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Prostate cancer is one of the most commonly diagnosed cancers in men and is a major cause of cancer-related deaths worldwide.
Among the molecular processes that contribute to this disease, the weight of metabolism has been placed under the limelight in
recent years. Tumours exhibit metabolic adaptations to comply with their biosynthetic needs. However, metabolites also play an
important role in supporting cell survival in challenging environments or remodelling the tumour microenvironment, thus being
recognized as a hallmark in cancer. Prostate cancer is uniquely driven by androgen receptor signalling, and this knowledge has also
influenced the paths of cancer metabolism research. This review provides a comprehensive perspective on the metabolic
adaptations that support prostate cancer progression beyond androgen signalling, with a particular focus on tumour cell intrinsic
and extrinsic pathways.
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INTRODUCTION
The androgen receptor (AR) is a central player in the biology of
the prostate, operating as a nuclear receptor essential for normal
prostate development and function [1]. AR mediates the effects of
androgens and regulates the expression of genes involved in
prostate growth, maintenance, and differentiation. Beyond
developmental stages, AR also influences prostate health
throughout adulthood [2]. AR signalling is linked to the onset
and progression of prostate cancer (PCa), where it becomes a
primary driver of tumour growth. Therefore, inhibition of AR
function represents the targeted therapy in this disease [3]. AR
reprograms PCa cellular metabolism, creating a unique molecular
scenario that has been documented for the last 100 years [4].
Nevertheless, the complexity underlying cellular metabolism
extends beyond AR signalling, which is envisioned to offer
innovative therapeutic opportunities. Our current understanding
of cellular metabolism encompasses aspects such as the tumour
microenvironment (TME) or diet. In this review, we will explore
major metabolic pathways supporting PCa progression and
metastasis, with special emphasis on tumour cell-intrinsic and
extrinsic glucose, lipid and one-carbon metabolism (1 C metabo-
lism), while other relevant processes including the connection
between metabolism and epigenetics will be left out of the scope
of this work. Furthermore, we will incorporate new evidence from
other tumour types to identify shared characteristics that can
apply to PCa.

MAJOR METABOLIC ALTERATIONS IN PROSTATE
CANCER CELLS
Glucose metabolism
Glycolysis and the Warburg effect. Glycolysis metabolises glucose
to pyruvate via a series of intermediate reactions, generating ATP
and NADH (Fig. 1). Cancer cells often exhibit increased glycolytic
activity to generate lactate, even in the presence of oxygen,
known as aerobic glycolysis or the Warburg effect [5]. Despite its
lower efficiency compared to oxidative phosphorylation (OXPHOS)
in the mitochondria, cancer cells heavily depend on this pathway
to produce energy. It is important to state that the increase of
anaerobic glucose utilisation does not imply a reduction in
mitochondrial OXPHOS activity, in contrast to the initial hypoth-
esis of Dr. Otto Warburg [6]. Although several hypotheses have
been proposed, the reason why proliferating cells metabolise
glucose predominantly to produce lactate remains elusive. Two
complementary publications argue that when the demand for
NAD+ exceeds the demand for ATP, resulting in the saturation of
the mitochondrial NADH, tumour cells enforce aerobic glycolysis
even in the presence of oxygen [7, 8]. These metabolic
adaptations have been brought from bench to bedside through
different approaches. On the one hand, aerobic glycolysis results
in an elevated demand for glucose, which has inspired the
development of cancer-monitoring strategies based on the uptake
of 18F-fluorodeoxyglucose with positron emission tomography
(PET) [9]. On the other hand, although alterations in copy number
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have been reported in glycolysis-promoting genes [10], deregu-
lated mRNA expression represents a key contributing factor for
aerobic glycolysis, which supported the development of tran-
scriptomic gene signatures in different cancer types [11–13].
Androgen receptor plays a predominant role in controlling the

expression of growth-promoting and anti-apoptotic genes
involved in various metabolic processes, such as glycolysis [14].
Glucose transporters GLUT1 and GLUT2 are regulated at the
transcriptional level by the AR [15–17], whereas control by AR-
independent factors such as SOX2 and MYC promotes prostate
cancer progression, lineage plasticity, and therapy resistance
[18, 19]. Interestingly, the Warburg effect is observed both in
localised PCa [20, 21], as well as in advanced disease or metastatic
lesions [22–24]. In this line, it has been reported that the highest
lactate levels are found in patients with PTEN loss, a genetic
feature of advanced PCa [25]. The activation of the
PI3K–AKT–mTOR signalling pathway is believed to be a key factor
in PTEN-deficiency-driven prostate tumorigenesis promoting
aerobic glycolysis [26, 27]. Inhibition of MCT4 (a plasma
membrane lactic acid transporter), has been postulated as a
therapeutic strategy to reduce glycolysis and lactic acid secretion
in neuroendocrine prostate cancer (NEPC), a subtype of aggressive
PCa [28]. In NEPC cell lines, inhibiting MCT4 expression reduced
cell proliferation in vitro and glucose metabolism by down-
regulating glycolytic genes. However, data about the effectiveness
and toxicity of MCT4 inhibition in NEPC models in vivo are still
lacking.
Despite the relevance of glycolysis for tumour cells, accumulat-

ing evidence sustains that both the tricarboxylic acid (TCA) cycle
and the OXPHOS pathway are still present and active in the
metastatic setting [6, 29–36], which could complicate the use of
lactate-targeted therapies [27]. A promising new small molecule,
BKIDC-1553 (which exhibits good safety and pharmacologic
properties), has been shown to selectively inhibit the growth of
PCa cell lines through its anti-glycolytic activity. This is achieved by
inhibiting hexokinase 2, as reported in a preclinical xenograft
model of advanced PCa. The selective growth inhibition activity of

BKIDC-1553 is equivalent to that of enzalutamide [37]. All these
results demonstrate the complexity and impact of metabolic
interactions within tumours and in different stages, highlighting
the importance of studying drug effects in diverse metabolic
scenarios.

Tricarboxylic acid cycle (TCA) and oxidative phosphorylation
(OXPHOS). The TCA comprises a series of mitochondrial chemical
reactions and is responsible for producing energy and metabolic
intermediates. It begins with the conversion of acetyl-CoA (which
is produced from the breakdown of carbohydrates, fats, and
proteins) and oxaloacetate into citrate. Through a series of
enzymatic reactions, citrate is transformed, resulting in the
production of carbon dioxide and molecules carrying high-
energy electrons, namely NADH and FADH2. These electron
carriers are subsequently utilised for OXPHOS, a process that
occurs in the inner mitochondrial membrane. OXPHOS involves
the electron transport chain (ETC) and a proton gradient,
ultimately leading to the production of ATP (Fig. 1). Despite the
initial perception of a general reduction of the use of glucose
derivatives in the mitochondria, recent evidence shows that there
is tumour-type specificity in this reprogramming. Whereas
pancreas, lung and colon tumours exhibit a slower ATP production
than healthy tissues, breast cancer-derived metastases reportedly
show faster TCA cycle rate than orthotopic primary tumours [38].
In line with these results, an increase in OXPHOS gene expression
was detected in melanoma brain metastasis (MBM) by direct
metabolite profiling and [U-13C]-glucose tracing in vivo [39], which
is associated to increased sensitivity of these lesions to
pharmacological OXPHOS inhibition [39]. However, later clinical
trials to analyse the therapeutical potential of the same OXPHOS
inhibitor in advanced solid tumours and acute myeloid leukaemia
showed only modest target inhibition and limited antitumour
activity at tolerated doses and led to discontinuation of the trials
due to neurotoxicity [40]. Interestingly, tumour cells exhibit
changes in the TCA that go beyond the regulation of its activity.
Mutations in the TCA cycle or the ETC machinery induce
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Fig. 1 Schematic overview of the metabolic rewiring occurring in prostate epithelial cells during the different stages of cancer
progression. a Healthy prostate luminal cells accumulate high levels of zinc (due to the overexpression of its transporter), leading to the
inhibition of mitochondrial aconitase, the key enzyme responsible for the citrate-isocitrate conversion in the TCA cycle. This inhibition results
in the truncation of the TCA cycle and citrate accumulation and secretion. As a result, normal prostate epithelial cells are characterized by an
inefficient OXPHOS. b In prostate cancer cells, intracellular zinc levels are significantly reduced (due to a decreased expression of its
transporter); this leads to the reactivation of aconitase, restoring the citrate-isocitrate conversion, and consequently of the TCA cycle and
OXPHOS metabolic pathways. In addition, both the hexosamine biosynthesis pathway (HBP) resulting in glycosylation and the pentose
phosphate pathway (PPP) that generates NADPH and nucleotides are upregulated in PCa cells. c Metastatic PCa cells exhibit the Warburg
effect with persistent TCA cycle/OXPHOS and PPP activity. Created with BioRender.com.
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alternative metabolic routes, such as reductive carboxylation
observed in various cancer types [41–47]. Beyond the effect of
mutations altering the TCA cycle, specific cell state transitions
are accompanied by profound TCA reprogramming comprising
the extramitochondrial use of citrate that regenerates oxaloace-
tate [48].
Prostate epithelial cells do not oxidise the produced citrate like

most normal cells due to truncated TCA cycle [49–53]. Instead,
luminal prostate cells, but not basal cells [54], accumulate high
mitochondrial zinc (Zn2+). Zn2+ inhibits the mitochondrial enzyme
(m)-aconitase, responsible for citrate oxidation, and the accumu-
lated citrate is subsequently secreted into the prostatic fluid. While
basal cells preferentially generate citrate through pyruvate
dehydrogenase, luminal cells predominantly generate citrate
through pyruvate carboxylase activity [54]. Metabolism of
pyruvate, aspartate, glutamine and branched-chain amino acids
(BCAA) might contribute to replenishing metabolites for the
truncated TCA cycle in PCa [55, 56]. AR induces a metabolic
reprogramming encompassing hZIP1 zinc transporter down-
regulation that leads to low mitochondrial zinc levels [57, 58]
and m‐aconitase reactivation, restoring the TCA cycle [59], and
increasing the susceptibility of PCa cells to OXPHOS inhibitors [60].
Oxidative phosphorylation can be targeted by restricting the

supply of NADH or by directly inhibiting components of the ETC.
Mutations in the mitochondrial DNA encoding for OXPHOS
machinery promote Warburg-like metabolism and an anti-
tumour immune response [61]. Targeting the TCA cycle by
compromising mitochondrial substrate trafficking might also be
an effective strategy. For example, metformin and rotenone,
inhibitors of complex-I (CI) of the ETC, inhibit proliferation in
several human cancer cell lines, including PCa [62–64]. Evidence
has shown that metformin has multiple antineoplastic effects
through AMPK-dependent and independent mechanisms, namely
the alteration of IGF-1 signalling pathways, suppression of AR or
mTOR pathway, and lipogenesis. In line with this notion, there is
evidence for reduced mortality in PCa patients treated with
metformin [64]. The rotenone derivative deguelin exhibits
antitumoural activity in preclinical mouse models of PCa based
on the combined loss of Pten and Trp53 [65]. This effect is
associated to the alternative use of the ETC by Pten-deficient cells,
which consume ATP through mitochondrial complex V instead of
producing it. This observation could be translated to the use of CI
inhibitors in PCa patients stratified by PTEN status. Whereas most
PCa research is focused on the effect of AR signalling promoting
TCA cycle [66, 67], a deeper understanding of the AR-independent
metabolic alterations is lacking and could be critical when
designing therapeutic strategies in castration-resistant patients.

Amino acid metabolism or the pentose phosphate
pathway (PPP). The PPP is a main producer of NADPH and
nucleic acid precursors [68], which helps tumour cells balance the
redox status. Tumour cells exhibit deregulation of oncogenes and
tumour suppressor genes that control this pathway [69]. Genetic
deficiency in glucose-6-phosphate dehydrogenase (G6PD), one of
the rate-limiting enzymes of the PPP, is a common inherited
enzyme defect and occurs almost exclusively in males [70–72].
There is increasing evidence that this deficiency may offer
protection against stomach, colon, and liver cancer. Conversely,
G6PD upregulation has been associated with higher cancer risk
[73]. In fast proliferating cells, a high NADP+/NADPH ratio activates
G6PD to support NADPH production, leading to reductive
biosynthesis of fatty acids and nucleotides. Furthermore, NADPH
promotes cell survival under oxidative stress conditions such as
mitochondrial dysfunction [74]. Upregulated G6PD activity is
observed in various cancers, including papillary thyroid carcinoma,
colorectal, renal, hepatocellular, breast, and PCa [75–81]. Mechan-
istic research in PCa cell lines suggests that AR-mediated
regulation of the PPP occurs through upregulation of G6PD in

response to mTOR complex 1 activation, leading to the production
of nucleotide precursors for DNA synthesis and NADPH to
promote lipogenesis [82] (Fig. 1). Indeed, PPP and G6PD have
been proposed as metabolic targets for PCa bone metastasis
treatment [83]. In vitro, genetic and pharmacological G6PD
inhibition decreased cancer growth and migration, leading to
alterations in cellular redox balance and heightened sensitivity to
chemotherapy. In vivo, G6PD genetic ablation resulted in the
reduction of bone metastatic burden. A recent study revealed that
another PPP-related enzyme, 6PGD, plays a key role in PCa growth
and survival by counteracting oxidative stress and uncovered a
novel feedback mechanism linking 6PGD and the AR signalling
axis that opens a new therapeutical window of co-targeting AR
and the PPP [84]. Genetic or pharmacological inhibition of 6PGD
using physcion and S3 showed anticancer activity in aggressive,
castration-resistant disease models as well as patient-derived
tumour explants, partly due to increased oxidative stress.
Targeting of 6PGD was associated with two important tumour-
suppressive mechanisms: firstly, it increased the activity of the
AMP-activated protein kinase (AMPK); secondly, it enhanced AR
ubiquitylation, leading to a reduction in AR protein levels and
activity. Pharmacological co-targeting of both factors was more
effective in suppressing the growth of PCa cells than single-agent
therapies, indicating positive feedback between AR and 6PGD. All
these findings suggest that the PPP could be a valuable source of
targets for anticancer drug design and therapeutic combination.

Hexosamine biosynthetic pathway (HBP). The HBP is a metabolic
route that redirects 2–5% of glucose-derived carbons away from
glycolysis in non-cancer cells. It comprises the conversion of the
glycolytic intermediate fructose-6-phosphate to produce UDP-N-
acetylglucosamine (UDP-GlcNAc) [85]. UDP-GlcNAc serves as a
substrate for various cellular processes, including protein glyco-
sylation—a crucial post-translational modification where sugars
are attached to proteins and lipids. Cancer cells upregulate the
flux towards the HBP and UDP-GlcNAc synthesis by increasing
glucose and glutamine intake or in response to oncogenic-
associated signals like Ras [86], mammalian target of rapamycin
complex 2 (mTORC2) [87, 88], and transforming growth factor beta
(TGF-β) [89]. In line with increased UDP-GlcNAc levels, breast
[90, 91], lung [92], colon [92], liver [93], endometrial [94], cervical
[95], pancreatic cancer [96] and PCa [97] cells exhibit increased
O-GlcNAcylation (Fig. 1). There are diverse molecular alterations
that converge on increased synthesis of glycans. The second-rate
limiting enzyme of the HBP, UAP1 [98–100], is elevated in PCa,
which protects tumour cells from ER stress-induced cell death,
thus postulating it as a viable target for cancer therapy. An
enzyme involved in the conjugations process, the glycosyltrans-
ferase GALNT7, is also upregulated in PCa tissues and promotes
prostate tumour growth [101]. Lessons from other tumour types
reveal the metabolic crosstalk that balances the use of glucose
intermediary metabolites. Loss of the PHGDH, an enzyme involved
in glucose-derived serine biosynthesis promotes metastasis by
rewiring glucose towards HBP, thus increasing integrin glycosyla-
tion [102].
Increased glycosylation influences the structural diversity in

proteins, including sialylation, fucosylation, O-β-N-acetylglucosyla-
tion, and the presence of cryptic and high-mannose N-glycans and
proteoglycan alterations [103]. Based on the evidence presented,
therapeutic targeting of HBP rises as an innovative strategy to
selectively affect cancer cells, as non-transformed cells would be
more resilient to the perturbation in O-GlcNAcylation [104, 105].
Hexosamine analogues could serve this purpose since they exhibit
antitumoral properties. Other promising therapeutic strategies in
preclinical models involve the pharmacological inhibition of OGT,
the HBP enzyme that catalyses the addition of the GlcNAc residue
to target proteins. On the one hand, inhibiting O-GlcNAcylation in
PCa cells reduced the expression of matrix metalloproteinase

M. Pujana-Vaquerizo et al.

1252

British Journal of Cancer (2024) 131:1250 – 1262



MMP-2, MMP-9, and VEGF, resulting in inhibition of invasion and
angiogenesis mediated by the regulation of the oncogenic
transcription factor FoxM1 [104]. On the other hand, OGT
inhibition reduced the proliferation of PCa cells due to sustained
loss of c-MYC [97]. As a note of caution, the requirement of HBP
for PCa cells might be tumor stage-dependent. In fact, castration-
resistant PCa shows decreased HBP metabolite and enzyme levels,
suggesting that targeting the pathway in this pathological setting
could have unpredictable biological consequences [106]. Overall,
understanding the function and composition of glycoproteins and
glycans across all stages of PCa will likely be crucial to improving
disease management. The relevance of the cell surface glycan
profile for cell-cell interactions anticipates that HBP and glycosyla-
tion rewiring will have profound implications in the interactions of
tumour cells with the TME.

Lipid metabolism
Lipid metabolic reprogramming encompasses alterations in
various aspects of lipid metabolism, including synthesis, storage,
and catabolism [107]. One significant adaptation is the upregula-
tion of lipogenic pathways, where cancer cells enhance the
production of fatty acids and other lipid components to sustain
their rapid growth. This increase in lipogenesis often involves the
activation of key enzymes such as ATP citrate lyase (ACLY) and
acetyl-CoA carboxylase (ACC), driven by oncogenic signalling

pathways like the PI3K/Akt/mTOR axis and MYC [108]. Additionally,
cancer cells exhibit changes in lipid uptake and utilization, relying
on both endogenous and exogenous lipid sources to sustain their
metabolic needs.
Dysregulation of lipid metabolism is considered a hallmark in

PCa [109]. These tumour cells display distinct alterations in lipid
metabolism compared to normal prostate counterparts, and these
changes are associated with tumour growth, survival, and
metastasis [109]. Whereas alterations in oncogenes and tumour
suppressor genes (p53 loss, PTEN loss, PI3K mutations) that are
shared across different tumour types can alter this process,
enhanced lipid metabolism in PCa is predominantly driven by AR
signalling [110, 111]. Indeed, AR controls the transcription of
enzymes involved in fatty acid synthesis and oxidation to fulfil the
bioenergetic and anabolic demands of PCa cells, and it also
regulates lipid uptake and storage, cholesterol, and phospholipid
metabolisms [112] (Fig. 2).

De novo lipogenesis (DNL). PCa is characterised by augmented
DNL in both in early and late stages of the disease [113]. This
pathway is tightly regulated and produces fatty acids from non-
lipidic precursors. The primary substrate in fatty acid synthesis is
acetyl-CoA, which is carboxylated by acetyl-CoA carboxylase to
form malonyl-CoA [114]. Malonyl-CoA units are then sequentially
added to the growing fatty acid chain by fatty acid synthase
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(FASN). This process continues through a series of chemical
reactions until a long-chain fatty acid is synthesised. The resulting
fatty acids can be further modified, incorporated into phospho-
lipids for membrane biogenesis, or stored as triglycerides [115].
Sterol-regulatory element-binding proteins (SREBPs) are tran-

scription factors that play a crucial role in regulating lipid synthesis.
SREBP-1 is upregulated along PCa progression [111, 112], partly in
an AR-dependent manner [116, 117], and it activates the expression
of enzymes involved in de novo lipogenesis, including FASN
[118, 119].
Different strategies have been developed to target DNL in PCa.

Preclinical studies using SREBP inhibitors such as fatostatin support
the idea that targeting this pathway is an interesting strategy to
block PCa growth and promote apoptosis [120]. Fatostatin inhibits
SREBP cleavage-activating protein (SCAP), a key regulator of lipid
metabolism. SCAP is responsible for transporting the SREBPs from
the endoplasmic reticulum (ER) to the Golgi apparatus, where they
undergo proteolytic cleavage to activate the transcription of genes
involved in cholesterol and fatty acid synthesis. By inhibiting SCAP,
fatostatin prevents the translocation of SREBPs to the Golgi, thus
inhibiting their activation and subsequent transcriptional regulation
of lipid synthesis [120]. In addition, dutasteride and C75 are two
FASN inhibitors that have been developed and tested for their
effectiveness in PCa [121–123]. Dutasteride indirectly reduces FASN
mRNA levels by inhibiting the enzyme 5α-reductase, which is
responsible for converting testosterone into dihydrotestosterone
[121]. C75 inhibits FASN through competitive binding, thus
preventing the synthesis of fatty acids from acetyl-CoA and
malonyl-CoA [122].
Despite various efforts to target lipid synthesis, a critical

challenge persists in elucidating precise biomarkers and methodol-
ogies for the identification of lipogenic tumours and the stratifica-
tion of patients likely to exhibit optimal responses to DNL targeting.
For that reason, new targets of the DNL pathway are currently
being explored for therapeutic purposes. Recently, a large-scale
analysis revealed that the fatty acid elongase ELOVL5 is upregulated
in PCa and its depletion leads to antitumoral responses [124].
Concomitantly, the ELOVL5 enzyme also generates polyunsaturated
fatty acids (PUFAs), which have been associated with enzalutamide
resistance during neuroendocrine differentiation (NED) by activat-
ing the AKT-mTOR pathway [125].

Lipolysis and fatty acid oxidation (FAO). Lipolysis refers to the
process that converts stored fats or triglycerides into glycerol and
fatty acids. In the context of PCa, lipolysis is upregulated to
generate fatty acids that are subsequently used as an energy
source and building blocks for cellular components [126].
However, lipolysis is a more complex process than lipid synthesis.
It requires a balance between fatty acid catabolism, necessary for
biomass, and the need for ATP and NADPH production. Elevated
levels of monoacylglycerol lipase (MAGL) in AR-independent
prostate cancer contribute to malignancy through endocannabi-
noid and fatty acid pathways [127]. Complementarily, adipose
triglyceride lipase (ATGL) expression correlates with worse
prognosis in CRPC patients [128]. Inhibition of ATGL impairs PCa
cell growth in vitro and in vivo, inducing a metabolic shift towards
glycolysis [128].
After being released from storage units, lipids can be

catabolised through fatty acid oxidation (FAO), a process where
cells utilise FAO as an energy source, and that is altered in PCa
[129]. CPT1, the enzyme that transports medium-long fatty acids
into the mitochondria for oxidation, is upregulated in PCa
[130, 131]. In addition, FAO could sustain a castration-resistant
state, which has been demonstrated recently through the
inhibition of 2,4-dienoyl-CoA reductase (DECR1) [132, 133].

Fatty acid uptake and transport. Fatty acid transport proteins
(FATPs) and fatty acid binding proteins (FABPs) are responsible for

the uptake of exogenous and intracellular transport of fatty acids,
respectively. These proteins are upregulated in PCa, which
theoretically increases fatty acid availability for cellular processes
[134, 135]. FABP5 inhibition provides a synergistic effect in
combination with chemotherapy [136], and the reported depen-
dence of PTEN loss-driven PCa [137] on this enzyme encourages
the evaluation of this therapeutic strategy in a stratified
population. Indeed, SBFI-103, a competitive inhibitor of FABP5, is
effective and well-tolerated both in vitro and in vivo in PCa cells
resistant to ADT or taxanes [137]. Finally, CD36, a multifunctional
cell surface receptor that imports fatty acids, contributes to
various aspects of PCa biology, including tumour growth,
angiogenesis, and metastasis. The tumour suppressive conse-
quences of Cd36 deletion in Pten loss-induced PCa [138] suggest
that knowledge and therapeutic strategies reported for other
tumour types could be implemented in this disease [139, 140].
FA6.152, an anti-CD36 neutralising antibody, inhibits all known
functions of CD36, including its interactions with thrombospondin,
collagens, and fatty acids. Similarly, another CD36 targeting
antibody named JC63.1 selectively blocks uptake of fatty acid
and oxidised low-density lipoproteins. Treatment of oral squa-
mous cell carcinoma (OSCC) models with these two antibodies
impair metastasis [139].

Cholesterol metabolism. PCa cells often exhibit increased de novo
cholesterol biosynthesis [141–143], and AR signalling controls the
expression of cholesterol biosynthetic enzymes, such as HMG-CoA
reductase (HMGCR) [144]. The relevance of this pathway in PCa
spans multiple biological aspects. First, cholesterol is a critical
precursor for the synthesis of steroid hormones, including
androgens, which sustains the activation of AR in tumour cells
after castration therapy [145–147]. Second, cholesterol is a critical
component of lipid rafts, membrane microdomains that play a role
in cellular signalling. Alterations in cholesterol levels affect lipid
raft dynamics and the associated signalling pathways involved in
PCa progression [141]. Third, cholesterol esters are abundant
components of lipid droplets, whose presence is associated with
PCa aggressiveness [148]. Given the relevance of cholesterol
metabolism in cancer, different therapeutic strategies have been
proposed for PCa. Statins are cholesterol-lowering agents that are
administered chronically to millions of people around the globe.
Since they inhibit HMGCR, their potential anticancer activity has
been broadly studied [149]. In this regard, high doses of statins
in vitro consistently reduce PCa aggressiveness [150, 151].
However, low doses of some of these drugs (equivalent to the
concentrations reached in the blood of treated individuals) exhibit
paradoxical effects on tumour cells in vitro and in vivo [152]. This
discrepancy is evident in epidemiological studies monitoring
the influence of statin treatment in PCa pathogenesis and
progression [149], suggesting that we still miss critical biological
information regarding how these drugs operate in cancer.
Cholesterol metabolism could be particularly relevant when
targeting androgen production or signalling in PCa. Indeed,
inhibition of squalene epoxidase (SQLE), a crucial enzyme in
cholesterol biosynthesis, has been proposed as a promising
pharmacological intervention for treating CRPC [153, 154]. Target-
ing SQLE with terbinafine effectively inhibited orthotopic tumours
growth in mice. Moreover, in a clinical setting, terbinafine
demonstrated the ability to decrease prostate-specific antigen
(PSA) levels in three out of four late-stage prostate cancer patients
[154]. Similarly, the pharmacologic blockade of SQLE with
FR194738 attenuated the growth of PC3 cells both in vitro and
in mouse xenograft models [153]. Finally, a complementary
strategy to support androgen synthesis in conditions of hormone
deprivation is the provision of cholesterol by the TME. In this line,
macrophages can serve as a source of cholesterol for PCa cells in
the context of androgen deprivation, hence supporting the
development of CRPC [155].
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One-carbon metabolism
One-carbon (1 C) metabolism involves two central cycles: the
folate cycle and the methionine cycle [156]. In the folate cycle,
tetrahydrofolate (THF) acts as a carbon carrier for purine and
thymidylate synthesis. Methyl groups transfer from 5-methyl THF
to homocysteine, forming methionine and connecting the two
cycles. Methionine is converted to S-adenosyl-methionine (SAM), a
universal methyl donor for protein and DNA methylation. SAM is
then metabolized to S-adenosyl-homocysteine (SAH) and later to
homocysteine, completing the cycle. Homocysteine produces
cystathionine in the transsulfuration pathway, a precursor of
glutathione. SAM can also feed into the polyamine biosynthesis
pathway through its decarboxylation by S-adenosylmethionine
decarboxylase (AMD1) [157] (Fig. 3). Alterations in 1 C metabolic
homeostasis are at the core of different diseases including cancer
[156]. Tumour cells depend on 1 C metabolism for DNA synthesis,
redox balance, methylation reactions and polyamine biosynthesis.
All these processes are relevant across different cancers and
contribute to tumour progression [158, 159].
In PCa, androgen signalling regulates the activity of 1 C

enzymes involved in SAM homeostasis, the transsulfuration
pathway and polyamine biosynthesis [160]. In turn, changes in
AR activity occurring upon PCa progression and therapy can
influence 1 C metabolism and the intricate epigenetic crosstalk
[160].

SAM homeostasis. GNMT and mitochondrial SARDH are critical
enzymes that control SAM availability. They are regulated by
androgen signalling and are frequently altered in PCa [161, 162].
GNMT transfers a methyl group from SAM to glycine to form SAH
and sarcosine, whereas SARDH demethylates sarcosine to form
glycine [163]. These two reactions determine the SAM:SAH ratio

for the maintenance of epigenetic responses, and the production
of sarcosine in this metabolic step has been proposed as a
biomarker in PCa, although this data generated intensive
controversy in the field [164, 165]. GNMT, is reported to be both
upregulated and downregulated depending on the study, thus
suggesting a multifactorial regulation in the different stages of the
disease [166, 167]. A feasible explanation relates to regulating
GNMT by signalling pathways that exhibit reciprocal negative
feedback regulation [168, 169]. AR has a predominant role in
sustaining GNMT expression, whereas PI3K activation induces its
repression [170], a process that could depend on FOXO regulation,
according to studies in Drosophila melanogaster [171]. Interest-
ingly, Gnmt levels are profoundly reduced in Pten loss-driven
murine PCa, but a germline deletion of the metabolic enzyme
reduced PCa incidence in this model, thus suggesting that either
residual GNMT activity is essential for tumorigenesis or that this
enzyme plays a critical role in the TME [170]. Finally, a recent study
has shown a mTORC1/ATF4-driven downregulation of protein
kinase C (PKC)λ/ι in neuroendocrine prostate cancer that increases
serine biosynthesis. This metabolic shift supports cell proliferation
and elevates intracellular SAM levels, promoting epigenetic
changes characteristic of this aggressive form of PCa [172].

The transsulfuration pathway. The transsulfuration pathway is a
branch of 1 C metabolism that converts homocysteine to cysteine.
This process involves several enzymatic steps, with cystathionine
beta-synthase (CBS) playing a predominant role [173]. CBS activity
is controlled by SAM pools to direct homocysteine towards
remethylation when SAM levels are low [173]. In PCa, studies
showing both increased and decreased expression of CBS have
been published [174, 175]. Lower enzyme levels are found in
metastatic PCa cell lines, but these data do not correlate with
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clinical evidence reporting increased homocysteine and cystathio-
nine abundance in patients with worse outcomes [176, 177]. In
this line, cystine depletion sensitises PCa cells to immune
checkpoint inhibitors as well as to DNA damage-inducing agents,
further highlighting the importance of these intermediates in
PCa [178].

Polyamine biosynthesis. Polyamines (PA) are small polycations
essential for normal cell growth in all eukaryotic organisms [179].
Putrescine is generated from the urea cycle through decarboxyla-
tion of ornithine by ornithine decarboxylase (ODC1), whereas
AMD1 decarboxylates SAM to dcSAM. This reaction provides the
propyl amines necessary to form spermidine and spermine from
putrescine through the action of spermidine synthase (SRM) and
spermine synthase (SMS) [180]. The prostate epithelium synthe-
sises high levels of polyamines that are secreted into the seminal
fluid. Androgens control this process through transcriptional
regulation of ODC1 and AMD1 [181, 182]. Accordingly, androgen
deprivation therapies reduce the abundance of spermidine and
spermine [183]. However, regulation of PA biosynthesis in PCa
extends beyond AR signalling. On the one hand, ODC1 is a main
target of MYC, which associates MYC amplification and over-
expression with elevated polyamine biosynthesis [184]. The
regulation of polyamine biosynthesis downstream MYC contri-
butes to the tumour suppressive activity of PGC1α, which was
recently reported to repress this oncogene [185–187]. On the
other hand, PI3K-mTORC1-dependent regulation of AMD1 stability
influences polyamine synthesis [188], an observation that is
extensible to other pathophysiological contexts beyond
cancer [189].

TUMOR CELL-EXTRINSIC METABOLIC INFLUENCES
Prostate cancer is associated with ageing, and in turn, the
organism and cellular environment represent an important
modifiable factor in the pathogenesis and progression of the
disease. There is an emerging interest in studying the metabolic
properties of the tumour microenvironment, as well as how
exogenous factors like the diet may impact tumour progression.
The TME closely interacts with tumour cells and comprises
immune cells, fibroblasts, blood vessels, and the extracellular
matrix [190]. Immune cells within the TME can either trigger pro-
tumoral or anti-tumoral responses [191], while the extracellular
matrix and stromal cells within the TME provide structural and
biochemical support to tumours, influencing their ability to invade
surrounding tissues and metastasize [190]. Advances in high-
throughput, single-cell resolution technologies have significantly
enhanced our comprehension of cellular diversity in PCa
[192–194]. However, there is still very little knowledge about the
metabolic adaptations in PCa stromal cells, and a glimpse at other
tumour types can provide critical information on what is to come
(Fig. 4).

Glucose metabolism in the TME
The elevated glycolytic rate of tumour cells is directly responsible
for creating the acidic and nutrient-depleted conditions of the
TME, which have profound consequences for immune activity
[195, 196]. One of the most significant effects of aerobic glycolysis
is the acidification of the TME due to lactate secretion [197, 198],
which supports increased migration and invasion [199] and
promotes immune reprogramming towards a tolerant phenotype
[196, 200]. Glycolysis in the tumour stroma is also required for
adequate antitumoral response, which has led to the develop-
ment of metabolite-based formulations in the presence of a
glycolytic inhibitor that specifically targets cancer cells [201].
Cancer and T cells compete for glucose among several other
metabolites, and the avidity of cancer cells for this nutrient
diminishes the cytolytic activity [195, 202, 203]. Glycolytic

capacity in T cells is also influenced by oncometabolites such
as 2-hydroxyglutarate, which is produced at high concentrations
in isocitrate dehydrogenase mutant cancers and inhibits their
proliferation, cytokine production, and ability to kill tumour
cells [204].

Lipid metabolism in the TME
Lipid metabolism is similarly required in stromal cells. SREBP
activity orchestrates the immune responses in cancer. Inhibition of
SREBP function in regulatory T cells (Treg) enhances antitumour
immune responses [205]. Particularly, SREBP-cleavage-activating
protein deletion in intra-tumoral Tregs inhibits tumour growth and
improves PD-1-triggered immunotherapy by regulating
interferon-γ production [205]. Similarly, deletion of FABP5 in Treg
affects mitochondrial integrity and triggers cGAS-STING-
dependent type I IFN signalling [206]. Macrophages are regulated
by tumour cells at multiple levels and their polarisation
contributes to the acquisition of aggressive features. Upregulation
of CD36 in metastasis-associated macrophages (MAMs) promotes
tumour cell-derived fatty acid uptake, protumoural polarization
and their supportive role in the establishment of liver metastasis
[207]. Thus, targeting CD36 emerges as a two-hit strategy
targeting both tumour and immune cells in the treatment of
metastasis. Lipids can also support the activation of lymphocytes.
As an illustrative example, linoleic acid activates CD8+ T cells,
enhancing metabolic fitness and preventing exhaustion [208],
highlighting its role as a potential adjuvant to potentiate adoptive
T cell therapy.

One-carbon metabolism in the TME
Very little is known about the contribution of 1 C metabolism to
the TME in PCa. In turn, scattered evidence in other tumour types
can provide an idea of the processes influenced by this metabolic
route in cancer. Deficiencies in one-carbon metabolism impair the
effectiveness of PD-1 blockade in melanoma. Coherently, aug-
menting 1 C metabolism through formate supplementation
during anti-PD-1 therapy improves CD8+ T-cell fitness and
facilitates CD8+ T-cell-mediated tumour clearance [209]. These
results indicate that formate supplementation has the potential to
enhance the function of exhausted CD8+ T cells. Importantly, the
acidification of the extracellular milieu also influences T cell
function, eliciting a reduction in methionine metabolism via
SLC7A5 downregulation that results in a ‘stem-like memory’ state.
This reprogramming enhances T cell persistence and anti-tumour
efficacy in mice, revealing a novel influence of acidic conditions on
T cell characteristics [210]. The relevance of 1 C metabolism for
glutathione production and redox balance is an additional factor
controlling the activity of the TME. Disrupting glutathione
synthesis in Tregs impairs their ability to regulate serine
metabolism, leading to severe autoimmunity and improved anti-
tumour responses [211]. Tumour-intrinsic 1 C metabolism pro-
duces secreted metabolic intermediates that can remodel the
TME. Tumour cells exhibit frequent loss of methylthioadenosine
phosphorylase (MTAP), which leads to the accumulation of its
substrate MTA [212]. Secreted MTA is uptaken and metabolized by
fibroblasts, which will produce and secrete both purine products
and cytokines that induce macrophage polarization.

Diet and obesity
Nutrition represents the tightest interaction of our organism with
the environment. As such, it is closely linked to the development
of diseases, including cancer. Studies in other tumour types have
unveiled additional molecular processes responsible for the high-
fat diet-induced phenotype. In oral carcinoma and melanoma
models dietary palmitic acid, but not oleic or linoleic acid,
promotes metastasis in mice [139, 140]. Molecularly, palmitic acid
induces a pro-metastatic memory involving CD36, histone
modifications, and a neural signature linked to Schwann cells,
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leading to both metastasis initiation and long-term metastatic
memory. These same modifications may also play a role in PCa
[140]. In line with the role of CD36, a high-fat diet has been shown
to promote metastasis by enhancing saturated fatty acid uptake
via this receptor in breast cancer [213]. Modifications in dietary
habits could also be beneficial for cancer patients. Caloric
restriction induces anti-proliferative effects in mouse xenografts,
an effect that is limited to tumours without mutations causing
constitutive activation of the PI3K pathway [214]. More recently,
caloric restriction has been shown to inhibit the growth of certain
tumours in mice by lowering lipid levels in both plasma and
tumours [215]. This dietary modification reduces stearoyl-CoA
desaturase activity in cancer cells, causing an imbalance between
unsaturated and saturated fatty acids and impairing tumour
growth.
In PCa obesity has been linked to an increased risk and

progression of the disease in epidemiological studies [216–218],
owing to the contribution of factors such as insulin resistance,
chronic inflammation, or hormonal dysregulation, among others.
However, the causal contribution of obesity to PCa and the
mechanistic foundations of this effect remains elusive. Murine

models have shed some light on these questions. Obesity and
high calorie-induced hyperinsulinemia promote PCa in prostate-
specific Pten-/- mice by increasing cell proliferation and activating
insulin/IGF1/PI3K/AKT signalling pathways [219, 220]. In line with
this notion, mutations in PCa that activate PI3K (such as prostate-
specific Pten loss) prime or promote obesity-driven PCa aggres-
siveness in conjunction with other signalling pathways, such as
loss of Ptpn1 [221], IL6/pSTAT3 signalling activation [222] or Pml
co-deletion [223]. This knowledge offers new therapeutic oppor-
tunities for targeting PTP1B, IL6 or PML-loss induced SREBP
signalling in the context of obesity.
Although much of the emphasis on the influence of obesity has

been put on lipid availability and chronic inflammation, sugars could
also play a relevant role. Indeed, increased expression of fructose
transporters in PCa has been suggested to promote fructose uptake
and metabolism to support cancer cell fitness [224].
Collectively, dietary interventions may also play a role in both

the progression and treatment of PCa, and further studies are
required to extend the knowledge of molecular and biological
effectors that can be translated into preventive and therapeutic
actions.
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CONCLUDING REMARKS AND OPEN QUESTIONS
Over the past decade, there have been extensive efforts to
understand the mechanisms and biological consequences of
metabolic reprogramming in cancer. Although currently there are
no drugs approved for PCa treatment that target specific
metabolic pathways, there are multiple agents in development.
Metabolic reprogramming is essential for the biology of cancer
cells. Tumour metabolism is influenced by cancer cell-specific
metabolic adaptations as well as by metabolic alterations in the
TME. Modern technologies to study metabolism, including new
imaging techniques, spatial metabolomics and single-cell RNA
sequencing have redefined our knowledge of cancer metabolism.
However, despite extensive research in PCa metabolism, there is
still a gap in knowledge on the therapeutically-actionable
metabolic pathways that are relevant to each stage of the disease.
Further research into the metabolic dependencies of the primary
tumour and those of the metastatic lesions, including the role of
ferroptosis, hypoxia and microbiota, might lead to new metabolic
interventions to prevent metastatic dissemination of prostate
cancer, and to significant improvements in the curation rate of this
disease.
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