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Abstract
Background  Living kidney donors are screened pre-donation to estimate the risk of end-stage kidney disease (ESKD). We 
evaluate Machine Learning (ML) to predict the progression of kidney function deterioration over time using the estimated 
GFR (eGFR) slope as the target variable.
Methods  We included 238 living kidney donors who underwent donor nephrectomy. We divided the dataset based on the 
eGFR slope in the third follow-up year, resulting in 185 donors with an average eGFR slope and 53 donors with an acceler-
ated declining eGFR-slope. We trained three Machine Learning-models (Random Forest [RF],  Extreme Gradient Boost-
ing [XG], Support Vector Machine [SVM]) and Logistic Regression (LR) for predictions. Predefined data subsets served 
for training to explore whether parameters of an ESKD risk score alone suffice or additional clinical and time-zero biopsy 
parameters enhance predictions. Machine learning-driven feature selection identified the best predictive parameters.
Results  None of the four models classified the eGFR slope with an AUC greater than 0.6 or an F1 score surpassing 0.41 
despite training on different data subsets. Following machine learning-driven feature selection and subsequent retraining 
on these selected features, random forest and extreme gradient boosting outperformed other models, achieving an AUC of 
0.66 and an F1 score of 0.44. After feature selection, two predictive donor attributes consistently appeared in all models: 
smoking-related features and glomerulitis of the Banff Lesion Score.
Conclusions  Training machine learning-models with distinct predefined data subsets yielded unsatisfactory results. However, 
the efficacy of random forest and extreme gradient boosting improved when trained exclusively with machine learning-driven 
selected features, suggesting that the quality, rather than the quantity, of features is crucial for machine learning-model 
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performance. This study offers insights into the application of emerging machine learning-techniques for the screening of 
living kidney donors.

Graphical abstract
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Abbreviations
ACR​	� Urine albumin creatinine ratio
AI	� Artificial intelligence
AUC​	� Area under the curve
BMI	� Body mass index
CKD-EPI	� Chronic Kidney Disease Epidemiology 

Collaboration
CV	� Cross-validation
CT	� Computed tomography
eGFR	� Estimated glomerular filtration rate
ESKD	� End-stage kidney disease
HARP	� Hand-assisted retroperitoneoscopic donor 

nephrectomy
IQR	� Interquartile range
LR	� Logistic regression
ML	� Machine learning
RF	� Random forest
SD	� Standard deviation
SFS	� Sequential forward selection
SVM	� Support vector machine
XG	� Extreme gradient (XG) boosting

Introduction

Living kidney donors face the same risk of developing end-
stage kidney disease (ESKD) as the general population [1, 
2]. However, recent studies have called this statement into 
question [3, 4]. Many transplantation centers encounter a 
heterogeneous donor pool that is different from the healthy 
study cohorts of older investigations. Due to long transplan-
tation waiting lists, donors with a lower starting glomerular 
filtration rate (GFR) or other risk factors such as smoking 
history may be eligible for donation.

Therefore, thorough screening before donation is essen-
tial. Various pre-donation risk assessments have been devel-
oped to identify the donors at risk for ESKD [5–7]. We use 
the ESKD risk score for donors which was first published 
in 2016 by Grams et al. [7]. All risk scores provide appli-
cable tools for clinical practice but are based on statistical 
approaches. This is where Artificial Intelligence (AI) comes 
into play based on our hypothesis that artificial intelligence 
has the potential to improve predictions.

Whereas classic statistics outline relationships between 
a data sample and a population, Machine Learning (ML), a 
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subgroup of artificial intelligence, is capable of making per-
sonalized predictions about a desired outcome by attempting 
to uncover hidden patterns within the provided data [8]. The 
goal of identifying borderline donors may be facilitated with 
machine learning, enabling this donor group to be educated 
in detail about their possibly increased risk of kidney failure 
after donation and initiating intensified follow-up care.

The main focus of machine learning studies in transplan-
tation has been on the outcome of graft function and the 
prediction of graft failure [9–11]. When it comes to donors, 
machine learning research is very scarce. To our knowledge, 
there is only one recent work using machine learning, car-
ried out by a Korean study group, to predict renal adaptation 
of living kidney donors [12].

Our study aims to test different machine learning tech-
niques to classify the average eGFR slope or the acceler-
ated declining eGFR slope of living kidney donors, utilizing 
distinct subsets of the provided data, including parameters 
from the ESKD risk score, clinical data, and histopatho-
logical parameters. We chose the eGFR slope as our target 
for predictions since it represents a dynamic parameter over 
time of kidney function.

Methods

Objects and inclusion criteria

For this retrospective study, a total of 238 living kidney 
donors (sex at birth, female/male [%]: 154 [65]/84 (35); 
mean age [standard deviation, SD]: 54 [10]) after donor 
nephrectomy between 2009 and 2020 at the Department of 
General, Visceral, Cancer and Transplant Surgery, Univer-
sity Hospital of Cologne, Germany, were included. Hand-
assisted retroperitoneoscopic donor nephrectomy (HARP) 
was the surgical technique used [13]. Inclusion criteria were 
donors who had completed 3 years of postoperative follow-
up with complete documentation of serum creatinine values 
pre-donation and at year 1, 2 and 3 after donation to calcu-
late the estimated GFR (eGFR) at each time point. Included 
patient characteristics can be divided into three groups:

1.	 Clinical characteristics of the risk tool for ESKD for kid-
ney donor candidates (age, sex at birth, eGFR, systolic 
blood pressure, hypertension medication, body mass 
index [BMI], urine albumin creatinine ratio [ACR] and 
smoking history) [7]. Non-insulin-independent diabetes 
and race were excluded from the dataset due to one-
dimensional distribution. We excluded outliers (n = 2) 
in albumin creatinine ratio to ensure no distorted model 
performance.

2.	 Other donor characteristics assessed preoperatively 
(height, weight, smoking pack years, serum creatinine, 

side of the removed kidney, renal cortex volumetry of 
the graft and of the remaining kidney, and their ratio 
[remaining to transplant cortex volumetry]). Renal cor-
tex volumetry was assessed from preoperative computed 
tomography (CT) scans [14].

3.	 Histopathological assessment of the time-zero biopsy 
of the graft (total glomeruli, global glomerulosclerosis, 
ratio glomerulosclerosis [global glomerulosclerosis to 
total glomeruli], Banff Lesion Scores [15] of glomeru-
litis g, tubular atrophy ct, and arteriolar hyalinosis ah). 
We omitted the other Banff Lesion Scores due to one-
dimensional distribution. To ensure that only representa-
tive core biopsies were included, a minimum set of ten 
glomeruli was defined to be representative [16].

The final dataset comprised 22 donor features and a miss-
ing feature rate of 17.7%, mainly due to incomplete docu-
mentation of the time-zero biopsy. A detailed description 
of the feature distribution is provided in Table 1. The Eth-
ics Committee of the Faculty of Medicine, University of 
Cologne, Germany, approved this retrospective study (refer-
ence number: 23-1462-retro) and waived the need for patient 
consent. Data analysis was performed in accordance with 
relevant guidelines, as outlined by the Transparent Reporting 
of a multivariable prediction model for Individual Prognosis 
or Diagnosis (TRIPOD) statement [17].

Labeling, feature pre‑processing and engineering

The dataset was dichotomized into two groups based on the 
overall decline in eGFR (eGFR slope) over the first, sec-
ond, and third year after donation. We defined an average 
decline of the eGFR in year 3 of the follow-up at a rate 
of < 1 mL/min/1.73 m2/year (average eGFR slope) based 
on the normal decline in kidney function of approximately 
1 mL/min/1.73  m2/year [18]. An accelerated decline of 
the eGFR in year 3 at a rate of ≥ 1 mL/min/1.73 m2/year 
was considered a relevant deterioration in kidney function 
and is referred to as an accelerated declining eGFR slope 
throughout the remainder of this study for easier readabil-
ity. Labeling resulted in an unbalanced dataset (average 
eGFR slope: 185 donors, 78%; accelerated declining eGFR 
slope: 53 donors, 22%). We used class weights in favor of 
the underrepresented class. We performed feature engineer-
ing of the 7 categorical and 15 continuous variables within 
scikit learn Pipelines to ensure proper pre-processing of the 
respective training and test data. We normalized continuous 
variables to impute missing data points using scikit learns’s 
k-Nearest Neighbor imputer (n_neighbors = 3). Missing val-
ues in categorial data were imputed with the most frequent 
variable. All categorical features were then converted into 
dummy variables with one-hot-encoding. In case of binary 
variables, the first dummy variable was dropped.
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Table 1   Patient characteristics and correlation to eGFR slope with a cut-off decline of -1 mL/min/1.73 m2/year

eGFR estimated glomerular filtration rate, ESKD end-stage kidney disease, g glomerulitis, ct tubular atrophy, ah arteriolar hyalinosis, No. num-
ber
† t-test, *Whitney-U test, ‡χ2 test, ¬Fisher exact test

All
N = 238

Average eGFR slope
n = 185

Accelerated declining eGFR 
slope
n = 53

p

eGFR slope (ml/min/1.73 m2/
year): year 3 post-donation

n/median (IQR) 238/− 0.33 (− 0.6, 3.05) 185/1.93 (− 0.4, 3.57) 53/− 3.95 (− 4.88, − 3.02) –

eGFR (ml/min/1.73 m2): year 
1 post-donation

n/mean (SD) 238/60.67 (13.88) 185/58.86 (13.01) 53/66.99 (15.05) < 0.001†

eGFR (ml/min/1.73 m2): year 
2 post-donation

n/mean (SD) 238/61.35 (13.2) 185/61.07 (13.3) 53/62.31 (12.9) 0.55†

eGFR (ml/min/1.73 m2): year 
3 post-donation

n/mean (SD) 238/61.75 (13.01) 185/62.98 (13.37) 53/57.45 (10.75) 0.006†

Donor risk score (%): 15-year 
incidence for ESKD

n/median (IQR) 225/0.11 (0.07, 0.16) 177/0.11 (0.08, 0.16) 48/0.08 (0.05, 0.16) 0.04*

Donor risk score (%): lifetime 
incidence for ESKD

n/median (IQR) 225/0.31 (0.2, 0.51) 177/0.31 (0.2, 0.52) 48/0.31 (0.2, 0.49) 0.79*

ESKD donor risk score parameters
Age at donation (years) n/mean (SD) 238/54 (10) 185/54 (10) 53/51 (11) 0.06†

Sex at birth: female/male Frequency (%) 154 (65)/84 (35) 117 (63)/68 (37) 37 (70)/16 (30) 0.47‡

BMI (kg/m2) n/mean (SD) 228/26.9 (4.4) 185/26.9 (4.4) 53/26.7 (4.4) 0.71†

Systolic blood pressure 
(mmHg)

n/mean (SD) 233/129 (14) 182/129 (14) 51/129 (12) 0.95†

Hypertension medication: no/
yes

Frequency (%) 170 (71)/68 (29) 134 (72)/51 (28) 36 (68)/17 (32) 0.64‡

Smoking history: non/former/
current

Frequency (%) 162 (68)/39 (16)/37 (16) 120 (65)/33 (18)/32 (17) 42 (79)/7 (13)/4 (8) 0.11‡

eGFR (ml/min/1.73 m2): pre-
donation

n/mean (SD) 238/92.67 (13.34) 185/91.9 (13.42) 53/95.37 (12.81) 0.09†

Urine albumin creatinine ratio 
(mg/g): pre-donation

n/median (IQR) 230/3 (0, 6) 179/3 (0, 6) 51/3 (0, 6) 0.66*

Other clinical parameters
Body weight (kg) n/mean (SD) 238/78 (15) 185/78 (15) 53/77 (14) 0.61†

Body height (cm) n/mean (SD) 238/170 (9) 185/170 (9) 53/170 (9) 0.83†

Pack years (packs of ciga-
rettes/year)

n/median (IQR) 201/0 (0, 0) 152/0 (0, 0) 49/0 (0, 0) 0.35*

Serum creatinine pre-donation n/median (IQR) 238/0.8 (0.7, 0.9) 185/0.8 (0.7, 0.9) 53/0.8 (0.7, 0.9) 0.49*
Side of removed kidney: left/

right
Frequency (%) 157 (66)/81 (34) 126 (68) /59 (32) 31 (58) /22 (42) 0.25‡

Renal cortex volumetry (cc): 
remaining kidney

n/mean (SD) 185/87.88 (22.49) 144/88.88 (23.37) 41/84.02 (18.82) 0.22†

Renal cortex volumetry (cc): 
graft

n/mean (SD) 185/86.35 (23.81) 144/88.03 (24.77) 41/80.44 (19.16) 0.25†

Ratio cortex volumetry n/median (IQR) 185/1 (0.9, 1.2) 144/1 (0.9, 1.1) 41/1 (1, 1.2) 0.22*
Histopathological parameters
Banff g: g0/g1/g2 Frequency (%) 102 (43)/13 (5)/2 (1) 81 (44)/10 (5)/1 (1) 21 (40)/3 (6)/1 (1) 0.47¬

Banff ct: ct0/ct1 Frequency (%) 108 (45)/7 (3) 86 (46)/5 (3) 22 (42)/2 (4) 0.63¬

Banff ah: ah0/ah1 Frequency (%) 90 (38)/27 (11) 69 (37)/23 (12) 21 (40)/4 (8) 0.42¬

Total glomeruli (no.) n/median (IQR) 120/23 (16, 31) 97/20 (15, 31) 23/25 (20, 30) 0.27*
Global glomerulosclerosis 

(no.)
n/median (IQR) 120/0 (0, 1) 97/0 (0, 1) 23/1 (0, 2) 0.23*

Ratio glomerulosclerosis n/median (IQR) 120/0 (0, 0.1) 97/0 (0, 0.1) 23/0 (0, 0.1) 0.54*
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Feature selection via sequential forward selection

We performed machine learning-driven sequential forward 
selection (SFS) for each algorithm on the entire dataset 
using the open-source MLxtend library [19]. This method-
ology is considered model-agnostic, meaning that feature 
selection is independent of the architecture of the model 
but is based on its influence on performance metrics [20]. 
The best estimator of each model after hyperparameter 
search was utilized for sequential forward selection with 
stratified 5 Cross-Validation (CV)-folds aiming to find the 
smallest subset of features for the best cross-validation-
model performance. The evaluation of model performance 
after feature selection on the training folds was conducted 
solely on the respective testing fold to prevent data leak-
age. The important features that were identified served as 
a reduced dataset for model training, respectively.

Study design

The study design contains two major parts to classify the 
eGFR slope at year three post-donation (Fig. 1):

1.	 We utilized both the entire dataset and two predefined 
subsets generated from the entire dataset for model train-
ing to evaluate model performance:

	   Dataset 1: Parameters of the ESKD risk score (n fea-
tures = 8, n features after one-hot encoding = 10)

	   Dataset 2: Dataset 1 + other clinical parameters (n 
features = 16, n features after one-hot encoding = 18)

	   Dataset 3: Whole dataset including histopathologi-
cal parameters (N features = 22, N features after one-hot 
encoding = 26)

2.	 Feature Selection with sequential forward selection 
was only performed on Dataset 3 for each model. We 
subsequently utilized the selected important features to 
retrain the models and to evaluate model performance, 
respectively.

Machine learning models

We used supervised machine learning techniques for binary 
classification using the scikit learn package [21] unless 
specified otherwise.

Random Forests (RF) depend on multiple decision trees 
to finally predict the target. Random forests rely on bootstrap 
aggregation, called bagging, which implies the creation of 

Fig. 1   Flow diagram of the study design. First, distinct subsets (data-
set 1 and 2) and the whole dataset 3 were used for model training 
with Random Forest (RF), XG Boost (XG), Support Vector Machine 
(SVM) and Logistic regression (LR) to classify eGFR slope of liv-

ing kidney donors in the third follow-up year (y3). Second, for each 
model, ML-driven feature selection was performed on the entire data-
set resulting in a correspondingly selected feature dataset for model 
retraining and predictions
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subsets of training features (decision trees) to enhance model 
performance [22].

Extreme Gradient Boosting (XG-Boost, XG) as a further 
decision tree-based ensemble method proceeds, in addition 
to bagging, with the sequential highlighting of correctly 
classified subsamples for further predictions, called boost-
ing. We used the extreme gradient boosting library in this 
study [23].

Support Vector Machines (SVM) create a decision bound-
ary in a space, a hyperplane, to correctly classify the input 
features. The best hyperplane maximizes the distance to the 
nearest element of each target [24].

Logistic Regression (LR) uses the logistic function for 
dichotomous classification [25], and served as a state-of-the-
art benchmark for the performance of the machine learning 
models used in this study. We used L1 (Lasso) regularization 
in all logistic regression models.

Statistical analysis

The eGFR was calculated using the Chronic Kidney Disease 
Epidemiology Collaboration (CKD-EPI 2009) equation [26]. 
The eGFR slope was calculated by using the following for-
mula: eGFRslope = ΔeGFR

Δt
 , where ΔeGFR is the change in 

eGFR over the first-, second-, and third-year post-donation 
and Δt is the time interval between eGFR calculations in 
years. We evaluated model performance with nested-cross-
validation due to small data size. Briefly, the dataset is 
passed through two cross-validation loops to find optimal 
hyperparameters (inner loop) and to evaluate model perfor-
mance after hyperparameter tuning (outer loop). We defined 
a range of hyperparameters (Supplementary Table 1) for 
each model and narrowed it down by empirical testing. We 
set the inner cross-validation loop to stratified 3 folds and the 
outer cross-validation loop to stratified 5 folds. The model 
performance is displayed by the k-fold F1 score (mean of the 
fivefold F1 scores) with its mean SD and the cross-validation 
receiver operating characteristic (ROC) curves (mean of the 
fivefold ROCs) with its corresponding k-fold area under the 
curve (mean AUC). F1 score is the best metric for class 
imbalance and is defined by the harmonic mean of preci-
sion and sensitivity [27]. We performed data analysis with 
Python (version 3.8.8) using the open source packages pan-
das (version 1.4.3) [28], NumPy (version 1.21.5) [29], mat-
plotlib (version 3.5.1) [30], seaborn (version 0.11.2) [31], 
missingno (version 0.5.1) [32], and scikit learn (version 
1.0.2) [21]. Statistical analysis was performed with SciPy 
(version 1.7.3) [33] and RStudio (version 1.1.456) [34]. 
Normal distribution of continuous variables was tested by 
Kolmogorov–Smirnov test. Continuous variables with nor-
mal distribution are presented as mean (SD), whereas non-
normal variables are reported as median (interquartile range 
[IQR]). Categorical features are presented as frequencies 

(percentage). Independent samples Student’s t test was used 
to compare stratified, normally distributed continuous fea-
tures. Mann–Whitney U test was used to compare skewed 
continuous variables. For comparison of the frequencies of 
categorical variables, χ2 or Fisher’s exact test were used. 
Parametric and non-parametric tests were performed two-
sided. A value of p < 0.05 was considered significant.

Results

Baseline characteristics of donors and descriptive 
statistics

Across all inspected donors fulfilling the 3-year follow-up, 
the median eGFR slope (IQR) was -0.33 mL/min/1.73 m2/
year (− 0.6, 3.05). In year three post-donation, 185 donors 
exhibited an average eGFR slope (median eGFR slope 
[IQR]: 1.93 mL/min/1.73 m2/year [− 0.4, 3.57]), and 53 
donors revealed an accelerated declining eGFR slope 
(median eGFR slope [IQR]: − 3.95 mL/min/1.7 3m2/year 
[− 4.88, − 3.02]). In the average eGFR slope cohort, the 
mean age at donation (SD) was 54 years (10), 63% were 
female at birth, the median pre-donation ESKD risk score 
(IQR) was 0.11% (0.08, 0.16) for the 15-year and 0.31% 
(0.2, 0.52) for the lifetime incidence of ESKD, the mean 
eGFR (SD) was 58.86 mL/min/1.73 m2 (13.01) in the first 
year, 61.07 mL/min/1.73 m2 (13.3) in the second year, and 
62.98 mL/min/1.73 m2 (13.37) in the third year after dona-
tion (Supplementary Fig. 1). In the accelerated declining 
eGFR slope cohort, the mean age at donation (SD) was 
51 years (11), 70% were female at birth, the median pre-
donation ESKD risk score (IQR) was 0.08% (0.05, 0.16) for 
the 15-year and 0.31% (0.2, 0.49) for the lifetime incidence 
of ESKD, the mean eGFR (SD) was 66.99 mL/min/1.73 m2 
(15.05) in the first year, 62.31 mL/min/1.73 m2 (12.9) in the 
second year, and 57.45 mL/min/1.73m2 (10.75) in the third 
year after donation (Supplementary Fig. 1). A statistically 
significant difference between the two cohorts was found for 
eGFR in the 1- and 3-year follow-up, as well as for the donor 
ESKD risk score for the 15-year incidence of ESKD. How-
ever, these parameters were not included for model training. 
None of the parameters used for model training revealed any 
statistically significant difference between the two cohorts 
(p > 0.05) (Table 1).

Machine learning predictions of accelerated 
declining eGFR slope

The performance of all models trained on the two prede-
fined data subsets or the entire dataset to predict accel-
erated declining eGFR slope three years post-donation 
ranged between 0.29 and 0.41 for the k-fold F1 Score, 
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and between 0.52 and 0.59 for the k-fold AUC (Table 2, 
Fig. 2). Machine learning models did not outperform logis-
tic regression. No major differences in predictive perfor-
mance were observed between the models.

Models trained with Dataset 1 containing only param-
eters that count into the donor risk score for ESKD pre-
dicted the accelerated declining eGFR slope with a k-fold 
F1 score (SD) of 0.35 (0.06), 0.35 (0.09), 0.34 (0.04) and 
0.41 (0.06) for logistic regression, random forests, extreme 
gradient boosting and support vector machines, respec-
tively. The k-fold AUC (SD) was 0.59 (0.08 and 0.07) for 
both logistic regression and support vector machines, 0.52 
(0.11) for random forests and 0.53 (0.09) for extreme gra-
dient boosting.

We expanded Dataset 1 by adding more clinical features 
of the medical history and renal cortex volumetry (= Data-
set 2). When trained with Dataset 2, k-fold AUC of the 
ensemble machine learning methods—random forests and 
extreme gradient boosting—improved compared to when 
only trained with the smaller Dataset 1 (k-fold AUC [SD]: 
0.56 [0.12]/0.59 [0.07] random forests/extreme gradient 
boosting. K-fold F1 Score (SD) of random forests equally 
improved (0.37 [0.07]), while F1 Score of extreme gradient 
boosting remained constant. On the contrary, model perfor-
mance dropped for logistic regression and support vector 
machines when adding more clinical features to the dataset 
(k-fold F1 Score [SD]: 0.32 [0.08]/0.29 [0.09]; k-fold AUC 
[SD]: 0.57 [0.06]/0.52 [0.05] logistic regression/support 
vector machines).

Finally, the whole dataset, including histopathological 
parameters of the time-zero biopsy, was used to train the 
models (= Dataset 3). Performance metrics of the models 
remained at a similar level to when trained with Dataset 2.

Improved model predictions after feature selection

We performed machine learning-driven feature selection 
with sequential forward selection to find the best predictive 
features for model performance and to exclude redundant 
features. The best features were derived for each model indi-
vidually from the whole dataset and were used to retrain the 
models.

The features found after machine learning-driven feature 
selection differed in type and number, and are displayed in 
Supplementary Fig. 2. The new datasets were reduced from 
26 one-hot-encoded features of the original dataset to 8 for 
logistic regression and support vector machines, and to 6 
one-hot-encoded features for random forests and extreme 
gradient boosting, respectively. The number of these best 
features is comparable to Dataset 1, which included only the 
ESKD risk score parameters.

When retrained on the respective selected features, 
random forests and extreme gradient boosting revealed 
the best overall performance when predicting accelerated 
declining eGFR slope (Table 2, Fig. 2). Performance met-
rics could be raised to a k-fold AUC (SD) of 0.66 (0.14 
random forests, 0.06 extreme gradient boosting) and a 
k-fold F1 score (SD) of 0.44 (0.08 random forests and 

Table 2   Respective model 
performance after predicting 
accelerated declining eGFR 
slope with nested cross-
validation (CV, k-folds = 5) 
using different datasets

SD standard deviation
Performance metrics are represented as k-fold area under the curve (AUC, mean of fivefold AUCs) and 
k-fold F1 score (mean of fivefold F1 scores)

Logistic regression Random forest XG boost Support 
vector 
machine

Dataset 1
Risk score parameters
 k-fold F1 score (SD) 0.35 (0.06) 0.35 (0.09) 0.34 (0.04) 0.41 (0.06)
 k-fold AUC (SD) 0.59 (0.08) 0.52 (0.11) 0.53 (0.09) 0.59 (0.07)

Dataset 2
Risk score and clinical parameters
 k-fold F1 score (SD) 0.32 (0.08) 0.37 (0.07) 0.34 (0.09) 0.29 (0.09)
 k-fold AUC (SD) 0.57 (0.06) 0.56 (0.12) 0.59 (0.07) 0.52 (0.05)

Dataset 3
Risk score, clinical and histopathological parameters
 k-fold F1 score (SD) 0.36 (0.01) 0.37 (0.08) 0.37 (0.08) 0.38 (0.03)
 k-fold AUC (SD) 0.58 (0.08) 0.55 (0.10) 0.57 (0.09) 0.53 (0.08)

Selected feature datasets
After ML-driven Feature Selection
 k-fold F1 score (SD) 0.37 (0.01) 0.44 (0.08) 0.44 (0.08) 0.35 (0.04)
 k-fold AUC (SD) 0.58 (0.10) 0.66 (0.14) 0.66 (0.06) 0.57 (0.06)
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extreme gradient boosting), respectively. On the contrary, 
predictive performance of logistic regression and sup-
port vector machines remained similar to the performance 
when trained with the whole dataset.

We compared the best-selected features between 
all models. Two patient attributes appeared in all four 
selected feature datasets: features related to smoking (the 
smoking history or pack years) and Banff Lesion Score g 
(Supplementary Fig. 2).

Discussion

This study was conducted to test the ability of machine 
learning models to preoperatively predict relevant dete-
rioration of excretory kidney function following kidney 
donation. Scientific research is mainly focused on predict-
ing the outcome of graft function, which has been previ-
ously attempted using machine learning [9–11]. Contrary 

Fig. 2   ROC curves of models trained on different datasets to pre-
dict accelerated declining eGFR slope. Best model predictions were 
observed for Random Forest (RF) and XG Boost (XG) after Machine 
Learning-driven feature selection (reduced datasets = selected feature 

datasets). Model performances after training with the other datasets 
did not vary. ROC curves and AUC are represented as mean of the 
fivefold nested cross-validation scores. LR logistic regression, SVM 
support vector machine, SD standard deviation
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to findings of older studies, kidney donors were shown to 
be at increased risk of developing ESKD [3, 4]. Identify-
ing these at-risk donors is still an unmet need in clinical 
practice.

We used the eGFR slope as our target for predictions. 
As a dynamic parameter, we consider the eGFR slope to 
be a better parameter for assessing donor kidney function 
than just eGFR at a specific time point during follow-up. 
Particularly for donors with borderline pre-donation eGFR, 
the extent of eGFR changes over time provides a more com-
prehensive picture of the current kidney function compared 
to past time-points, and reflects the approach of clinicians 
by putting eGFR in a temporal context.

The use of eGFR slope as a surrogate parameter to evalu-
ate kidney function has been discussed in previous literature 
[35–39]. A recently published meta-analysis reported associ-
ations between treatment effects altering the GFR slope and 
the respective clinical endpoints targeting worsening kidney 
function. The authors concluded that GFR slope serves as 
a good surrogate parameter for evaluating kidney function 
in clinical trials [38], which has also been considered by 
regulatory agencies such as the U.S. Food and Drug Admin-
istration (FDA) [40] and the European Medicines Agency 
(EMA) [41].

A normal decline in kidney function is approximately 
1 mL/min/1.73 m2/year [18]. The median eGFR slope of 
our donor collective was − 0.33 mL/min/1.73 m2/year, which 
is consistent with previous findings reporting the measured 
GFR slope of donors to be around − 0.4 mL/min/1.73 m2/
year [2, 42]. Based on these findings, we defined a relevant 
eGFR slope at − 1 mL/min/1.73 m2/year in the third follow-
up year. This resulted in an unbalanced dataset with 185 
donors in the average eGFR slope cohort and 53 donors in 
the accelerated declining eGFR slope cohort.

Neither the ESKD risk score nor the descriptive statis-
tics of the other pre-donation donor features used for model 
training effectively discriminated the donor cohort with the 
accelerated declining eGFR slope. Therefore, we employed 
machine learning to effectively identify this donor cohort. 
Three machine learning models (random forests, extreme 
gradient boosting, support vector machines) and logistic 
regression as the state-of-the-art model were utilized to pre-
dict accelerated declining eGFR slope of our donor cohort. 
Overall, no model sufficiently predicted the outcome. Nei-
ther of the models exceeded an AUC of 0.7 or an F1 score 
of 0.5.

Also, Jeon et al. [12] reported mediocre performance 
with machine learning in predicting the percentage of renal 
adaptation (6–12 months post-donation eGFR/pre-donation 
eGFR, cut-off: 65% of pre-donation eGFR after donation) 
of kidney donors after training with preoperatively assessed 
donor features. The authors reported an AUC of 0.63, 
which is similar to our results. They additionally trained 

the machine learning model to predict the absolute median 
eGFR of the second half of the first follow-up year (cut-off: 
60 mL/min/1.73 m2). Here, clearly improved model perfor-
mance with an AUC of 0.85 was observed. However, we 
consider predicting excretory kidney function decline to be 
superior to predicting GFR alone, as discussed above.

Despite the low predictive performance of the machine 
learning models, there are some observed trends of the dis-
tinct model performances when trained on different data 
subsets. The first data subset we used for model training 
included patient characteristics for calculating the ESKD 
risk score for kidney donors. The risk score was first intro-
duced in 2016 by Grams et al. [7] after observing more than 
4,000,000 individuals who were formally eligible for kidney 
donation, for 4–16 years. In our transplant center, we use this 
risk score to screen for potential donor candidates and to 
exclude donors at risk. Our interest was to find out whether 
these well-established parameters are sufficient to predict 
accelerated declining eGFR slope with machine learning.

The calculated 15-year and lifetime ESKD risk score 
for our donor cohort was below 1% for both eGFR-slope 
cohorts. Interestingly, a statistically significant difference 
was noted for the 15-year ESKD risk score. However, the 
differences in the absolute values were marginal. The cal-
culated risk scores themselves were not included in model 
training. Likewise, we did not consider non-insulin depend-
ent diabetes and race for model training due to one-dimen-
sionality in our patient cohort.

The best performance using the risk score dataset was 
noted for support vector machines, which are known to be 
efficient with small datasets [43]. However, differences in 
model performance compared to the other models were 
marginal. In our study, machine learning models failed to 
adequately predict accelerated declining eGFR slope after 
being trained on previously evaluated patient characteristics 
for ESKD risk-prediction.

Subsequently, we integrated more features into the data-
set and expected improved predictions related to the greater 
amount of information. We included additional donor details 
such as body weight, height, pack years, or renal cortex vol-
umetry from CT scans (Dataset 2). For the entire dataset 
(Dataset 3), results of the time-zero biopsy, including Banff 
Lesion Scores, were added. Even though the histology of liv-
ing donor kidneys is not available in pre-donation screening, 
results of the time-zero biopsy might affect the remaining 
renal outcome of living kidney donors.

Including more parameters led to slightly better results 
for random forests and extreme gradient boosting but wors-
ened the predictions for support vector machines. Logistic 
regression showed consistent performance across the dif-
ferent data subsets. Barah et al. [44] also reported a slight 
improvement in model performance for predicting kidney 
discard with machine learning after adding parameters from 
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the graft biopsy. Nevertheless, expanding the dataset with 
predefined features did not improve predicting donors with 
an accelerated declining eGFR slope.

Finally, we applied machine learning-driven feature selec-
tion to the whole dataset. We used model agnostic sequen-
tial feature selection in a forward approach by sequentially 
adding the most informative features to enhance model per-
formance in k-fold cross-validation [20]. After sequential 
forward selection, each model exhibited a different subset 
of best predictive features. Eight and six best predictive 
features were found for logistic regression/support vector 
machines and extreme gradient boosting/random forests, 
respectively. We then retrained each model with the respec-
tive selected features. A clear improvement in prediction was 
observed for extreme gradient boosting and random forests. 
Both ensemble methods revealed a k-fold AUC of 0.66 and a 
k-fold F1 score of 0.44, and outperformed logistic regression 
and support vector machines which did not show improved 
predictive performance. These findings are consistent with 
previous machine learning studies in kidney transplantation: 
Feature selection improved predictive performance [9], and 
random forests or extreme gradient boosting outperformed 
logistic regression [9, 10, 44].

The best predictive features that appeared in all four 
models after sequential forward selection were the features 
related to smoking, namely smoking history or pack years, 
and the Banff Lesion Score g (glomerulitis). Smoking as a 
cardiovascular risk factor is widely known to enhance the 
incidence of developing chronic kidney disease [45]. There-
fore, it is not surprising that all four models use features 
related to smoking to improve predictions for accelerated 
declining eGFR slope.

The Banff classification is designed for allograft patholo-
gies [15]. Nevertheless, pathologies in the time-zero biopsy 
provide insights about the donor’s remaining kidney. The 
Banff g lesion score classifies the proportion of microvas-
cular inflammation within glomeruli which may be linked to 
antibody-mediated graft rejection or to recurrent or de novo 
glomerulonephritis [15]. Previous studies reported that glo-
merulitis was associated with allograft pathologies or graft 
failure [46–50]. The conclusive determination of whether the 
reasons for glomerulitis may be recipient-associated, such as 
humoral rejection or recurrence of an underlying condition, 
is hindered by inconsistent documentation regarding the tim-
ing of biopsy acquisition in relation to reperfusion. Whether 
the presence of glomerulitis in the time-zero biopsy of the 
graft allows a conclusion to be drawn about the outcome of 
the remaining kidney function of living kidney donors needs 
to be investigated in further studies.

From a data science perspective, we faced a few hurdles 
that accounted for the moderate model performances. We 
trained our models on a small dataset that was unbalanced 
and consisted of missing values. There is a widespread 

belief that artificial intelligence is designed to only rec-
ognize patterns in large amounts of data. However, small 
datasets are common in the medical field. Althnian et al. 
[51] empirically investigated the influence of data size on 
the performance of machine learning models using data-
sets from the medical domain. They found that it is not 
the data size itself that affects the predictive ability, but 
rather how closely the data reflect the general distribution 
of a patient cohort. These findings are consistent with the 
results of our study: Not including more data but iden-
tifying the predictive features and retraining the models 
without redundant features improved the predictions.

The limitations of our study are that we used the eGFR 
values instead of measured GFR to calculate the eGFR 
slope. Our dataset consisted of missing values, mainly 
due to incomplete documentation of the histopathological 
parameters. There are no gold standards in data science 
for the allowed number of missing values in a dataset, 
which, thus, remains a field of empirical testing. We did 
not include all parameters that define the Banff classifi-
cation due to one-dimensionality. Our dataset stemmed 
from one transplantation center. The performance of the 
machine learning models was evaluated by k-fold cross-
validation which allows to investigate the ability of the 
models to generalize the information. To further test the 
predictive performance and generalizability of the models, 
an external test set is required for validation.

Conclusion

Our aim was to predict accelerated declining eGFR slope 
of living kidney donors using machine learning. Train-
ing the models with distinct predefined data subsets did 
not produce satisfactory predictions for any model. How-
ever, the predictive performance of the random forests and 
extreme gradient boosting improved and outperformed 
logistic regression after training with only important 
features after machine learning-driven feature selection. 
Future studies need to be conducted with extended data 
size to evaluate whether machine learning can sufficiently 
predict the eGFR slope to identify donors at risk for 
declining kidney function.
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