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BACKGROUND: While REIMS technology has successfully been demonstrated for the histological identification of ex-vivo breast
tumor tissues, questions regarding the robustness of the approach and the possibility of tumor molecular diagnostics still remain
unanswered. In the current study, we set out to determine whether it is possible to acquire cross-comparable REIMS datasets at
multiple sites for the identification of breast tumors and subtypes.
METHODS: A consortium of four sites with three of them having access to fresh surgical tissue samples performed tissue analysis
using identical REIMS setups and protocols. Overall, 21 breast cancer specimens containing pathology-validated tumor and adipose
tissues were analyzed and results were compared using uni- and multivariate statistics on normal, WT and PIK3CA mutant ductal
carcinomas.
RESULTS: Statistical analysis of data from standards showed significant differences between sites and individual users. However,
the multivariate classification models created from breast cancer data elicited 97.1% and 98.6% correct classification for leave-one-
site-out and leave-one-patient-out cross validation. Molecular subtypes represented by PIK3CA mutation gave consistent results
across sites.
CONCLUSIONS: The results clearly demonstrate the feasibility of creating and using global classification models for a REIMS-based
margin assessment tool, supporting the clinical translatability of the approach.

British Journal of Cancer (2024) 131:1298–1308; https://doi.org/10.1038/s41416-024-02739-y

INTRODUCTION
Rapid evaporative ionisation mass spectrometry (REIMS) is the
functional combination of electrosurgery and on-line mass
spectrometric analysis of surgical aerosols [1–3]. Accurate
differentiation of cancer versus non-cancerous tissue types by
REIMS has been applied to breast [4], colon [5], ovarian [6] and
cervical [7] pathologies, and suggests that REIMS could be a
valuable tool to support intraoperative decision-making, with

potential to improve patient outcomes. The goal of the oncology
surgeon is to remove all cancer cells within a margin of non-
cancerous tissue while minimizing the destruction of non-
cancerous tissue. Margin status is most often determined
postoperatively, sometimes occurring weeks after surgery. While
pathologists examine tissue ex vivo at microscopic and cellular
levels with up to <1 µm resolution by light microscopy, the
surgeons must make intraoperative decisions based on
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macroscopic assessment in real-time, achieving a resolution of
only ~1mm when image guidance is employed [8]. Furthermore,
tumour margins are not always uniform and can contain
microscopic projections that emanate into surrounding tissues.
As a result of these challenges, the surgeon can inadvertently
encroach into the tumour bed, resulting in positive margins in
10–50% of procedures [9–11]. Positive margins can affect patient
outcomes, potentially requiring further surgery and delays in
adjuvant treatment. REIMS has the potential to address these
challenges, as it could provide real-time, intraoperative classifica-
tion of tissue at the metabolomics level, using pre-designed
classification models based on mass spectral databases; with the
ultimate goal of helping the surgeon avoid a positive margin
before the patient leaves the operating theatre.
Implementation of REIMS for future diagnostic use faces

potential challenges such as differences in site-specific electro-
surgical units and tissue heterogeneity and handling, which could
impact the accuracy of tissue classification models. Therefore, the
analytical performance of REIMS, and the performance of multi-
variate models used for tissue classification requires rigorous
investigation at a multi-site level. We previously created an
international consortium of four sites in the United Kingdom,
Europe and Canada with technically identical apparatus to
evaluate the multi-site performance of REIMS using food-grade
meats [12]. Importantly, we found that variability in REIMS spectra
could be minimized by harmonizing instrument settings and
tissue handling/sampling techniques, facilitated by establishing
single source reference material.
In the current study, our objective was to evaluate the clinical

applicability of REIMS in breast cancer surgery. We integrated our
harmonized REIMS platform into surgical pathology workflows at
three sites to study human breast tissue obtained from patients
undergoing surgical treatment of invasive breast cancer. Breast
tissue recognition models based on histopathology-validated
mass spectra were created at each site, and the classification
accuracy of those models was tested on data obtained at the
other two sites (Fig. 1). Since fatty acids (FAs) ranked among the
most significantly altered chemical species in breast cancer as
compared with normal breast adipose, we then explored FA

profiles across tumor tissue stratified by presence of PIK3CA
mutation, which occurs in 40% of patients with hormone receptor-
positive and human epidermal growth factor receptor 2 negative
cancers [13, 14]; and shown to increase tissue arachidonic acid
concentrations via PI3K signalling [15]. Our results reveal that
REIMS is a robust tool that can identify invasive breast cancer
across multiple sites in the United Kingdom, Europe and Canada;
but also demonstrates the utility of REIMS as a semi-quantitative,
targeted tool that can reveal mechanistic insights based on
oncogene-induced metabolic biomarkers identified in breast
cancer.

MATERIALS AND METHODS
Materials and reagents
Isopropanol and water (UPLC/MS grade) were purchased from Honeywell
(VWR, NL). Leucine enkephalin (LeuEnk) was purchased from
Sigma–Aldrich (St. Louis). Sodium hydroxide was purchased from Merck
(Darmstadt, Germany).

Samples and logistics
Non-clinical reference samples. Reference samples consisted of: (1) NIST
reference meat homogenate (Standard reference materialⓇ 1546a, National
Institute of Standards and Technology, NIST); and (2) two individual
batches of pork liver procured by Imperial College London (Center 1 (C1),
London, United Kingdom and shipped to three other participating centres
comprising Waters Research Center, Budapest, Hungary (C2); Maastricht
MultiModal Molecular Imaging Institute, Maastricht The Netherlands (C3);
and Queen’s University, Kingston Canada (C4). Pork liver samples were
shipped from C1 to the other sites on dry ice and stored in low-
temperature (−80 °C) freezers until analysis (Fig. 1) as previously described
[12].

Clinical samples. Human breast tissue was collected at three sites
affiliated with clinical centers, from patients who underwent surgery for
invasive breast cancer over 2018-2019 (Fig. 1). Informed consent was
obtained, and study approval was granted as per the following local
medical ethics committees: Imperial College London (C1); East of England
—Cambridge East Research Ethics Committee, REC reference 14/EE/0024;
Maastricht University (C3), medical ethics committee of Maastricht
University Medical Center (MUMC+) permit No. METC 16-4-168; and
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Fig. 1 Workflow for multicenter study of clinical samples. Human breast tissue was obtained from patients who received surgical treatment
for breast cancer at the following sites: Imperial College London (C1), Maastricht University (C3) and Queen’s University (C4). Tissue was
analyzed by REIMS and validated by histopathologists. Quality control material including two batches of single-source pork liver and meat
homogenate (National Institute of Standards and Technology (NIST), Standard reference material 1546a) was analyzed at all four centres
including Waters Research Center (C2) to compare method performance.
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Queen’s University (C4) Health Sciences Research Ethics Board, permit No.
6023032. After macroscopic examination, a site-specific breast pathologist
(four pathologists in total) selected tumour and/or normal tissue samples
from 6-8 breast cancer surgery cases from each site. Samples were stored
in a low-temperature freezer (−80 °C) until REIMS analysis was performed.

Sampling with electrosurgery
All tissues were allowed to reach room temperature before analysis and
placed on a return electrode. If necessary, samples were wetted with
deionised water. Electrosurgical dissection was carried out using commer-
cial electrosurgical generators (C1: COVIDIEN Ltd. Triad, Ireland; C2: ERBE
Elektromedizin GmbH ICC-350, Germany; C3/C4: COVIDIEN Ltd. Force Fx)
providing power-controlled sinusoidal 330 kHz alternating current. Tissue
was sampled using a custom diathermy pencil with a smoke evacuation
line (Waters Research Center, Budapest Hungary). Each sampling event was
conducted for 3–5 s.

Settings for the sampling of non-clinical samples. The generator was used
in cut mode with an optimized power setting (i.e. 10 W for the NIST
reference meat homogenate, 20 W for the pork liver samples). In order to
maximize reproducibility, the diathermic knife was maintained in a semi-
vertical position above the tissue during sampling. NIST and pork liver
reference material was analyzed before and after each series of breast
measurements, and used as quality control to assess instrument variability
across sites. Measurements were performed two times per day, on two
consecutive days for each sample. Each measurement consisted of
3–5 sampling points, typically lasting 4–8 s in duration.

Settings for the sampling of clinical samples. Previous work revealed lipid
class-dependent differences in signal intensity in ‘cut’ as compared with
‘coagulation mode’ [4]. Thus, we analyzed all samples retrospectively using
both modes where possible. In a clinical setting, we anticipate that this
would enable continuous intraoperative tissue classification if the surgeon
switches mode. Optimized generator power settings used, included
15–70W in cut mode, or 10–30W in coag. The blade on the diathermic
knife was cut in half to maximize the aspiration of the plume into the mass
spectrometer.

REIMS – qTOF instrumentation
At each site, data was acquired on a XevoTM G2-XS quadrupole time-of-
flight (qTOF) mass spectrometer fitted with a REIMS source (version III,
research use only) (Waters, Wilmslow UK). Operating parameters were kept
constant among sites, and instrument status was verified using a common
checklist based on a harmonized REIMS protocol across all four sites [12].
Briefly, instruments were connected to a 7 bar gas (pressurized air or
Nitrogen) supply. Time-of-flight (TOF) and backing pressures were in the
range of <e−7 and 1.3 mbar, respectively. The smoke produced by
electrocautery was aspirated via a Venturi pump connected to the REIMS
interface. The heated coil in the REIMS source was kept at 8-900 °C. Data
were acquired in “sensitivity” and negative ionization mode within the
mass-to-charge m/z range of 100–1500. The mass resolution was above
15.000 full width at half-maximum. Instrument calibration was performed
or checked with sodium formate before each measurement series. A
solution of leucine-enkephalin at a concentration of 0.05 ng/µl (prepared in
isopropanol) was continuously infused during acquisition at a flow rate of
150 µl/min for external lock mass correction. MS/MS fragmentation of
molecular species was carried out using nitrogen as collision gas with
30–45 eV collision energy according to the exact mass and molecular
species type.

Histopathology examination of clinical samples
After REIMS analysis, the remaining tissues were fixed in formalin (Unifix,
Klinipath) and embedded in paraffin. Tissue sections were then stained
with Haematoxylin and Eosin (H&E) and examined by a breast pathologist.
One or two pathologists at each of the three clinical centres (four
pathologists in total) examined the tissues obtained and analyzed at their
respective centres using standard-of-care methods. A representative tissue
section from each specimen was assessed microscopically for the
percentage of cancerous versus non-neoplastic tissue surrounding the
area analyzed by REIMS, as annotated by the pathologists (Supplementary
Figure S1). Spectra were assigned the label ‘breast cancer’ if the region
surrounding the sampling point contained at least 30% breast cancer.
Spectra containing < 30% breast cancer were excluded. Spectra containing

only 100% normal breast adipose surrounding the sampling point, were
labelled as normal breast tissue. Spectra containing < 30% breast cancer
were excluded. We adopted a ‘30% cancer’ criteria to balance the number
of spectra available in the breast cancer class with the risk of sampling/
labelling error that can occur by extrapolation of class labels for spectra
generated for ablated tissue, based on the tissue surrounding the REIMS
sampling area.

Data analysis
Mass spectral processing and multivariate data analysis were performed
using the Abstract Model Builder (AMX) software ([beta] version 1.0.1581.0,
Waters Research Center). All mass spectra were processed as follows: (i)
background subtracted; (ii) mass shift corrected against the reference peak
of deprotonated LeuEnk [M−H]− at m/z 554.26; (iii) binned to 0.1 Da
(within the mass range m/z 600–1000—corresponding to the region of
abundant phospholipids and triglycerides); iv) normalized against the total
ion count (TIC). Multivariate analysis was based on principal component
analysis/linear discriminant analysis (PCA/LDA). PCA was performed with a
maximum of n= 25 dimensions and LDA with n-1 dimensions where n
corresponds to the number of variables introduced in the model. Cross-
validation tests were performed by building the site-specific classifiers to
recognize the data generated on the other sites. Data points were marked
as outliers if they deviated 5 x standard deviation (SD). Inter- and intra-site
and user variability was assessed using cosine similarity measure and KNN-
classifier and all relevant site-specific peaks were listed using HSIC Lasso
using Python 3.10. To identify specific peaks differentially abundant in
normal and cancerous tissue, we used a Support Vector Machine (SVM)
based algorithm in Python 3.7 using sklearn.svm.SVC function with l1 norm
and a parameter of C= 500 to select features. To explore the
reproducibility of FA signatures in breast cancer tissue stratified by PIK3CA
mutational status, we used a MicrobeLynx model (Waters) [16] based on
selected FA peaks: m/z 279.23, 307.26, 305.25, 303.23, 331.26, 329.25;
normalized to the sum of FA peaks. Briefly, a channel was created from
each FA peak using the median and standard deviation of each class, and
the likelihood of a novel sample being part of each channel’s distribution
was calculated. The sample was classified into the class with the highest
likelihood. Five-fold cross-validation was used to assess accuracy. The
relative abundance of selected ions-of-interest is presented as box-and-
whisker plots using the method of Tukey (Graphpad PRISM). Boxes depict
the median and span the 25–75th percentile. Whiskers extend to the
highest and lowest data point if ≤ the 75th percentile plus 1.5× the
interquartile range (IQR), or ≥ the 25th percentile minus the IQR. Individual
data points are not shown. Alternatively, data points are shown if > the
75th percentile plus 1.5× IQR or <25th percentile minus 1.5× IQR. In this
case, the whiskers extend to the 75th percentile plus 1.5× IQR and the 25th
percentile minus 1.5× IQR. Two-tailed t-tests (unpaired) were used to
assess differences in the abundance of normally distributed m/z bins,
ratios, or cosine similarity scores, where significance was indicated by
p < 0.05. Welch’s correction was applied when comparing data with
unequal variances. Code availability: All codes used in this study are
available, with restrictions, by contacting the corresponding author.

PIK3CA mutation analysis
A PNA-Clamp PIK3CA Mutation Detection Kit (Panagene, PNAC-4001), was
used to detect PIK3CA mutations in primary breast tumor samples,
according to the manufacturer’s instructions. Briefly, DNA was extracted
from 10 consecutive sections of 10 μm thickness tissue from FFPE blocks
using the QIAamp DNA FFPE tissue kit (QIAGEN, 56404). Mutations in exon
9 (helical domain) and exon 20 (kinase domain) of PIK3CA were assessed.
More specifically, reactions were performed using 10 ng DNA with a SYBR
Green PCR reaction premix and primer premixes detecting E542, E545,
Q546 and H1047 mutations using the TProfessional Thermocycler (Analytik
Jena Biometra). The following cycle reactions were used: pre-denaturation
for 5 min at 94 °C, followed by 40 cycles of 30 s at 94 °C (denaturation), 20 s
at 70 °C (peptide nucleic acid clamping), 30 s at 63 °C (annealing) and 30 s
at 72 °C (extension).

RESULTS
Quality control of REIMS methodology using single-source
pork liver and NIST reference material
Single-source pork liver and NIST meat homogenate served as
quality control samples, analyzed by REIMS alongside clinical

M. Kaufmann et al.

1300

British Journal of Cancer (2024) 131:1298 – 1308



tissue samples at each centre using identical instrument config-
urations. Representative REIMS spectra from pork liver and NIST
meat homogenate are shown in Fig. 2a, b. We observed
differences in signal intensity, and distinct relative abundance of
lipids including m/z 885.55 [PI(38:4)−H]−, 893.74 [TG(52:2)+Cl]−,
and 629.49 [DG(34:1)+Cl]−, between the two quality control
materials. Accordingly, multivariate analysis based on supervised
PCA/LDA successfully separated the liver versus NIST samples and
revealed little site-dependent clustering (not shown). To evaluate
the variability of spectra based on possible centre-dependent
biases, we plotted only the pork liver data using unsupervised PCA
in Fig. 2c. Some centre-dependent biases could be discerned in
the data, however, cross-validation revealed that the correct site
could be identified only 50% of the time based on PCA/LDA
suggesting that centre-dependent bias was minimal. Furthermore,
when NIST meat homogenate was included in the model, the two
quality control materials were always correctly classified during
cross-validation across all centres. Using a KNN classifier with
cosine distance, we found that pork liver spectra could be
accurately identified by the site (Accuracy= 94–98%). However, it
was mainly m/z bins corresponding to low-abundance peaks and
chemical noise that appeared to drive the site-based separation of
the pork liver spectra, and not the major characteristic tissue
peaks (Supplementary Figs. S2 and S3). We previously

demonstrated that slight differences in sampling technique by
analysts from different sites were minimal, when all seven analysts
from across each centre conducted multiple REIMS analyzes of
pork liver using the same instrument at C3 [12]. These data points
are included in Figure 2c for reference, and grouped with the pork
liver sampling points completed by C3 for quality control
purposes in the current study. The plot in Fig. 2d shows only
the pork liver data points from C3, alongside the previous data
acquired by different analysts at C3. Figure 2d reveals that the
analyst-dependent variability in spectra was no greater than the
spectral variability associated with multiple sampling points
conducted by C3’s designated analyst. Spectral similarity across
analysts was also demonstrated by high cosine similarities of
0.97–0.99, comparing spectra acquired by each analyst to C3’s
quality control data. Cosine similarity values were not significantly
different among analysts (Supplementary Fig. S4).

Characterization of human breast tissue by REIMS across sites. We
analyzed human breast samples collected from patients under-
going breast cancer surgery at our three sites affiliated with clinical
centres (C1, C3, and C4). Each site obtained invasive breast cancer
and/or normal breast samples from specimens resected from 6–8
patients and sampled them by REIMS in cut and coagulation mode,
from which a total of 260 spectra were included (Table 1). We
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included invasive breast cancer spectra containing at least 30%
tumour cells around the sampling site, as well as normal spectra
that were free of tumour cells based on histopathology analysis as
described in Materials and Methods. Spectra were excluded if there
was a discrepancy between the gross tissue label and the
histopathology-assigned label, or if the intensity of the scan was
low (i.e. below 2 × 104). Representative spectra from either normal
breast adipose or invasive breast cancer acquired in cut mode are
shown in Fig. 3a, b. Representative spectra from all sites for both
cautery modes are shown in Supplementary Figs. S5 and S6. Not
surprisingly, the intensity of the REIMS signals differed greatly
among the sites, and the signal-to-noise ratio of spectra obtained
from the human breast was significantly lower compared to the
pork liver and NIST reference material, owing to the smaller-sized
samples collected from the surgery. A remarkably consistent
pattern of m/z ratios in adipose as compared with invasive breast
cancer was observed among all sites. For example, triglycerides (m/
z 850–1000) dominated the spectra acquired from normal tissue,
but were mostly absent from tumour spectra, which exhibited a
relatively high abundance of phospholipids, such as m/z 699.50 50
[PE(34:1)−NH4]

−/[PA(36:2)−H]− and 744.55 PE[(18:1/18:0)−H]−, in
agreement with a previous study [4]. Highly abundant triglycerides
observed in normal breast include m/z 865.71 [TG(50:2)+Cl]−,
893.74 [TG(52:2)+Cl]− and 919.75 [TG(54:3)+Cl]−.
Intra-site and inter-site variability in spectra was studied by

using the cosine similarity metric (Supplementary Figs. S7 and S8).
Most intra-site cosine similarities were > 0.9, with cancer spectra

exhibiting somewhat lower similarity scores than normal adipose,
most notably in coagulation mode. Inter-site cosine similarity
measures were typically lower than intra-site, suggesting the
presence of inherent intra-site variability. As observed with the
intra-site measures, cosine similarity was typically lower for cancer
tissue, particularly in coagulation mode. While not surprising that
cancer tissue exhibited greater variability than normal, these data
suggest that overall sample-based variability is relatively low, as
compared with site-based variability, and that ablation of cancer
tissue in coagulation mode led to the lowest median inter-site
similarity score of 70%. The majority of significant m/z bins that
contribute to inter-site variation in spectra appear to be low-
abundance bins related to noise, from which a specific, measured
m/z cannot be discerned. Exceptions include major triglycerides
m/z 891.72, 865.71 and 895.75 that contribute to site-based
differences in normal tissue (both cut and coagulation). Interest-
ingly, the peaks contributing to site-based variability in breast
cancer spectra include residual triglycerides (m/z 925.72, 923.78)
as well as a glycerophospholipid (m/z 742.54) (Supplementary
Fig. S7). The volcano plot analysis in Supplementary Fig. S9
indicates the number of m/z bins that differ significantly in either
mode, in normal adipose or breast cancer. As many of the bins
correspond to low-abundance peaks or noise, peaks with the
most significant PCA loading scores were also considered. While
certain abundant triglycerides were distinctly elevated in the
coagulation mode (m/z 909.77, 925.72), the most abundant
species (m/z 893.74, 891.72 or 919.75) did not differ significantly

Table 1. Breast cancer patient demographics and sampling points.

Center Patient Diagnosisa Age Hormone receptor
statusb

PIK3CA mutation statusc No. burns
(N)d

No. burns
(T)d

ER PR Her2 CT CG CT CG

C1 1 ILC 54 + + n/de n/d 5 4 4 2

2 IDC 40 + + + E542R/E545X/Q546X 3 2 0 0

3 IDC 76 + + − E545X/Q546X 5 5 0 0

4 IDC 47 + + + n/d 0 0 0 3

5 IDC 81 + + − n/d 4 5 0 4

6 DCIS 68 n/dd n/d n/d H1047R 4 3 0 0

C3 1 IDC 43 + + − WT 5 1 5 3

2 IDC 73 + + − E545X/Q546X/H1047R 5 2 2 0

3 ILC 54 + − − WT 5 4 1 0

4 ILC 86 + + n/d WT 5 3 3 4

5 IDC 71 + + − WT 5 3 5 5

6 ILC 49 + + − E545X/Q546X 0 2 3 0

7 IDC 62 + + + E545X/Q546X/H1047R 0 0 3 3

8 IDC 80 − − − E542R/H1047R 5 4 2 5

C4 1 IDC 84 − − n/d E542R/C420R/H1047R 8 6 2 2

2 IDC 70 + + − WT 8 4 0 0

3 IDC 56 + + − WT 9 5 0 0

4 IDC 69 + + − n/d 3 2 3 0

5 IDC 57 − − − E545X/Q546X 0 0 3 1

6 IDC 88 − − + H1047R 0 0 3 0

7 IDC 79 + + − WT 3 2 0 0

Total 21 n/af 82 57 39 32
aILC invasive lobular carcinoma, IDC invasive ductal carcinoma, DCIS ductal carcinoma in situ.
bER estrogen receptor, PR progesterone receptor, Her2 human epidermal growth factor receptor receptor 2.
cPIK3CA mutational status associated with tumor tissue sampled. WT wildtype.
dNumber of sampling events in either normal (N) or tumor (T) tissue, using cut (C) or coagulation (CG) mode.
eNot determined.
fNot applicable.

M. Kaufmann et al.

1302

British Journal of Cancer (2024) 131:1298 – 1308



between the two modes. In breast cancer tissue, abundant m/z
bins with the most significant loadings that differentiate cut and
coagulation were shown to be statistically significant as well.
These data suggest that electrosurgery mode impacts the
spectral fingerprint of breast cancer tissue more so than that of
normal adipose tissue, as indicated in the representative spectra
shown in Supplementary Figures S5 and S6.

Multivariate analysis of human breast spectra and multi-site tissue
classification. A total of n= 210 pathology-annotated spectra
were included in the multivariate model; including n= 71
invasive breast cancer (39 cut/32 coag), and n= 139 normal
(82 cut/57 coag). Figure 3 shows PCA (3C) and PCA/LDA plots

(3D) where the separation between spectra labeled as cancerous
and normal is almost complete, independent of the site. We
observed a correct classification rate of 96.4 (range 92–100%)
when creating a model with one site’s data and testing it against
data from the remaining two sites (Table 2). To see if a site-
diverse training set could improve tissue classification accuracy,
we built a model where the training set contained the data of 2
sites and classified the data acquired at the third site; all sites
were left out once (cross-validation by site). A 97.11% correct
classification rate with 1.4% false negative and 5% false positive
rates was observed (Table 3). We also performed ‘leave-one-
patient-out’ cross-validation by keeping all data in the training
set with the exception of data from one patient; resulting in a

279.23 281.25

281.25

279.23

255.23

200

Normal adipose – cut Normal adipose – coag Invasive breast cancer – cut Invasive breast cancer – coag

300 400 500 600
m/z

700 800 900 1000 1100

255.23

0

283.26

283.26

554.26
893.74

744.55

303.23

865.71

687.53

673.48
642.52

554.26

699.50

770.57

919.75

4 × 106

3 × 106

2 × 106

1 × 106

4 × 106

3 × 106

2 × 106

1 × 106

0

0.03 0.03

0.02

0.01

0.00

0.02

0.01

0.00

0.10

0.05

0.00

FA(20:4)
m/z 303.23

PE(18:1/18:0)
m/z 744.55

TG(52:2)
m/z 893.73

a

bIn
te

ns
ity

N
or

m
al

iz
ed

 In
te

ns
ity

c d

e f g

PC 3

PC 1

PC 2

LDA 3

LDA 1

LDA 2

Fig. 3 Multi-site characterization of human breast tissue. Representative REIMS spectra from either normal breast adipose a or invasive
breast cancer b. The spectra shown are 1 s scans acquired using cut mode, and subjected to background subtraction and lockmass correction.
The PCA c and PCA/LDA d plots compare the overall tissue-type variability between cut and coagulation modes. e–g Differential abundance
of selected ions identified by peak picking, used to create a model with only 11 targeted ions.

M. Kaufmann et al.

1303

British Journal of Cancer (2024) 131:1298 – 1308



98.57% correct classification rate with a 2.8% false negative and
0.72% false positive rate (Table 3). Supplementary Figure S10
depicts two spectra from C3 obtained in coagulation mode, that
were misclassified by a model created using C4’s data. False
negatives (Fig. S10A) and false positives (Fig. S10B) appear to be
caused by low spectral quality, and the presence of glyceropho-
spholipid peaks in scans labeled as normal. A total of
46 sampling points were initially excluded from model creation
and testing that were determined to contain tumor cell content
of < 30%, to minimize the impact of the spectral labelling error
on the assessment of multisite performance. Upon classification
of these points, 67.4% were correctly identified as ‘cancer’; or
73.8% when excluding 4 outliers. When testing individual scans
within each of the 46 points, we found that 78.2% of the points
that contained at least one scan classified as ‘cancer’ were
correctly recognized. None of the individual scans tested were
determined to be outliers.
We subjected the same set of spectra with >30% cancer cell

content to a feature selection algorithm, over the entire mass
range. In total, 11 features were identified, 6 of which were
relatively abundant in normal breast including four triglyceride
and two fatty acid species. Five features that were relatively
abundant in invasive breast cancer included PEs and FAs

summarized in (Table 4) as well as two unidentified peaks: m/z
137.03 and m/z 134.04. A model based only on these 11 features
resulted in the same classification rate as achieved using the m/z
600–1000 mass range –98.57%, with 4.23% false negatives and
no false positives. The relative abundance of selected species is
shown as boxplots in Figs. 3e–g.

Characterization of fatty acid profiles from REIMS spectra
Given that our feature-selection algorithm identified 3 out of 11
significant features as FAs (including arachidonic acid) as
differentially abundant between breast tissue types (Table 4), we
explored the relative abundance of all fatty acid peaks detectable
by REIMS in cut mode. We detected 6 FAs, comprising a
combination of saturated, and mono-/poly-unsaturated species
many of which are associated with the ω6 fatty acid pathway
(Fig. 4a) (Table S1). While [FA(18:1)-H]− and [FA(18:2)-H]− were
more abundant in benign adipose than tumor tissue, all other
downstream FAs including [FA(20:4)-H]− (arachidonic acid) exhib-
ited increased abundances in tumor tissue suggesting increased
FA metabolism. Based on our previous work [15], we hypothesized
that arachidonic acid would be elevated in breast cancer tissue
harboring PIK3CA mutations. When spectra were stratified by
PIK3CA mutation status, no increase in [FA(20:4)−H]− was
observed. However, the precursor [FA(18:2)−H]− was decreased,
whilst [FA(20:3)−H]−, [FA(22:4)−H]− and [FA(22:5)−H]− were
increased in PIK3CA-mutated tumor tissue, suggesting enhanced
arachidonic acid metabolism (Fig. 4a, b). The ratiometric analysis
also suggested that the metabolism of arachidonic acid to other
downstream FAs was increased in tissues harboring mutant
compared to wildtype PIK3CA (Fig. 4c). Furthermore, increased
metabolism of [FA(18:2)−H]− to [FA(20:2)−H]− was observed in
mutant tissues. Given that PCA/LDA-based models would likely
over-fit the limited number of sampling points available, we
created a two-class MicrobeLynx model (PIK3CA wildtype vs.

Table 3. Confusion matrix for classification of spectra from human breast based on one-site-out, or one-patient-out cross-validation.

True class ↓ Predicted class (no. of
spectra)

Correct classification rate (%) Rate of false negatives (%) Rate of false positives (%)

Tumor Normal Total

Tumor 70a 1a 71 97.1 1.4 5.0

Normal 7a 132a 139

Total 77 133 210

Tumor 69b 2b 71 98.6 2.8 0.7

Normal 1b 138b 139

Total 70 140 210
aPredicted class based on leave one-site-out cross-validation.
bPredicted class based on leave one-patient-out cross-validation.

Table 4. Characterization of ions abundant in invasive breast cancer and normal adipose

Abundant in m/z (bin) m/z (measured) m/z (theoretical) m/z (error, ppm) Putative ID Ion

Cancer 279.25 279.234 279.2329 3.9 FA(18:2) [M−H]−

Normal 281.25 281.248 281.2486 2.1 FA(18:1) [M−H]−

Cancer 303.25 303.233 303.2329 0.3 FA(20:4) [M−H]−

Normal 629.45 629.488 629.4917 5.9 DG(18:1/16:0) [M+Cl]−

Cancer 744.55 744.555 744.5549 0.1 PE(18:1/18:0) and PE-NMe2(18:1/16:0) [M−H]−

Normal 865.75 865.710 865.7057 4.9 TG(50:2) [M+Cl]−

Normal 893.75 893.733 893.7370 4.4 TG(52:2) [M+Cl]−

Normal 919.75 919.748 919.7527 5.5 TG(54:3) [M+Cl]−

Normal 925.75 925.725 925.7291 4.4 TG(58:10) [M−H]−

Table 2. Correct classification rate for human breast tissue using
models based on one site’s data.

Model
used for
training

Correct
classification
rate (%)

Rate of false
negatives
(%)

Rate of false
positives
(%)

C1 98.0 1.9 3.0

C3 100.0 0 0

C4 91.8 21.1 0
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mutant) assuming Gaussian distribution for each of the 6 FA
peak channels. 5-Fold cross-validation achieved an accuracy
of 69.7% (sensitivity= 84.4%, specificity= 41.7%) pointing to
factors other than PIK3CA genotype that could affect ω6 FA
levels in breast tumor tissue. When we studied FA profiles in
samples stratified by hormone receptor status, metabolism of
[FA(18:2)−H]− to [FA(20:2)−H]− was enhanced in triple-negative
as compared with estrogen receptor/progesterone receptor
positive samples (ERPR+), Figure S11. While the metabolism of
arachidonic acid did not differ significantly between triple-negative
and ERPR+ tumor samples on the basis of individual FAs or ratios,
overall metabolism of [FA(18:2)−H]− through the ω6 pathway was
enhanced in triple-negative samples, based on the sum of
all [FA(18:2)−H]− products relative to precursor [FA(18:2)−H]−,
Figure S11.

DISCUSSION
Using harmonized REIMS methodology, we characterized normal
breast adipose and invasive breast cancer samples obtained from
patients who underwent standard-of-care surgical treatment for
breast cancer involving local pathology assessment across three
clinical sites. Differential abundance of ions in three classes of
chemicals including phospholipids, triglycerides and fatty acids
were found to accurately classify the two tissue types. On the basis
of altered phospholipid-to-triglyceride, single-site models pro-
vided a correct classification rate with > 92%; and by combining
two sites’ data into a single model and performing one-site-out
cross-validation gave an accuracy of at least 97%. We conclude
that the phospholipid/triglyceride m/z range is an informative
signature for recognizing invasive breast cancer across sites, which
is consistent with a larger single-site cohort study published by C1
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in 2017 [4]. A more targeted model based on 11 selected ions
across a broader m/z range that included fatty acids, achieved a
correct classification rate of 98%. Although fatty acid profiles
discerned from REIMS spectra were consistent with oncogenic
signaling pathways including PIK3CA and hormone receptor
status, a larger study will be needed to identify mass spectral
patterns that can be used for accurate recognition of breast cancer
subtypes across sites that may aid in post-operative clinical
decision support [17]. Our results suggest that intraoperative
characterization of breast cancer resection margins is possible. To
improve the surgical utility of this tool, linking REIMS signals to
preoperative and 3D intraoperative imaging will help guide the
surgeon back to the precise location of a positive margin to resect
more tissue [18–20]. The current study adds REIMS to a number of
other imaging and ambient ionization techniques that have been
evaluated at the multi-site level [21–24].
Upon evaluation of sources of spectral variability, spectra

appeared to vary the least by the analyst, based on the analysis
of pork liver quality control samples. Sample-based (intra-site)
differences were also considered to be minimal, but variability in
spectra increased when coagulation mode was used, particularly
when breast cancer tissue was analyzed, which led to considerable
variability when site-to-site comparisons were made. Methods
used to identify the underlying site-dependent peaks pointed to
low-abundance and/or noise-containing bins, however, triglycer-
ides were the most frequently highlighted species contributing to
site-based variability for which m/z ratios could be verified.
Although this was not surprising for normal breast adipose tissue,
triglycerides were also observed to contribute to spectral
variability in breast cancer. Even though coagulation spectra
exhibited the highest variability, none of the top bins were found
to be selectively more abundant in coagulation mode. Spectral
variability can be explained in part by the altered ohmic resistance
of the different-sized samples collected from the surgery, tissue
heterogeneity, and the challenging task of cauterizing adipose
tissue with a monopolar device. We also note that certain causes
of spectral variability are unique for tissues sampled ex vivo, and
do not occur in spectra acquired intraoperatively. Upon examina-
tion of misclassified spectra, lower spectral quality and an
unexpected balance of glycerophospholipids-to-triglycerides rela-
tive to the tissue label were observed. This could arise from a
different tumor cell percentage in the ablated tissue relative to
that extrapolated from the surrounding region by pathology
(labeling error), and the presence of other non-cancerous
epithelial cell types in normal tissue and/or tumor tissue. A
limitation of REIMS continues to be the destructive nature of the
technique, making the precise cell composition of sampling points
challenging to confirm. Site-dependent biases in labeling error
(concordance across pathologists) or clinical tissue harvesting
were not controlled for, as our intention was to evaluate
performance on independently acting, surgical-pathology work-
flows. However, this may have resulted in tissue misclassification
depending on the site train/test combination; which we
attempted to mitigate by 1) creating site-diverse models in
addition to models from individual sites’ data, and 2) by including
‘breast cancer’ specimens only if >30% tumor cell content was
determined by the pathologist. Encouragingly, 73.8% of the
excluded tumor sampling points were correctly classified, but this
suggests that the remaining 23.9% of the points contained tumor
cell concentrations below a limit of detection that has yet to be
determined or that sampled regions sparsely populated with
tumor cells might not have contained any tumor cells. Each of
these scenarios would potentially contribute to false negatives.
Model creation and testing was focussed on the m/z 600–1000
region of the spectrum corresponding to structural/storage lipids
and contains lower noise levels and fewer solvent interferences
compared to lower mass rages. When included (m/z 100–1000),
the lower mass range led to greater spectral variability. However, a

targeted approach using the most differentially abundant ions
between normal breast and breast cancer exhibited a superior
tissue classification accuracy of 98%, in part by minimizing the
impact of spectral variability on classification and by avoiding the
inadvertent inclusion of noise-containing bins that occurs by
including broad mass ranges. This observation points towards the
feasibility of using triple quadrupole mass analyzers for iKnife
applications in the future.
De novo lipid synthesis is a hallmark of tumorigenesis, which

has prompted the interrogation of lipid metabolism pathways as
both diagnostic and therapeutic targets in breast cancer. Under
hypoxic conditions, increased production of fatty acids for use in
the synthesis of cell membrane phospholipids is needed for
rapidly proliferating cancer cells [25]. Current and previous REIMS
studies demonstrate an increased abundance of phospholipid in
comparison to normal breast tissue, an observation that is
consistent with other mass spectrometry-based lipidomic techni-
ques applied to fresh clinical samples [4, 26, 27]. This presumably
occurs for multiple reasons, including the dysregulation of lipid
metabolism in the cancerous tissue, as well as the large proportion
of epithelial cells present in tumor relative to normal breast
adipose [28]. Not surprisingly, triglycerides constitute the majority
of the signal in spectra from normal breast as observed with other
techniques [29]; since it is composed mainly of adipose tissue but
also some epithelial cells associated with ducts and mammary
glands that contribute to spectral variability. Our targeted
approach identified increased levels of arachidonic acid in tumor
tissues relative to normal, consistent with observations using other
mass spectrometry-based methods [28, 30]. Arachidonic acid is
released from phospholipid or triglyceride by phospholipase and
gives rise to eicosanoids that promote tumor growth and
inflammation [31]; a pathway enhanced in tumors possessing
activation-of-function mutations in PIK3CA and dependent on a
PI3K signaling cascade correlated with REIMS-detectable arachi-
donic acid (Fig. 4A) [15]. While we did not observe increased
arachidonic acid levels in PIK3CA mutant tissues, we did however
observe increased abundance of FA products downstream of
arachidonic acid. A number of factors may explain why
arachidonic acid did not appear significantly elevated in our
PIK3CA mutant tissues including the broad range of heterogenous
tumor cell content of our samples (30-100%) and the fact that
tissue pools of arachidonic acid can also arise from delta-6-
desaturation of linoleic acid (FA(18:2)) which is generally
enhanced in breast cancer tissue but especially in estrogen
receptor-negative samples [28]. These factors may rationalize why
targeted models based on individual FAs achieved lower cross-
validation accuracies when attempting to predict PIK3CA muta-
tional status. The abundance of FAs did not differ when stratified
by hormone receptor status, which suggests that PIK3CA genotype
had a dominant effect on arachidonic acid metabolism. This was
reinforced by FA ratios revealing that arachidonic acid metabolism
was more prevalent in PIK3CA-stratified, but not receptor-stratified
tissues, even though all tumor tissues exhibited increased overall
FA(18:2) metabolism. Our small sample size, and static measure-
ments in a heterogeneous tissue cohort may have resulted in
confounding effects on FA metabolism that preclude mechanistic
conclusions from our study. However, our results emphasize that
REIMS signals are biologically relevant and align with metabolic
aberrations known to occur in breast cancer tissue. This points to
the utility of REIMS as a rapid tool to investigate oncogenic
pathways, in addition to serving as an effective tissue profiling
modality, which opens up the possibility of exploring the use of
REIMS for patient stratification.
Taken together, REIMS can differentiate with high accuracy

normal breast from invasive breast cancer tissues in clinical
samples independently collected, analyzed and validated in the
UK, Europe and Canada. We also show the possibility of mapping
tumor subtypes based on the monitoring of fatty acid metabolism
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with REIMS. Our data and others show that models which
maximize the number of data points used from the broadest
cross-section of patients and regions possible will lead to a more
accurate classification. Our results, in addition to the establish-
ment of reference material and standard operating procedures,
demonstrate that accurate intraoperative classification of breast
tissue by REIMS is possible. All of our sites have developed clinical
workflows for the use of mobile REIMS units in the operating
theater, enabling us to test this hypothesis.
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Data is available within the manuscript and supplementary information.
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