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Analytical ab initio hessian from a deep
learning potential for transition state
optimization

Eric C.-Y. Yuan 1,2,9, Anup Kumar3,9, Xingyi Guan1,2, Eric D. Hermes 4,
Andrew S. Rosen 5,6, Judit Zádor 7, Teresa Head-Gordon 1,2,8 &
Samuel M. Blau 3

Identifying transition states—saddle points on the potential energy surface
connecting reactant and product minima—is central to predicting kinetic
barriers and understanding chemical reaction mechanisms. In this work, we
train a fully differentiable equivariant neural networkpotential, NewtonNet, on
thousands of organic reactions and derive the analytical Hessians. By reducing
the computational cost by several orders of magnitude relative to the density
functional theory (DFT) ab initio source, we can afford to use the learned
Hessians at every step for the saddle point optimizations.We show that the full
machine learned (ML) Hessian robustly finds the transition states of 240
unseen organic reactions, even when the quality of the initial guess structures
are degraded, while reducing the number of optimization steps to con-
vergence by 2–3× compared to the quasi-Newton DFT and ML methods. All
data generation, NewtonNet model, and ML transition state finding methods
are available in an automated workflow.

Computational identification of transition states (TSs) on the quantum
mechanical potential energy surface (PES) is central to predicting
reaction barriers and understanding chemical reactivity1,2. The height
of the barrier exponentially impacts the reaction rate coefficient via
the Eyring equation, and the geometric character of the metastable
state is informative about the kinetic mechanism, making TSs key to
describing a broad range of chemical kinetic outcomes for enzymes,
next-generation synthetic catalysts, batteries, and conformational
changes of molecules and materials3,4.

Transition states are first-order saddle points, and locating them
via mathematical optimization is particularly challenging on high
dimensional PESs relevant in complex molecular systems. Locating an
equilibrium geometry, i.e., a local minimum on the PES, can be found
using bracketing methods based on function evaluations (0th order)5,6

and with methods that use gradient information, such as steepest
descent7 or conjugate gradient8 (1st order). Under the quadratic
approximation, identificationof the localminima canbemore robustly
achieved in fewer steps by 2nd order methods9 using the Hessian
matrix, whose elements Hij are defined as the second derivative of the
energy E with respect to atomic positions Ri and Rj. However, a meta-
stable first-order saddle point is characterized by a single negative
Hessian eigenvalue, and hence 2nd order methods are indispensable to
optimize for molecular TS energies and geometries1. The Newton-
Raphson (NR) method and its variants, including restricted and aug-
mented methods like the trust radius method (TRM) and the rational
function optimization (RFO) method, select the displacement vector
ΔR(k) (or in internal coordinates) at step k using the inverse Hessian
½HðkÞ��1

and the gradient g(k) 10–12. The geometry direct inversion of the
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iterative subspaces (GDIIS) method and its variants similarly utilize
Hessians and gradients to define a search space for optimization13.

However, the evaluation of analytical Hessians for ab initio
methods such as density functional theory (DFT) requires solving
coupled-perturbed equations, which scale one power of system
size N higher than the energy or the gradient and thus can be prohi-
bitively expensive. Consequently, almost all TS optimization
approaches rely on constructing cheaper approximateHessians using
only gradient information to avoid expensive Hessian calculations, in
general referred to as quasi-Newton (QN) methods14–20. Arguably
the most widely used Hessian approximation for minimization is the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) method, where the
Hessian is iteratively updated using a rank-2 matrix generated
from the displacements and gradients. Such Hessian updates,
however, are positive definite by design and thus cannot be applied
to TS searches. Instead,methods such as symmetric rank-one (SR1) or
Murtagh–Sargent, Powell–symmetric-Broyden (PSB), Murtagh–
Sargent–Powell (MSP), Bofill, and TS-BFGS methods are developed
for an indefinite approximate Hessian21–25. On a complex PES, an
optimization step can displace the molecule from the preceding
quadratic region such that the resulting updated approximate Hes-
sian quickly diverges from the true one and thus requires expensive
reconstruction12. Even though double- and single-ended interpolation
methods such as nudged elastic band (NEB)26,27, quadratic synchro-
nous transit (QST)28, and growing string method (GSM)29 have been
well-established in the field in the past few decades, a subsequent TS
optimization with QN updates is often integrated into the workflow.
Despite all these efforts, TS optimization still requires significant user
involvement and relies on trial and error when robust Hessian infor-
mation is absent. However, if the full Hessian is available at every
optimization step, concerns regarding the quality of the initial Hes-
sian and subsequent updates become much less of a problem when
determining a TS.

The recent development of deep learning models for the
PES provides an alternative possibility for acquiring and applying the
Hessian in chemically relevant tasks30–34. Intuitively, the power of a
fully differentiable machine learning (ML) force field does not stop
at forces or gradients but also broadly applies to second (and higher
order) derivative properties such as the Hessian matrix Hij. In this
case, it is possible to calculate Hessians analytically by automatic
differentiation, byfinite differences using gradients from themachine
learning model, or by estimating Hessians using first order informa-
tion as per the Davidson procedure1. For example, such an idea
has recently been explored using Gaussian process regression, where
an ML PES was locally trained on semiempirical energies, forces, and
optionally Hessians and used to estimate the updated Hessians35,36.
Yet, the high memory demand using kernel-based methods can
significantly reduce the applicability on all but small systems, and
the semi-empirical level of theory can be deficient for reliable
chemistry.

In this work, we fine-tune an equivariant message-passing neural
network (eMPNN), NewtonNet32, on an augmented version of the
Transition-1X (T1x) dataset37, a benchmark dataset containing ~10
million configurations generated by the NEBmethod on ~10 thousand
gas-phase organic reactions evaluated with DFT. Although the full
training data is comprised of only energies and gradients of the
molecular configurations, with noHessians provided, the whole neural
network is fully differentiable such that we can infer the Hessian Hij

through back propagation. We then apply the ML Hessians to TS
optimization on an independent data set of 240 organic reactions
previously proposed by Hermes and co-workers38,39, and which are
outside of the training set. We have adapted the Sella code39 to read in
full ML Hessians to perform TS optimizations for these reactions and
utilize the same code and optimization settings in order to compare
against QN Hessian optimization with either ML or DFT.

We find that incorporating explicit Hessians from the NewtonNet
MLmodel into TS optimization yields a 2–3 × reduction in search steps
compared to approximate Hessian methods, demonstrating a
remarkable efficiency improvement by ensuring higher-confidence
search directions that are closer to the optimal path. The more accu-
rate description of the Hessian also leads to improved robustness
against structural perturbation such that the TS optimization is less
reliant on a good initial guess. With our deep learning model, the
Hessian calculation is over 1000× faster than the corresponding ab
initio calculation and is consistently more robust in finding TSs than
QN methods using the ML or DFT PES. The combination of greater
efficiency, reduced reliance on good initial guesses, and robust TS
convergence for unseen reactions opens opportunities to utilize full
Hessians for TSoptimizationswith appropriately constructeddata sets
of complex reactive chemistry.

Results
Machine learned prediction of DFT hessians
Figure 1a shows the NewtonNet eMPNN model in which the DFT-
computed molecular energy E is predicted by transforming and
aggregating atomic features ai that accumulate local chemical envir-
onmental information from spatial neighbors aj and interatomic dis-
tances Rij through message passing layers32. The molecular energy E is
then differentiated with respect to the atomic positions Ri to predict
atomic forces Fi or gradients gi, but of relevance here is that it can be
auto-differentiated twice to obtainHij. We have demonstrated that the
energies and forces can be predicted with excellent accuracy across a
whole rangeof chemistry including small organicmolecules32 aswell as
formethane and hydrogen combustion, even with a limited amount of
training examples32,40.

Like all ML potentials, the quality of the learned PES and its deri-
vative properties depends on the availability of relevant training data.
OurMLmodel is pre-trained on the ANI-1 dataset, which containsmore
than 20 million off-equilibrium conformations of small organic mole-
cules up to 8 heavy atoms and is evaluated with the ωB97X density
functional41 and 6-31G* basis set42. Figure 1b demonstrates that the
original ANI-1 dataset is mostly composed of near-equilibrium
geometries42,43 and that the reaction pathways are notably under-
sampled around the metastable states of the reactions37. As a result,
the pre-trained ML model predicts the energies and forces accurately
(with respect to the underlying DFT data) at the reactant and product
states but fails significantly around the TS (Fig. 1c, d).

Hence, it is fortunate to have the T1x dataset37, which is a bench-
mark for TS-related ML tasks, containing 9,644,740 molecular con-
figurations generated by NEB from 10,073 organic reactions, at a level
of DFT commensurate with the ANI-1 data. This data better represents
the entire reaction pathway as seen in Fig. 1b and allows us to fine-tune
the pre-trained model. The fine-tuned model predicts both energies
and forces an order of magnitude more accurately around the TS,
shown in Fig. 1c, d and S1. When using the fine-tuned model, the
reaction barrier is also more smoothly interpolated between NEB
images, the false identification of an energy maximum has been
eliminated, and the atomic forces are correctly predicted to be negli-
gible as expected of a first-order saddle point.

Due to the high cost of the Hessian calculation and storage, the
training datasets we use do not contain ab initio Hessian reference
samples.Despite the lack of such training examples, a predictionof the
atomic forces from an ML model that is continuous and smooth
strongly suggests the possibility of achieving Hessian predictions
without explicit training on such tasks. Based on this assumption, one
approach is a finite-difference Hessian estimation that can be easily
realized using the gradients predicted by ourmodel by stepping along
each Cartesian axis. However, an analytical gradient of the first deri-
vative is more cost-effective than a finite-difference method, and such
a gradient can be performed as long as the neural network is at least
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twice differentiable. In this regard, the NewtonNet model is designed
using sigmoid linear unit (SiLU)44 and a polynomial cutoff function45

and is therefore C2 continuous. Utilizing the automatic differentiation
in our neural network, the forces and Hessians can be analytically
acquired by back propagation.

Leveraging the smoothness of the deep learning PES after fine-
tuning, Fig. 2 shows that reasonably accurate Hessian predictions of
the reference DFT model can be acquired on molecular TSs when
compared to the pre-trained model. The Hessian prediction is quan-
titatively accurate for both negative to positive eigenvalue regions,
with eigenvalue root mean square error (RMSE) of 318 kcal mol−1 Å−2

and eigenvector mean cosine similarity (MCS) 0.828 for TSs in unseen
test reactions, improving dramatically after fine-tuning the ML model
with the T1x dataset from Fig. 2a, b. It is worth noting that themajority
of the error arises from the positive eigenspace with a constant 20%
underestimation of Hessian eigenvalues from DFT. This can be
understood in part from Fig. 1b that the T1x dataset we use for training
is biased toward weaker bonds and greater anharmonicity, such that
lower apparent bond strength and force constants will be observed
and modeled. We therefore augmented the T1x dataset by selecting
1,232,469 molecules from the ANI-1x dataset43 that share the same
chemical formula with the T1x dataset but that exhibit compressed
chemical bonds, which further improves accuracy of the Hessian pre-
dictions to 267 kcal mol−1 Å−2 eigenvalue RMSE and 0.839 eigenvector

MCS in Fig. 2c. We observe that this improvement is not solely
attributed to increased data volume. It effectively mitigates the
underprediction of positive eigenvalues by establishing a more
balanced dataset. Most importantly, the predicted Hessians by our
fine-tuned model using the augmented T1x data have very accurate
leftmost eigenvalue and eigenvector, which are the most critical
ingredients in TS optimization and iterative Hessian
diagonalization12,46.

Transition state optimization using machine learned Hessians
The fine-tuned NewtonNet model for predicting TS properties is sub-
sequently employed in practical TS optimization scenarios involving
new reactions independent of the augmented ANI-1x/T1x training and
test data. These include hydrogenmigration reactions, endo- and exo-
cyclization, generalized Korcek step 2 reactions, retro-ene reactions,
and reverse 1,2 and 1,3 insertions (see source data); given the training
data these involve only closed-shell molecules. We focus on TS opti-
mization for these unseen reactions in order to compare a traditional
QN method that approximates Hessians using gradient information
from DFT calculations or ML predictions versus a full explicit ML
Hessian used at every step.

We interfaced our fine-tunedNewtonNetmodel with Sella, a state-
of-the-art open-source TS geometry optimizer39. In Sella, the inter-
conversion between the Cartesian coordinates and the redundant
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Fig. 1 | The NewtonNet model and its performance on the ANI-1 and T1x
data sets. a The equivariant message-passing neural network designed for 3D
molecular graphswith nodes {Zi} and edges {Rij} to predictmolecular energies E and
atomic forces Fi32. In this work, we further differentiate the network to deriveHij for
TSoptimization tasks.bThe distribution of atomic pairwise distances,R, relative to
equilibriumbonddistances,R0, among datasets weused for training, where the T1x
data set provides more data in the TS region, and further augmented with the ANI-
1x data to add data corresponding to bond compression. The predicted (c)

potential energies and (d) forces along the reaction coordinate for an unseen
reaction for the pre-trained and fine-tuned model. A comprehensive statistical
analysis of energy and force prediction errors along the reaction coordinates for
1248 unseen test reactions is summarized in Supplementary Fig. S1 for the pre-
trained and fine-tuned models. Details of the training protocols are described in
Methods andSupplementary Fig. S2 and S3. TS: transition state. Sourcedata for this
figure are provided with this paper.

Article https://doi.org/10.1038/s41467-024-52481-5

Nature Communications |         (2024) 15:8865 3

www.nature.com/naturecommunications


internal coordinates is automatically handled, and the Hessian is
iteratively diagonalized for the leftmost eigenvector12 used in the
geodesic saddle point optimization47. In order to start the TS optimi-
zation for the 240 Sella benchmark reactions, we generated initial
guesses with KinBot using reaction templates38, where each template
also defines the intended reactant and product end states for a given
reaction. We employed restricted step partitioned rational function
optimization (RS-PRFO)48–50 for the TS optimizations, with dynamically
adjusted step sizes determined by evaluating the confidence of each
step (see Methods for details). After TS optimization, we follow the
intrinsic reaction coordinate (IRC) from the optimized TS structure to
find theminimumenergy path that connects the reactant and product;
the robustness of the TS optimization methods is quantified by com-
paring the intended reactions and the predicted reactions. The com-
plete list of found transition states of the 240 predicted benchmark
reactions is summarized in Supplementary Table S1.

Figure 3 shows how optimization efficiency is dramatically
improved by providing full explicit Hessians at every optimization
step, which is now affordable relative to DFT as illustrated in Supple-
mentary Fig. S9. In Fig. 3a we find that the number of steps required to
converge to a TS can be reduced by 2× of that required by the QN
approach using the ML (or DFT; see Supplementary Fig. S10). The
trend is notably non-linear, and full-Hessian optimization is evenmore
advantageous for challenging tasks that require larger numbers of
optimization steps. If the iterative diagonalization steps for initial
Hessian construction and Hessian reconstruction when the QN
approximation breaks down are included, a reduction of close to 3 × of
the required steps is observed when considering these gradient calls.
We also observed that in somemost difficult cases for TS optimization
with QN Hessians that take > 80 steps, the optimization steps taken by
full Hessians are even fewer than those with QN steps < 80, which
initially seemed counter-intuitive. This behavior not only

(a) (b)

Fig. 3 | Efficiency improvementusing full-HessianTS optimizationcompared to
the quasi-Newton approach. a The full-Hessian TS optimization requires 50%
fewer steps to reach convergence than the QN approximate-Hessian approach,
using the identical NewtonNet potential on the same reactions. b The improved
efficiency of the full-Hessian TS optimization comes from both more confident
steps (top) and more direct paths (bottom) to converge. In this efficiency

comparison, gradient calls for initial Hessian construction or Hessian reconstruc-
tion for QN restarts have been excluded, whether using DFT or NewtonNet for
gradient calculations. TS: transition state; QN: quasi-Newton; DFT: density func-
tional theory. Lines correspond to kernel density estimate fits to the histogram
data. Source data for this figure are provided with this paper.
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Fig. 2 | Pre-trained and fine-tuned NewtonNet performance on Hessian pre-
diction of the test set. a The pre-trained model accurately predicts Hessians at R
and P minima geometries but fails dramatically at TSs. b The fine-tuned model
using the T1x data significantly improves the accuracy at TSs but with notable
underestimation of Hessian eigenvalues. c Augmenting the T1x dataset with com-
pressed bond configurations createsmore balanced training data and improves the

overall performance. More comprehensive comparisons of the pre-trained and
fine-tuned ML prediction accuracy for Hessians is provided in Supplementary
Figs. S4–S8. R: reactant; TS: transition state; P: product; RMSE: root mean squared
error; DFT: density functional theory; ML: machine learning. Source data for this
figure are provided with this paper.
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quantitatively illustrates the advantage of using full Hessians over QN
Hessians but also shows that their performances can sometimes be
qualitatively different. The QN approximation can make the optimi-
zation process unnecessarily difficult, even when the underlying pro-
blem is not inherently more complex. This observation strongly
suggests that the poor convergence in TS optimization is more likely
due to the Hessian approximation rather than the quality of the initial
guesses or the complexity of the PESs.

Greater optimization efficiency can stem from two factors:
increased confidence at each optimization step to increase the step
size and a more optimal overall path of optimization. As shown in
Fig. 3b, both factors improve the efficiency of the TS optimizationwith
full analytical Hessians. In particular use of the full analytical Hessians
exhibits an increase in confidence as measured by the RS-PRFO
method, which allows for increased step size on average. A shorter,
closer to optimal optimization path also plays a smaller but significant
role with the analytical Hessians compared to the QN approach whe-
ther on the ML or DFT PES.

Nextwe consider the robustness of TSoptimizationusing the fully
analytical Hessians versus approximate Hessians (using ML or DFT) by

comparing the intended reactions from KinBot to those predicted
from the IRC after TSoptimization. As shown in Fig. 4a, the NewtonNet
full or QN Hessian yielded the intended IRC reactant and product
endpoints (2-endmatch)more often then theQNHessian fromDFT. In
some cases only a 1-endmatch is found because the predicted product
is more stable, and more chemically plausible, than the intended
product from KinBot on a neutral and closed-shell PES. We also char-
acterize the types of TSs found in Fig. 4a, in which the graphs of the
reactants and products are inequivalent for chemical reactions,
whereas isomorphic endpoints indicate a conformational TS; in either
case, both converge to a first-order saddle point. All KinBot initial
guess geometries are intended to yield chemical reaction TSs, and we
see that employing full Hessians in TS optimization yields ~10% more
TSs that involve chemical reactions as opposed to conformational
changes compared to the approximate QN method.

The unreliability of a generated initial guess structure can lead to
poor convergence or inaccurate predictions. Therefore, we consider a
measure of robustness in which the TS optimization must recover
from a poor starting structure, which we analyze by systematically
introducing random structural perturbations to the guess structures

(c) (d)

(a) (b)

Fig. 4 | The quality of optimized TSs using NewtonNet. a NewtonNet predicts
reactions that match the intended reactions with higher success rates, both with
and without full Hessians, compared to DFT. The full Hessian also finds ~10%more
TSswhich involve chemical reactions as opposed to conformational changes.bThe
value of the full Hessians over the approximate QN approach is apparent when the
quality of the initial TS guesses deteriorates. The QN convergence decays with
additional noise to the guess structures, while the full Hessian convergence ismore

robust to perturbations. c Comparing whether the left most frequency found on
the ML PES is also a negative frequency on the DFT PES using the ML geometry.
d Reoptimizing the ML transition state structure on the DFT surface demonstrates
superior performance for 2-end matches and identifying chemical reactions com-
pared with starting from the original KinBot initial guess. TS: transition state; QN:
quasi-Newton; DFT: density functional theory; ML:machine learning; PES: potential
energy surface. Source data for this figure are provided with this paper.
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generated from KinBot. Figure 4b demonstrates the robustness of
NewtonNet’s full-Hessian optimization, maintaining consistent per-
formance and even exhibiting slight improvements as noise levels
increase up until 2–3 pm. In contrast, the performance using
approximated QN Hessians rapidly decays, even using DFT, high-
lighting the importance of accurate Hessians for robust TS
optimization.

A final important metric of robustness is whether NewtonNet
predictedTS structures have negative eigenvalues on theDFTPESand/
or improve the outcome of TS optimization on the DFT PES. In Fig. 4c
we compare the vibrational frequencies of the NewtonNet optimized
TS saddle point structures, using both the full Hessian and the QN
Hessian, and use those structures as input to calculate the frequencies
from the DFT Hessian. We then identify the DFT frequency mode that
corresponds to the negative frequency mode from NewtonNet. For
~96% of the reactions, NewtonNet predicts highly accurate imaginary
frequencies, regardless of full or QN Hessians. However, there are 10
cases for the QN-ML saddle points, and 11 for the full-ML Hessian
saddle points, which have positive DFT Hessian eigenvalues. We fur-
ther reoptimized all 240 reactions using the full Hessian ML TS
structures as initial guesses on theDFT surface (Fig. 4d). In comparison
with the optimization outcomeswhen startingwith the original KinBot
guess structures, we see an increase in both 2-end matches and che-
mical transformations under the DFT reoptimization. Thus, starting
from ML optimized TS structures we find overall improved solutions
on the DFT surface.

Discussion
We have presented a highly generalizable approach for predicting ab
initio Hessians using machine learning based solely on energy and
gradient data, and only requiring the property of second-order dif-
ferentiability. Although Denzel and co-workers found that the feasi-
bility of predicting Hessians using ML without access to explicit
Hessian training datawas poor36, our study shows that solely relying on
energy and forcedata using awell-trainedMLmodel can efficiently and
accurately predict the Hessian for reactive systems. We attribute our
contrasting conclusions to the sufficiently high-quality PES obtained
through the deep equivariantmessage-passing neural network and the
mathematical relationship between the potential energy and its deri-
vatives using a ML model that is C2 continuous. To our knowledge,
none of the widely used chemical datasets currently include Hessian
information, and it is unlikely that such datasets will become available
in the foreseeable future due to the high cost of generating ab initio
Hessians. Thus, it is good news that models trained on energies and
forces are sufficient to derive meaningful ML Hessians.

The ability to generate high-quality explicit Hessians with deep
learningmodelsobviates the complexities and assumptions associated
with standardTS optimization approaches, inwhich240new reactions
never seen in the training data are predicted with greater efficiency,
accuracy, and robustness compared to QN ML or DFT. The imple-
mentation in Sella to utilize theMLHessians incurs minimal additional
computational overhead and requires no model retraining. Using
NewtonNet, the Hessians can be calculated at least three orders of
magnitude faster than the DFT calculation, while use of the full ML
Hessian takes 2–3 × fewer steps in theTSoptimization compared to the
QN approach.

This work emphasizes a TS state search methodology and hence
used available training data from ANI-1, ANI-1x, and T1x that is spe-
cialized for applications involving reactive molecular organic systems
but at a low level of DFT and basis set quality. Hence, for accurate
predictions it would be desirable to recalculate these data sets at a
higher level of theory, likely better density functionals and certainly
larger basis sets, in order to predict quantitative barriers. Of course,
with appropriate new data sets, we can generalize the ML-Hessian

approach forpractical applications of TSoptimization inmany areasof
chemical and material sciences. This is made possible by the tight
software integration we have developed for NewtonNet with Sella, and
workflows which could be trivially generalized to other relevant ML
potentials.

We envision several areas of TS optimization using the ML
approach we have described here. For example, the TS discovery for a
reaction using methods such as NEB26,27, QST28, and GSM29 often turns
to local TS optimization methods when a reasonable approximate
structure has been obtained12. We showed that our ML transition state
structures do improve the DFT optimizations. Therefore, a stepwise
procedure that integrates mathematical optimization and machine
learning to collaboratively achieve TS discovery for chemical reactions
should be viable. In addition, since we can accurately calculate vibra-
tional frequencies at the optimized TS structures, molecular free
energy can be efficiently derived using the harmonic approximation.
Further, since the quadratic correction can be applied at each step
throughout the optimization process, it is possible to optimize TS
structures on the free energy surface rather than PES, extending the
feasibility of variational transition state theory (VTST) to larger sys-
tems where ab initio vibrational analysis becomes impractical51.

Methods
Data preparation
The T1x dataset for training is split in two different ways to assess the
accuracy of the model predictions, illustrated in Supplementary
Figs. S2 and S3. The original splitting in the literature is based on
molecular compositions. All geometries with the same formula (equi-
librium and non-equilibrium) are part of the same training, validation,
and test set, leading to minimum data leakage. The error from this
splitting can be regarded as the worst-case uncertainty estimation of
an unseen configuration for the application on the real system in
Figs. 1 and 2. On the other hand, we wish to maximize the chemical
knowledge from the dataset learned by our model, so a more con-
ventional splitting amongmolecular conformations is devised to learn
the PES of all reactions. Hence in the design of the test set, we ensured
that no reaction had both reactant and product pairs found in the
training set.

The reference DFT Hessians are performed using Q-Chem 6.0.052,
using the ωB97X functional41 and 6–31G* basis set53 in order to main-
tain compatibility with the T1x dataset37. The eigenvalues are assigned
based on the cosine similarity between the predicted and reference
eigenvectors as a linear sum assignment problem using the
Jonker–Volgenant algorithm54.

The performance of the ML-Hessian and ML- and DFT-QN TS
optimizations is evaluated by the Sella benchmark dataset39. The
dataset contains 500 small organic molecules between 7 and 25 atoms
in configurations that approximate TS geometries across reaction
families, among which 265 reactions are closed shell. However, 25 are
present in the T1x dataset, thus we subsequently exclude those. We
regenerate the remaining 240 such that, in contrast to the original
data, the guess structures in ourwork are constrainedminimaon an ab
initio PES instead of saddles on a semi-empirical PES37. We also inject
Gaussian noise up to 50 pm directly onto the atomic positions in the
Cartesian coordinates of the initial guesses in order to degrade them
for the purpose of understanding a given methods ability to still
find the TS.

NewtonNet model and training details
The NewtonNet model with 3 message passing layers is trained using
the same architecture as described in Reference32. Each node encodes
an atomic environment into 128 features initialized by atom types Zi,
and each edge encodes an interatomic distance Rij in 20 radial basis
functions with a polynomial cutoff of 5 Å45,55. The node features are
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equivariantly updated with messages from neighboring nodes and
edges. The molecular energy ~E is the sum of all atomic energies ~Ei

56,

~E =
XA

i0

~Ei0 ðfZig,fRijgÞ ð1Þ

where atomic energies ~Ei are predicted from the node features at the
final layer, and A is the total number of atoms. The predicted atomic
forces ~Fi are calculated as the first derivative of themolecular energy ~E
with respect to atomic positions Ri57,

~Fi = � ∇i
~E = � ∂~E

∂Ri

ð2Þ

and the predicted atomic Hessians ~Hij are further calculated as the
second analytical derivatives of the energy,

~Hij =
∂2~E

∂Rj∂Ri
=

∂2~E
∂Ri∂Rj

ð3Þ

However, due to the lack of training data for Hessians Hij, only the
energy ~E and forces ~Fi are trained in the loss function L,

L=
λE
M

XM

m

ð~Em � EmÞ
2
+
λF
M

XM

m

1
3Am

XAm

i

jj~Fmi � Fmijj2 ð4Þ

whereM is the total number ofmolecular graphs, which is 8million for
training, 1million for validation, and 1million for testing. After training
on energy prediction ~E and force prediction ~Fi, themodel is applied to
infer Hessians ~Hij without further training or fine-tuning.

We use a mini-batch gradient descent algorithm with a batch size
of 100 to minimize the loss function using the Adam optimizer58 with
an initial learning rate of 10−4 and a decay rate of 0.7 on plateau. Fully
connected neural networks with sigmoid linear unit (SiLU)
nonlinearity44 for all functions were used throughout the message
passing layer. The application of smooth activation functions like SiLU
is critical because the network has to be at least twice differentiable for
Hessian calculations. We take λE = 1 and λF = 20 in the loss function in
Equation (4) to putmore emphasis on forces for derivative properties,
and an additional L2 regularization of 10−5 is applied on all trainable
parameters to further smooth out the potential energy surface. Layer
normalization59 on the atomic features at every message passing layer
is applied for the stability of training. An ensemble of four models is
trained on each splitting manner to ensure the reproducibility and
reliability of the prediction. An outlier among the 4 predictions is
removed if its absolute difference from the closest number compared
to the difference from farthest number is larger than the 95% con-
fidence limit of the Dixon Q’s test40.

Transition state optimization
For the transition state calculations, we use the Quantum Accelerator
(QuAcc)60, a Python package for high-throughput quantum chemistry
workflows with an easy-to-use interface for Atomic Simulation Envir-
onment (ASE)61 optimizers. We utilize Sella39 as the ASE optimizer for
TS and intrinsic reaction coordinate (IRC) calculations, having imple-
mented the feature to provide an external Hessian matrix at each
optimization step.

Using Sella, the Hessian is automatically transformed into internal
coordinates and iteratively diagonalized using the Rayleigh–Ritz pro-
cedure for the leftmost eigenpair by a modified Jacobi–Davidson
method (JD0, or Olsen’s method), with finite difference step size of
10−4 Å and convergence threshold of 0.112. The TS optimization steps
are determined by restricted step partitioned rational function opti-
mization (RS-PRFO)48–50. The trust radius is initially 0.1 and adjusted
based on the improper ratio (>1) between the predicted and actual

energy change; the radius is increased by a factor of 1.15 when the ratio
is below 1.035 anddecreasedbya factor of 0.65when the ratio is above
5.0. The IRC is determined by energy minimization at a trust radius of
0.1 Å/amu−1/2 in mass-weighted coordinates62. QN Hessian updates are
achieved using TS-BFGS22,24. A maximum of 1000 steps is applied for
both TS optimization and IRC search.

The comparison of reactants and products is based on graph
isomorphism. Molecular connectivity graphs are created using Open
Babel63 with atom indexing and compared using the VF2 algorithm64.
The optimization path length is calculated in the Cartesian coordinate
distance with the Kabsch algorithm65. The path length in Fig. 3b only
accounts for reactions with 2-end matches.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data66 including initial transition state guess structures, optimized
transition states, and corresponding reactants and products with their
coordinates of geometry, energy, forces and Hessians are available at
https://doi.org/10.6084/m9.figshare.25356616. Source data for
Figs. 1–4 is available with this manuscript. Source data are provided in
this paper.

Code availability
The codebase is comprised of several publicly available packages and
tools that contribute to the project. Sella39 is publicly accessible at
https://github.com/zadorlab/sella and comes with comprehensive
documentation. NewtonNet67, another integral part of the project, is
also publicly available at https://github.com/THGLab/NewtonNet. The
recipes implemented in QuAcc60 for NewtonNet and Q-Chem, utilizing
Sella as the ASE optimizer for transition state and IRC calculations, are
publicly accessible and accompanied by thorough documentation at
https://github.com/Quantum-Accelerators/quacc. The full workflow
and the analysis scripts68, responsible for generatingmolecular graphs,
retrieving data from the MongoDB database, and performing graph
isomorphisms to analyze reactions, are available at https://github.
com/THGLab/MLHessian-TSopt. This comprehensive summary pro-
vides insights into the availability of the codebase for potential readers
and collaborators. Examples to use our end-to-end workflow69 are
available at https://github.com/kumaranu/ts-workflow-examples.

References
1. Davidson, E. R. The iterative calculation of a few of the lowest

eigenvalues and corresponding eigenvectors of large real-
symmetric matrices. J. Comp. Phys. 17, 87–94 (1975).

2. Amos, R. D. & Rice, J. E. Implementation of analytic derivative
methods in quantum chemistry. Comp. Phys. Rep. 10, 147–187
(1989).

3. Barter, D. et al. Predictive stochastic analysis ofmassive filter-based
electrochemical reaction networks. Digital Discovery 2, 123–137
(2023).

4. Spotte-Smith, E. W. C. et al. Chemical Reaction Networks Explain
Gas Evolution Mechanisms in Mg-Ion Batteries. J. Am. Chem. Soc.
145, 12181–12192 (2023).

5. Nelder, J. A. &Mead, R.A simplexmethod for functionminimization.
Comput. J. 7, 308–313 (1965).

6. Brent, R. An Algorithm with Guaranteed Convergence for Finding a
Zero of a Function. (Prentice-Hall, Englewood Cliffs, NJ, 1973).

7. Debye, P. Näherungsformeln für die zylinderfunktionen für große
werte des arguments und unbeschränkt veränderliche werte des
index. Math. Ann. 67, 535–558 (1909).

8. Hestenes, M. R. & Stiefel, E. Methods of conjugate gradients for
solving linear systems. J. Res. Natl Bur. Stand. 49, 409–435 (1952).

Article https://doi.org/10.1038/s41467-024-52481-5

Nature Communications |         (2024) 15:8865 7

https://doi.org/10.6084/m9.figshare.25356616
https://github.com/zadorlab/sella
https://github.com/THGLab/NewtonNet
https://github.com/Quantum-Accelerators/quacc
https://github.com/THGLab/MLHessian-TSopt
https://github.com/THGLab/MLHessian-TSopt
https://github.com/kumaranu/ts-workflow-examples
www.nature.com/naturecommunications


9. Nocedal, J. & Wright, S. J. Numerical Optimization. 2 nd edn.
(Springer, New York, NY, USA, 2006).

10. Baker, J. An algorithm for the location of transition states. J. Comp.
Chem. 7, 385–395 (1986).

11. Schlegel, H. B. Geometry optimization.Wires.: Comput. Mol. Sci. 1,
790–809 (2011).

12. Hermes, E. D., Sargsyan, K., Najm, H. N. & Zádor, J. Accelerated
saddle point refinement through full exploitation of partial hessian
diagonalization. J. Chem. Theo. Comput. 15, 6536–6549 (2019).

13. Császár, P. & Pulay, P. Geometry optimization by direct inversion in
the iterative subspace. J. Mol. Struct. 114, 31–34 (1984).

14. Schlegel, H. B. Optimization of equilibrium geometries and transi-
tion structures. J. Comp. Chem. 3, 214–218 (1982).

15. Schlegel, H. B. Estimating the hessian for gradient-type geometry
optimizations. Theo. Chim. Acta 66, 333–340 (1984).

16. Schlegel, H. B. Optimization of Equilibrium Geometries and Transi-
tion Structures, 249–286 (John Wiley & Sons, Ltd, 1987).

17. Fischer, T. H. & Almlof, J. General methods for geometry and wave
function optimization. J. Phys. Chem. 96, 9768–9774 (1992).

18. Lindh, R., Bernhardsson, A., Karlstrom, G. &Malmqvist, P.-A. On the
use of a hessian model function in molecular geometry optimiza-
tions. Chem. Phys. Lett. 241, 423–428 (1995).

19. Jensen, F. Using force fields methods for locating transition struc-
tures. J. Chem. Phys. 119, 8804–8808 (2003).

20. Chantreau Majerus, R., Robertson, C. & Habershon, S. Assessing
and rationalizing the performance of hessian update schemes for
reaction path hamiltonian rate calculations. J. Chem. Phys. 155,
204112 (2021).

21. Dennis Jr, J. E. & Schnabel, R. B. Numerical Methods For Uncon-
strained Optimization And Nonlinear Equations. (SIAM, 1996).

22. Anglada, J. M. & Bofill, J. M. How good is a broyden-fletcher-gold-
farb-shanno-like update hessian formula to locate transition struc-
tures? specific reformulation of broyden–fletcher–goldfarb–shanno
for optimizing saddle points. J. Comp. Chem. 19, 349–362 (1998).

23. Fletcher, R. Practical methods of optimization (John Wiley and
Sons, 2000).

24. Bofill, J. M. Remarks on the updated hessian matrix methods. Int. J.
Quant. Chem. 94, 324–332 (2003).

25. Hratchian, H. P. & Schlegel, H. B. Usinghessian updating to increase
the efficiency of a hessian based predictor-corrector reaction path
following method. J. Chem. Theo. Comput. 1, 61–9 (2005).

26. Jonsson, H.,Mills, G.& Jacobsen, K.W.Nudged Elastic BandMethod
For Finding Minimum Energy Paths Of Transitions, 385–404 (World
Scientific, 1998).

27. Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image
nudged elastic band method for finding saddle points and mini-
mum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

28. Govind,N., Petersen,M., Fitzgerald, G., King-Smith, D. &Andzelm, J.
A generalized synchronous transit method for transition state
location. Computational Mater. Sci. 28, 250–258 (2003).

29. Peters, B., Heyden, A., Bell, A. T. & Chakraborty, A. A growing string
method for determining transition states: comparison to the
nudged elastic band and string methods. J. Chem. Phys. 120,
7877–7886 (2004).

30. Zhang, Y. et al. Dp-gen: a concurrent learning platform for the
generation of reliable deep learning based potential energy mod-
els. Comp. Phys. Comm. 253, 107206 (2020).

31. Bac, S., Patra, A., Kron, K. J. & Mallikarjun Sharada, S. Recent
advances toward efficient calculation of higher nuclear deriva-
tives in quantum chemistry. J. Phys. Chem. A 126, 7795–7805
(2022).

32. Haghighatlari, M. et al. Newtonnet: a newtonian message passing
network for deep learning of interatomic potentials and forces.Dig.
Disc. 1, 333–343 (2022).

33. Duan, C., Du, Y., Jia, H. & Kulik, H. J. Accurate transition state gen-
eration with an object-aware equivariant elementary reaction dif-
fusion model. Nat. Comp. Sci. 3, 1045–1055 (2023).

34. Kim, S., Woo, J. & Kim, W. Y. Diffusion-based generative ai for
exploring transition states from 2d molecular graphs. Nat. Comm.
15, 341 (2024).

35. Denzel, A. & Kästner, J. Gaussian process regression for transition
state search. J. Chem. Theo. Comput. 14, 5777–5786 (2018).

36. Denzel, A. & Kästner, J. Hessianmatrix update scheme for transition
state search based on gaussian process regression. J. Chem. Theo.
Comput. 16, 5083–5089 (2020).

37. Schreiner, M., Bhowmik, A., Vegge, T., Busk, J. & Winther, O. Tran-
sition1x - a dataset for building generalizable reactive machine
learning potentials. Sci. Data 9, 779 (2022).

38. Van de Vijver, R. & Zádor, J. Kinbot: automated stationary point
search on potential energy surfaces. Comp. Phys. Comm. 248,
106947 (2020).

39. Hermes, E. D., Sargsyan, K., Najm, H. N. & Zádor, J. Sella, an open-
source automation-friendly molecular saddle point optimizer. J.
Chem. Theo. Comput. 18, 6974–6988 (2022).

40. Guan, X., Heindel, J. P., Ko, T., Yang, C. & Head-Gordon, T. Using
machine learning to go beyond potential energy surface bench-
marking for chemical reactivity.Nat. Comp. Sci. 3, 965–974 (2023).

41. Chai, J.-D. & Head-Gordon, M. Systematic optimization of long-
range corrected hybrid density functionals. J. Chem. Phys. 128,
084106 (2008).

42. Smith, J. S., Isayev, O. & Roitberg, A. E. Ani-1: an extensible neural
network potential with dft accuracy at force field computational
cost. Chem. Sci. 8, 3192–3203 (2017).

43. Smith, J. S., Nebgen, B., Lubbers, N., Isayev,O. &Roitberg, A. E. Less
is more: sampling chemical space with active learning. J. Chem.
Phys. 148, 241733 (2018).

44. Elfwing, S., Uchibe, E. & Doya, K. Sigmoid-weighted linear units for
neural network function approximation in reinforcement learning.
Neural Netw. 107, 3–11 (2018).

45. Gasteiger, J., Groß, J. & Günnemann, S. Directional message pas-
sing formolecular graphs. In ICLR 2020. http://arxiv.org/abs/2003.
03123 (2022).

46. Sharada, S. M., Bell, A. T. & Head-Gordon, M. A finite difference
davidson procedure to sidestep full ab initio hessian calculation:
Application to characterization of stationary points and transition
state searches. J. Chem. Phys. 140, 164115 (2014).

47. Hermes, E. D., Sargsyan, K., Najm, H. N. & Zádor, J. Geometry
optimization speedup through a geodesic approach to internal
coordinates. J. Chem. Phys. 155, 094105 (2021).

48. Banerjee, A., Adams, N., Simons, J. & Shepard, R. Search for sta-
tionary points on surfaces. J. Phys. Chem. 89, 52–57 (1985).

49. Anglada, J. M. & Bofill, J. M. A reduced-restricted-quasi-
newton–raphson method for locating and optimizing energy
crossing points between two potential energy surfaces. J. Comp.
Chem. 18, 992–1003 (1997).

50. Besalú, E. & Bofill, J. M. On the automatic restricted-step rational-
function-optimization method. Theo. Chem. Acc. 100, 265–274
(1998).

51. Bao, J. L. & Truhlar, D. G. Variational transition state theory: theo-
retical framework and recent developments. Chem. Soc. Rev. 46,
7548–7596 (2017).

52. Epifanovsky, E. et al. Software for the frontiers of quantum chem-
istry: an overview of developments in the q-chem 5 package. J.
Chem. Phys. 155, 084801 (2021).

53. Ditchfield, R., Hehre, W. J. & Pople, J. A. Self-consistent molecular-
orbital methods. ix. an extended gaussian-type basis for molecular-
orbital studies of organic molecules. J. Chem. Phys. 54, 724–728
(2003).

Article https://doi.org/10.1038/s41467-024-52481-5

Nature Communications |         (2024) 15:8865 8

http://arxiv.org/abs/2003.03123
http://arxiv.org/abs/2003.03123
www.nature.com/naturecommunications


54. Crouse, D. F. On implementing 2d rectangular assignment algo-
rithms. IEEE Trans. Aerosp. Electron. Syst. 52, 1679–1696 (2016).

55. Schütt, K. T., Unke, O. T. & Gastegger, M. Equivariant message
passing for the prediction of tensorial properties and molecular
spectra. Proc. 38th Int. Conf. Mach. Learn. 139, 9377–9388 (2021).

56. Behler, J. & Parrinello, M. Generalized neural-network representa-
tion of high-dimensional potential-energy surfaces. Phys. Rev. Lett.
98, 146401 (2007).

57. Chmiela, S., Sauceda, H. E., Müller, K.-R. & Tkatchenko, A. Towards
exact molecular dynamics simulations with machine-learned force
fields. Nat. Comm. 9, 3887 (2018).

58. Kingma,D. P.&Ba, J. Adam:Amethod for stochastic optimization. In
the 3rd International Conference for Learning Representations.
http://arxiv.org/abs/1412.6980 (2017).

59. Ba, J. L., Kiros, J. R. & Hinton, G. E. Layer normalization. In NIPS
2016 Deep Learning Symposium. http://arxiv.org/abs/1607.
06450 (2016).

60. Rosen, A. quacc – the quantum accelerator. https://zenodo.org/
records/13139853 (2024).

61. Larsen, A. H. et al. The atomic simulation environment-a python
library for working with atoms. J. Phys.: Cond. Matt. 29, 273002
(2017).

62. Müller, K. & Brown, L. D. Location of saddle points and minimum
energy paths by a constrained simplex optimization procedure.
Theoretica Chim. acta 53, 75–93 (1979).

63. O’Boyle, N. M. et al. Open babel: an open chemical toolbox. J.
Cheminform. 3, 33 (2011).

64. Foggia, P., Sansone, C. & Vento, M. An improved algorithm for
matching large graphs. In 3rd IAPR-TC15 workshop on graph-based
representations in pattern recognition. (2001).

65. Kabsch, W. A solution for the best rotation to relate two sets of
vectors. Acta Cryst. Sec. A 32, 922–923 (1976).

66. Yuan, E. et al. Data for deep learning of ab initio hessians for tran-
sition state optimization. https://doi.org/10.6084/m9.figshare.
25356616.v1 (2024).

67. Yuan, E., Haghighatlari, M., Rosen, A. S., Guan, N. X. & Jerry-
JohnsonLee. Thglab/newtonnet: v1.0.1. https://zenodo.org/
records/13130421 (2024).

68. Yuan, E. et al. Thglab/mlhessian-tsopt: v1.0.2. https://zenodo.org/
records/13128544 (2024).

69. Kumar, A. et al. ericyuan00000/ts-workflow-examples: v1.0.0.
https://zenodo.org/records/13128509 (2024).

Acknowledgements
S.M.B., A.K., E.C.-Y.Y., and T.H.-G. thank the Lawrence Berkeley National
Laboratory Director Research Development program for the work sup-
porting transition state methods. E.C.-Y.Y., X.G., and T.H-G. thank the
CPIMS program, Office of Science, Office of Basic Energy Sciences, and
Chemical Sciences Division of the U.S. Department of Energy under
Contract DE-AC02-05CH11231 for support of the machine learning.
E.D.H. and J.Z. acknowledge the Exascale Catalytic Chemistry (ECC)
Project supported by the U.S. Department of Energy, Office of Science,
Basic Energy Sciences, Chemical Sciences, Geosciences, and Bios-
ciences Division, as part of the Computational Chemistry Sciences
Program for work related to Sella. J.Z. acknowledges the U.S. Depart-
ment of Energy, Office of Science, Office of Basic Energy Sciences,
Division of Chemical Sciences, Geosciences, and Biosciences under the

Gas Phase Chemical Physics program for work related to KinBot. A.S.R.
acknowledges support via a Miller Research Fellowship from the Miller
Institute for Basic Research in Science, University of California, Berkeley.
This work used computational resources provided by the National
Energy Research Scientific Computing Center (NERSC), a U.S. Depart-
ment of Energy Office of Science User Facility operated under Contract
DE-AC02-05CH11231, and the Lawrencium computational cluster
resource provided by the IT Division at the Lawrence Berkeley National
Laboratory (Supported by the Director, Office of Science, Office of Basic
Energy Sciences, of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231).

Author contributions
S.M.B. and T.H.G. designed the project. E.C.-Y.Y. andX.G. carried out the
NewtonNet training and Hessian calculations, E.D.H., A.K. and S.M.B.
interfaced NewtonNet with the Sella software package, A.K., S.M.B., and
A.S.R. implemented workflows, A.K. and S.M.B. executed TS workflows,
J.Z. ran KinBot to generate initial guess structures and reference end-
points, and E.C.-Y.Y. and T.H.G. wrote the paper. All authors discussed
the results and made comments and edits to the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-52481-5.

Correspondence and requests for materials should be addressed to
Teresa Head-Gordon or Samuel M. Blau.

Peer review information Nature Communications thanks Chenru Duan
and the other, anonymous, reviewer(s) for their contribution to the peer
review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-52481-5

Nature Communications |         (2024) 15:8865 9

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1607.06450
https://zenodo.org/records/13139853
https://zenodo.org/records/13139853
https://doi.org/10.6084/m9.figshare.25356616.v1
https://doi.org/10.6084/m9.figshare.25356616.v1
https://zenodo.org/records/13130421
https://zenodo.org/records/13130421
https://zenodo.org/records/13128544
https://zenodo.org/records/13128544
https://zenodo.org/records/13128509
https://doi.org/10.1038/s41467-024-52481-5
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Analytical ab initio hessian from a deep learning potential for transition state optimization
	Results
	Machine learned prediction of DFT hessians
	Transition state optimization using machine learned Hessians

	Discussion
	Methods
	Data preparation
	NewtonNet model and training details
	Transition state optimization
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




