesten-3-one HMDB00921 �0.0007 �0.0013 �0.0001
X-24669 0.0007 0.0001 0.0012

SBs 1-methylxanthine HMDB10738 0.0010 0.0005 0.0015
Caffeine HMDB01847 0.0009 0.0005 0.0014
AAMU HMDB04400 0.0008 0.0003 0.0013
1,3-dimethylurate HMDB01857 0.0008 0.0004 0.0013
X-24951 0.0008 0.0003 0.0012
X-16087 �0.0007 �0.0012 �0.0003
X-24337 0.0007 0.0003 0.0012
3-CMPFP HMDB61643 �0.0008 �0.0012 �0.0003
X-11308 0.0007 0.0002 0.0012
Hydroquinone sulfate HMDB02434 �0.0007 �0.0012 �0.0002
X-17340 �0.0006 �0.0010 �0.0001
N-formylphenylalanine �0.0006 �0.0011 �0.0001
Dihomo-linolenoylcarnitine (C20:3n3 or 6)1 0.0005 0.0001 0.0009
Adipoylcarnitine (C6-DC) HMDB61677 �0.0006 �0.0011 �0.0001
Glutamine conjugate of C6H10O2 (1)1 �0.0006 �0.0010 �0.0001

AS Etiocholanolone glucuronide HMDB04484 �0.0115 �0.0177 �0.0053
AAMU HMDB04400 0.0091 0.0031 0.0151
1-methylxanthine HMDB10738 0.0089 0.0029 0.0150

Abbreviations: 3-CMPFP, 3-carboxy-4-methyl-5-pentyl-2-furanpropionate; AAMU, 5-acetylamino-6-amino-3-methyluracil; AS, added sugar; HMBD ID,
human metabolome database identification; LNCSB, low- and no-calorie sweetened beverage; SB, total sweetened beverage; SSB, sugar-sweetened beverage.
All models adjusted for age, sex, energy intake, physical activity, alcohol and smoking status, number of dietary assessments, and the difference in time between
dietary assessment and blood draw. Only metabolites with false discovery rate–adjusted q value < 0.05 are shown. The identities of X-, followed by a number
(e.g., X-16087), are unknown.
1 Metabolites not confirmed based on an authentic standard, but Metabolon are confident in its identity.
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Further, we examined potential bias due to half-minimum imputa-
tion of metabolite data in our analysis, as suggested previously
[37–39]. We compared our results with those from quantile regression
imputation, argued to be most optimal for limit of detection missing-
ness [37] and RF imputation, favored for missing completely at random
[39]. We observed comparable results across these imputation methods
(Supplemental Figure 3).

Finally, we investigated the robustness of the observed associations
of food-related metabolites with adiposity in adolescent urine and
plasma using a different approach. For each anthropometric measure-
ment, confounder-adjusted food-related metabolites were jointly fit in
adaptive elastic-net regularized linear regression models as described
previously [40]. We demonstrate that our main findings were robust
and invariant to statistical modeling approach (Supplemental Tables 9
and 10).

Discussion

This epidemiologic investigation, using 3 analytic data sets and
both urine and plasma samples, identified robust metabolomics bio-
markers of SBs and AS. In this study, we confirmed some previously
reported metabolite biomarkers of SBs and AS and, to our knowledge,
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uncovered new ones that are robust across analytic samples. We also
observed food-related metabolites that were consistently related to
multiple anthropometric measures of adiposity.

Our children and adolescent data showed that urinary acesulfame
and saccharin reflect LNCSB intake, with saccharin robust in both
analytic samples. Given that LNCSB represent one of the main dietary
sources of artificial sweeteners [41], acesulfame and saccharin are
plausible urinary metabolite biomarkers of LNCSB intake. The 2
metabolites share similar biochemical properties, including absorption,
distribution, metabolism, and excretion [42,43]. We did not detect the
other artificial sweeteners in our urine samples. Their specific meta-
bolism and excretion pathways may explain this result: metabolism
into other compounds diluted in a large plasma/urine pool (e.g.,
aspartame into aspartic acid and phenylalanine), not detected by our
analytical methods (e.g., steviol glycosides into glucuronides), or not
absorbed in the gut (e.g., sucralose) [42,43]. Taken together, these re-
sults also suggest that our findings for other food-related metabolites
are unlikely to be spurious and their relationship is metabolically
plausible.

Moreover, our results indicated that caffeine metabolites, particu-
larly 1-methylxanthine and AAMU, are consistently associated with
SSB intake in adolescent urine and plasma samples, independent of all



TABLE 4
Associations of food-related metabolites with adiposity measures

Food-metabolite β 95% CI P β 95% CI P β 95% CI P

Lower Upper Lower Upper Lower Upper

Children urine BMI SDS, n ¼ 297 %BF, n ¼ 297 WC
165.07939@2.148 0.04 0.01 0.08 0.00921 0.06 �0.17 0.30 0.5927 — — — —

214.08427@3.876 0.08 0.01 0.14 0.01561 0.59 0.16 1.02 0.00781 — — — —

153.04277@2.289 �0.03 �0.06 0.00 0.0515 �0.28 �0.51 �0.05 0.01761 — — — —

166.04911@1.902 �0.10 �0.18 �0.01 0.0293 �0.77 �1.39 �0.15 0.01581 — — — —

Adolescent urine BMI, n ¼ 339 %BF, n ¼ 339 WC, n ¼ 231
X-24333 1.31 0.70 1.92 <0.00011 1.10 0.25 1.95 0.01131 2.31 0.20 4.42 0.0321
Acesulfame 0.82 0.43 1.22 0.00011 0.92 0.36 1.47 0.00131 1.40 0.10 2.70 0.0352
2PYr 0.63 0.21 1.05 0.00341 0.86 0.27 1.44 0.00421 1.98 0.64 3.32 0.00401

N,N-dimethylalanine �0.61 �1.03 �0.18 0.00551 �1.18 �1.78 �0.58 0.00011 �2.27 �3.66 �0.89 0.00141

X-17679 �0.67 �1.20 �0.14 0.01281 �0.41 �1.15 0.33 0.2721 �2.47 �4.15 �0.80 0.00401

X-17010 �0.56 �1.00 �0.11 0.01391 �0.63 �1.25 �0.01 0.0470 �1.13 �2.56 0.30 0.1198
X-17328 0.51 0.09 0.93 0.01761 0.59 �0.00 1.18 0.0504 1.13 �0.16 2.43 0.0856
Decanoylcarnitine (C10) 1.09 0.62 1.56 <0.00011 1.56 0.92 2.20 <0.00011 4.41 2.85 5.96 <0.00011

3-hydroxyhexanoate �0.96 �1.49 �0.42 0.00051 �1.43 �2.15 �0.71 0.00011 �3.14 �4.86 �1.42 0.00041

γ-CEHC taurine2 �1.15 �1.89 �0.40 0.00261 �1.57 �2.58 �0.56 0.00241 �2.65 �4.90 �0.41 0.0209
X-18887 �0.77 �1.36 �0.18 0.01031 �0.67 �1.47 0.13 0.1018 �2.15 �3.92 �0.37 0.01791

Glucuronide of C8H14O2 (6)2 0.57 0.02 1.12 0.0422 1.17 0.43 1.91 0.00221 2.44 0.68 4.20 0.00691

X-24330 0.52 0.02 1.02 0.0434 0.85 0.16 1.53 0.01521 0.77 �0.93 2.46 0.3731
X-13844 �0.30 �0.78 0.18 0.2210 �0.79 �1.44 �0.13 0.01881 �1.33 �2.79 0.14 0.0751
Cis-urocanate �0.41 �0.82 �0.00 0.0488 �0.21 �0.78 0.36 0.4678 �1.55 �2.82 �0.29 0.01641

Young adult plasma BMI, n ¼ 195 %BF, n ¼ 195 WC, n ¼ 195
X-17340 1.02 0.31 1.74 0.00531 1.26 0.26 2.26 0.01351 2.05 0.31 3.79 0.0209
X-24337 0.76 0.18 1.33 0.01011 0.42 �0.38 1.22 0.2991 1.52 0.13 2.92 0.0326
Carotene diol (1) �0.67 �1.27 �0.07 0.0279 �0.73 �1.57 0.10 0.0855 �2.04 �3.50 �0.58 0.00631

Abbreviations: %BF, body fat percentage; 2PYr, N1-methyl-2-pyridone-5-carboxamide; SDS, standard deviation score; WC, waist circumference.
Children urine: Adjusted for age, sex, energy intake, birthweight, and time difference between biosample collection and anthropometric measurements (in their original scale). WC measurements not available.
Adolescent urine included all confounder adjustments for children samples, plus physical activity, smoking, and alcohol status. Young adult plasma included all confounder adjustments for adolescent urine samples,
plus time difference between dietary assessment and blood draw and number of dietary assessments. The identities of X, followed by a number (e.g., X-24333), and the format “165.07939@2.148” are unknown.
1 Significant results: children urine, P< 0.0211; adolescent urine, P< 0.0205; and young adult plasma P< 0.0199 (modified Bonferroni method). Only food-related metabolites considered significant with either

of the adiposity measures are shown.
2 Metabolites not confirmed based on authentic standard, but Metabolon are confident in its identity.
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other plausible sources of caffeine as shown in our sensitivity analysis.
Our study, therefore, confirms the association of SSB intake and
elevated concentrations of AAMU in plasma [44] and additionally
reports its reflection in urine.

A previous study proposed that SSB ingredients or their combina-
tions could be explored as potential biomarkers for SSB as a group or
subtypes of SSBs [19]. Although caffeine is one of the main ingredients
of most SSBs, and multiple caffeine metabolites were consistently un-
covered in adolescent urine and plasma, an important question remains
as to whether a single metabolite biomarker of caffeinated SSB is
possible. Based on our findings, it appears that a more promising
approach to advance this science should consider combining metabolite
biomarkers. We suggest that AAMU and 1-methylxanthine are prom-
ising urine and plasma metabolite biomarkers for caffeinated SSB and
could be considered alongside other biomarkers such as isotopic
signature δ13C or metabolite biomarkers of SSB ingredients such as
taurine [21]. Besides, the SSBs are diverse, with varied concentrations of
caffeine, taurine, and other ingredients, making it unlikely that a single,
ingredient-based metabolite could reliably reflect overall SSB intake.
The unknown biochemical compounds X-17679, X-19497, and
X-17328, associated with SSB intake, represent an additional challenge.

Our untargeted metabolomics approach also confirmed the well-
established association between AS intake and 24-hour urinary su-
crose, reported in targeted approaches [16,45,46]. Our AS variable
reflects intakes from various dietary sources. Despite a substantial
portion originating from SSB and sugary snacks (e.g., cakes, candies,
and desserts), 24-h urinary sucrose does not discriminate specific
sources and would not be an ideal biomarker for SSB. This limitation of
urinary sucrose, as well as of the isotopic signature δ13C, is extensively
discussed elsewhere [47].

Besides the aforementioned putative metabolite biomarkers of SBs
and AS, we also uncovered other metabolomics profiles worth high-
lighting. In children, SSB, SBs, and AS intake correlated with higher
concentrations of decadienoyl carnitine (C10:2), a medium-chain acyl-
carnitine involved in energy metabolism pathways [48]. We note that
medium-chain acyl-carnitines are increasingly investigated as links to
various metabolic dysfunctions [48–50] and depression [51]. To our
knowledge, the association of C10:2 with SBs and AS intake has not
been reported, but elevated concentrations of C10:2 with pork intake
have been described [52].

The association between AS and aspartylphenylalanine may reflect
the biochemical conversion of aspartame into aspartyl, phenylalanine,
and methanol [53], and could indirectly relate to the positive correla-
tion between SBs (sweetened with aspartame) and AS intakes as shown
in our sensitivity analysis. The underlying mechanism of AS intake and
elevated urinary 7-methylguanine, a biomarker of DNA damage and
metabolic rate [54] is unclear. However, in another study, higher con-
centrations of 7-methylguanine were associated with unhealthy dietary
habits [54].

Lower concentrations of kynurenic acid with intake of certain
foods, such as SBs in our study, has been described in a longitudinal
study [55], and this association has been observed in western-style
dietary pattern [56]. Of note, kynurenic acid is an important metabo-
lite of the tryptophan–kynurenine pathway, which is involved in
modulation of inflammation and oxidative stress [57].

In adolescent urine and young adult plasma samples, SBs were
associated with lower concentrations of 3-carboxy-4-methyl-5-pen-
tyl-2-furanpropanoic acid, a metabolite of furan fatty acids.
Humans acquire dietary furan fatty acids mainly from fish and fish
oil [58] and are metabolized into 2 major metabolites:
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3-carboxy-4-methyl-5-pentyl-2-furanpropanoic acid and 3-carbox-
y-4-methyl-5-propyl-2-furanpropanoic acid. Our findings across
biosamples are therefore of interest, considering the important role
furan fatty acids and health [58–60]. It is unclear whether there
exists any interaction between SBs and furan fatty acid metabolism
or this association is simply because dietary patterns characterized
by higher intakes of SBs and AS correlate with overall poor diet
quality [61,62]. In parallel, in adolescent urine and young adult
plasma samples, we also observed an inverse association between
SBs and hydroquinone sulfate, a specific marker of pear intake [63].
Pears are rich in dietary fibers, antioxidative flavonoids, and
anti-inflammatory properties [64].

Regarding food-metabolite associations with adiposity, 4 metabo-
lites in children urine samples showed mixed direction of associations
with BMI and %BF. Their biochemical identities could not be identi-
fied. In adolescent urine samples, acesulfame was positively associated
with both BMI and %BF. Acesulfame is not only a common sweetener
for beverages but also added in confectionery, sweet, and savory
snacks. Our sensitivity analysis showed poor correlation between
acesulfame and self-reported intakes of these food items. Thus, we
considered that LNCSBs were the likely primary source. This associ-
ation could also suggest reverse causation and residual confounding,
wherein individuals consuming LNCSB may already be overweight,
and their beverage choices may be motivated by the intention to lose
weight or to restrict their energy intake [65].

Similarly, the 2PYr concentrations were elevated with higher SSB
and SBs intakes and positively with BMI, %BF, and WC. SBs are
fortified with niacin, whose main metabolites are 2PYr and N-1-
methylnicotinamide. Beneficial effects of niacin include neuro-
protection, anti-inflammation, and immune modulation [66]. However,
short-term metabolic effects of overconsumption of fortified beverages,
such as glucose metabolism insulin secretion, have been observed in
adolescents [67]. Their long-term effects on adiposity warrant further
investigation.

Decanoylcarnitine (C10), positively associated with all adiposity
measures in our study, is one of the medium-chain acyl-carnitines
linked to body weight [68]. N,N-dimethylalanine and 3-hydroxyhexa-
noate were inversely associated with all adiposity measures; however,
their biological basis remains unclear.

In plasma, carotene diol, a marker of leafy green and cruciferous
vegetable intake [20], showed an inverse association with WC. This is
consistent with findings from a large cohort study, where serum ca-
rotenoids correlated negatively with visceral adiposity [69]. We note
that carotenoids are involved in oxidative and lipid metabolism [69]
and higher concentrations of carotenoids are favorable for metabolic
health. The biological role of X-17340 (associated with higher BMI
and %BF) and X-24337 (higher BMI) are unknown.

This study also contributes to the public health discourse on caffeine
and sugar pairing and health risks [70,71], by showing that caffeine
added to SBs is also reflected at molecular level. Two randomized
controlled trials showed that co-ingestion of carbohydrate load and
caffeine impaired glucose and insulin responses in young, healthy males
[72] and caffeine-containing energy drinks and shots resulted in acute
impaired glucoregulation in healthy adolescents [73]. It appears that
regular pairings of sugar and caffeine through SBs may influence
adiposity through some of these mechanisms. Indeed, a recent study
based on 3 large cohorts found that drinking unsweetened coffee, may
prevent weight gain, but this benefit was negated by adding sugar [74].

A key strength of our study lies in the dynamic DONALD cohort
design, which enables repeated dietary and biosample collections from
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the same individuals. The repeatedly measured metabolome in children
uncovered potentially transient diet-metabolome associations, which
may be missed in single point measurement. Our study applied multiple
robust ML approaches, which generally yielded comparable selections;
yet, the discrepancies also underscore the drawbacks of single-method
reliance in high-dimensional data.

Further, the use of 3 standard adiposity measures, which assess the
general and abdominal adiposity, enhances the translational utility and
potential for our findings to be replicated by larger epidemiologic
studies. To our knowledge, this study represents the first comprehen-
sive exploration of the metabolome with SB and AS intakes and their
associations with adiposity in young individuals. We demonstrate that
our approach lends more insights, providing complimentary informa-
tion on metabolic changes associated with intake, and their differences
may reflect biologically meaningful processes.

Our study had some limitations such as potential measurement er-
rors in self-reported dietary intakes. The interpretation of the associa-
tions of food-related metabolites and adiposity was limited by their
concurrent measurements. Future studies may investigate the longitu-
dinal associations of these metabolites with adiposity. We also
acknowledge that, even with the repeated double cross-validation and
bootstrap procedures, metabolite selection and the subsequent analysis
were conducted on the same data set for maximum use, which could
result in overly optimistic results in downstream regression analysis.
The biochemical names of many metabolites in children samples could
not be identified, limiting the comparison of our findings across age
groups. Finally, the DONALD cohort’s homogeneity and higher so-
cioeconomic status than the general population [25] warrants cautious
interpretation of the results. Nonetheless, its adiposity trends from birth
to 14 y are comparable with 2 other German cohorts [75], thus our
findings have reasonable generalizability.

In conclusion, we identified metabolomics signatures of SB and AS
intake and their associations with anthropometric measures of adiposity
in a well-characterized German birth cohort. If validated in other
studies, these metabolomics profiles could further elucidate the un-
derlying mechanisms through which these foods influence adiposity.
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