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Abstract
Summary: In this article, we introduce ABodyBuilder3, an improved and scalable antibody structure prediction model based on ABodyBuilder2. 
We achieve a new state-of-the-art accuracy in the modelling of CDR loops by leveraging language model embeddings, and show how predicted 
structures can be further improved through careful relaxation strategies. Finally, we incorporate a predicted Local Distance Difference Test into 
the model output to allow for a more accurate estimation of uncertainties.
Availability and implementation: The software package is available at https://github.com/Exscientia/ABodyBuilder3 with model weights and 
data at https://zenodo.org/records/11354577.

1 Introduction
Immunoglobulin proteins play a key role in the active im-
mune system, and have emerged as an important class of ther-
apeutics (Lu et al. 2020). They are constructed from two 
heavy and two light chains, separated into distinct domains. 
The tip of each of the two antibody binding arms is defined 
as the variable region, and contains six complementarity- 
determining regions (CDRs) across the heavy and light chains 
which make up most of the antigen-binding site. As part of 
an immune response, B cells undergo clonal expansion, 
which, coupled with somatic hypermutations and recombina-
tions, leads to an accumulation of mutations in the DNA 
encoding the CDR loops. The remaining domains compose 
the constant region and are primarily involved in effec-
tor function.

Understanding the 3D structure of antibodies is critical to 
assessing their properties (Chungyoun and Gray 2023) and 
developability (Raybould et al. 2019, 2024). The framework 
regions connecting the CDR loops are relatively conserved 
and thus easily predicted from sequence similarity. Similarly, 
five of the CDR loops tend to cluster along canonical forms 
(Adolf-Bryfogle et al. 2014, Wong et al. 2019) and are thus 
relatively straightforward to model. The third loop of the 
heavy chain (CDRH3), for which the coding sequence is cre-
ated during the recombination of the V, D, and J gene seg-
ments (Roth 2014), is however more challenging due to its 
much larger sequence and length diversity. As the CDRH3 
loop often drives antigen recognition, e.g. (Narciso et al. 
2011, Tsuchiya and Mizuguchi 2016), improving the accu-
racy with which its structure can be predicted from sequence 
is a key component to advancing rational antibody design.

Experimental protein structure determination remains a 
costly and slow process (Slabinski et al. 2007), such that only 
a small fraction of known antibody sequences have experi-
mentally resolved 3D structural information (Dunbar et al. 
2014, Schneider et al. 2022). One approach to circumvent 
these experimental limitations is through structure prediction 
methods, which have had immense success in reaching exper-
imental accuracy on general protein structures (Baek et al. 
2021, Jumper et al. 2021, Lin et al. 2023).

Structure models are also a necessary element to accurately 
predict biophysical properties of proteins and advance the 
field of rational therapeutic design. Several dedicated tools 
have emerged to model specifically the variable region of 
antibodies. Among them are IgFold (Ruffolo et al. 2023), 
which is based on a language model, DeepAb (Ruffolo et al. 
2022), which uses an attention mechanism, ABlooper 
(Abanades et al. 2022), which predicts backbone atom posi-
tions using a graph neural network, ABodyBuilder (Leem 
et al. 2016), a homology modelling pipeline, and 
ABodyBuilder2 (Abanades et al. 2023), which uses a modi-
fied version of the AlphaFold-Multimer architecture (Evans 
et al. 2022). More recently, xTrimoPGLM-Ab (Chen et al. 
2023) has shown promising results on antibody structures by 
combining a General Language Model framework (Zeng 
et al. 2023) with a modified AlphaFold2 architecture.

In this article, we introduce ABodyBuilder3, an antibody 
structure prediction model based on ABodyBuilder2 
(Abanades et al. 2023). We detail key changes to the imple-
mentation, data curation, sequence representation and struc-
ture refinement that improve the scalability and accuracy of 
the model. Additionally, we introduce an uncertainty 

Received: 3 June 2024; Revised: 9 September 2024; Editorial Decision: 15 September 2024; Accepted: 2 October 2024 
© The Author(s) 2024. Published by Oxford University Press.   
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which 
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. 

Bioinformatics, 2024, 40(10), btae576 
https://doi.org/10.1093/bioinformatics/btae576 
Advance Access Publication Date: 3 October 2024 
Applications Note 

https://orcid.org/0000-0002-0445-7863
https://orcid.org/0000-0003-1388-2252
https://github.com/Exscientia/ABodyBuilder3
https://zenodo.org/records/11354577


estimation based on the predicted local-distance difference 
test (pLDDT), which outperforms the previous ensemble- 
based estimate. Together, these enhancements provide a sub-
stantial improvement in the quality of antibody structure pre-
dictions and open the possibility of a scalable and precise 
assessment of large numbers of therapeutic candidates.

2 Model overview
An overview of the ABodyBuilder3 architecture, which is 
comparable to the ABodyBuilder2 model, is shown in Fig. 1. 
The input node features consist of an embedding representa-
tion of the variable region sequence, where the residue one- 
hot encoding or the ProtT5 embedding of the heavy and light 
chain variable sequences are concatenated. Relative posi-
tional encodings are used as edge features. This graph is pro-
vided as input to a sequence of eight structure modules that 
update the node features and residue coordinates through an 
invariant point attention layer and a backbone update layer, 
respectively, starting from residues set at the origin (Jumper 
et al. 2021). The final layer of the structure module is used in 
conjunction with the input variable region sequence to pre-
dict all atom coordinates by generating torsion angles from 
the node features.

To train the model, a Frame Aligned Point Error (FAPE) loss 
is used along with structural violation and backbone torsion an-
gle losses. As in ABodyBuilder2, the FAPE loss is clamped at 
30 Å between CDR and framework residues and at 10 Å other-
wise, with the final FAPE loss term computed as the sum of the 
average backbone FAPE loss after each backbone update and 
the full atom FAPE loss from the final prediction. Training is 
performed in two stages using a batch size of 64, with the first 
stage only using the FAPE and torsion angle losses. We use the 
RAdam optimizer (Liu et al. 2021) with warm restart every 50 
epochs using a cosine annealing scheduler. The second stage 
incorporates the structural violation term to the loss and uses a 
fixed learning rate of 10− 4. For both stages, training is stopped 
after the validation loss stops improving for 100 epochs, and 
the best model checkpoint is used.

3 Improved structure modelling 
and evaluation
Rapid prototyping is paramount to generating insights and 
improving the design of machine learning models. We 

develop an efficient and scalable implementation of the 
ABodyBuilder2 architecture which makes use of vectorization 
to improve hardware utilization, leveraging optimisations 
from the OpenFold project (Ahdritz et al. 2024). This is in 
contrast to the implementation of ABodyBuilder2, which 
generates minibatch gradients by computing a gradient for 
each minibatch sample sequentially before averaging (i.e. ac-
cumulated gradients). ABodyBuilder2 also uses double preci-
sion which is not well optimized on modern GPU hardware 
compared to lower precision data-types. We find the model 
can be trained robustly using bfloat16 precision for weights 
and use mixed precision for training, providing faster compu-
tational throughput and an efficient memory footprint. Our 
implementation is more than three times faster, and can be 
scaled easily across multiple GPUs using a distributed data 
parallel strategy.

We use the Structural Antibody Database (SAbDab) 
(Dunbar et al. 2014), a dataset of experimentally resolved an-
tibody structures, to train our models on all available data up 
to January 2024. We perform an initial filtering to remove 
nanobodies, structures with resolution above 3.5 Å, and out-
liers >3.5 standard deviations from the mean for any of the 
six summary statistics given by ABangle (Dunbar et al. 
2013). Furthermore, we filter out ultra-long CDRH3 loops, 
which predominantly come from bovine antibodies (de Los 
Rios et al. 2015) by removing any sequence with a CDRH3 
of over 30 residues. We label residues using IMGT number-
ing generated via ANARCI (Dunbar and Deane 2016). In an 
attempt to remove potential structural outliers, we also re-
move antibodies from species which occur >15 times 
in SAbDab.

For both the first and second stage of training we select 
weights based on the lowest validation loss. We use a valida-
tion set of 150 structures and a test set of 100 structures, 
which are significantly larger than those used in 
ABodyBuilder2 and lead to a more robust assessment of 
model capabilities. We retain the original ABodyBuilder2 test 
set of 34 structures as a subset of our test set to allow for di-
rect comparisons. As a primary interest is the modelling of 
antibodies with high humanness in the context of therapeutic 
antibody development, we constrain the validation and addi-
tional test structures to be annotated as human. We require a 
resolution below 2.5 Å and a CDRH3 length of >22 for the 
selection of our validation structures. Furthermore, we re-
move any structures from the training data that share an 

Figure 1. Left: Overview of an antibody structure, with the variable region and CDR loops shown. Right: An embedding representation of the variable 
region is created by concatenating the heavy and light chain variable region one-hot encoding or ProtT5 embedding. This is given as input to eight 
sequential update blocks with independent weights. The output of the final update block is used to predict the final backbone atomic coordinates and 
uncertainties. Full sequence information is then used to predict chi-angles and reconstruct all side-chain atoms using idealized coordinates.
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identical sequence in any of the CDR regions with any of the 
validation or test sets.

We consider two physics-based refinement strategies, 
OpenMM (Eastman et al. 2017) and YASARA (Krieger and 
Vriend 2015), to fix stereochemical errors and provide realis-
tic structures. We find that minimization in the YASARA2 
forcefield (Krieger et al. 2009) in explicit water leads to im-
proved accuracy of all regions, particularly in the framework. 
Further details and comparisons between the minimization 
methods are given in Supplementary Information S1.

In Table 1, the first three rows show a comparison of the 
original ABodyBuilder2 model with our baseline model 
obtained with our improved implementation and dataset 
curation. We give the root mean squared deviation (RMSD) 
for each region of the variable domain, and provide results 
with both refinement strategies. Here the RMSD is computed 
by aligning the heavy and light chains separately to the crys-
tal structure and averaging the RMSD of backbone atoms 
over the residues of each CDR and framework region. Note 
here that ABodyBuilder2 predictions are obtained by taking 
the closest structure to the mean of an ensemble of four mod-
els. This ensemble of models is selected from ten distinct 
trainings of which six models are then discarded. By compari-
son, our baseline consists of a single model without any need 
for model selection and ensemble prediction. The full RMSD 
distributions are given in Supplementary Information S2.

4 Language model representation
Inspired by the success of language model embeddings being 
used to model protein structure, e.g. (Lin et al. 2023, Ruffolo 
et al. 2023), we experiment with replacing the one-hot- 
encoding used as the residue representation in 
ABodyBuilder2 with a language model embedding. We use 
the ProtT5 model (Elnaggar et al. 2021), an encoder-decoder 
text-to-text transformer model (Raffel et al. 2020) pretrained 
on billions of protein sequences, to generate a residue level 
embedding of each antibody. As this language model was 
trained on single chains, we embed the heavy and light chain 
separately by passing them through the ProtT5 model, and 
concatenate their residue representations to obtain a per- 
residue embedding of the full variable region. We also ex-
plored antibody-specific models such as the paired IgT5 and 
IgBert models (Kenlay et al. 2024), but ultimately found that 
general protein language models achieved higher perfor-
mance. This might be because antibody language models in-
troduce potential dataset contamination and overfitting 
during the language model pre-training. To train our lan-
guage model-based structure prediction model, all parameters 
are kept identical to ABodyBuilder2, except for a lower initial 
learning rate of 5 � 10− 4, and a reduction of the minimum 

learning rate to 0 in the scheduler, which we found to im-
prove stability on learning rate resets.

In Table 1, we show the performance of our 
ABodyBuilder3 model, comparing the one-hot encoding with 
the ProtT5 embedding representation which we denote as 
ABodyBuilder3-LM. One can observe a small reduction in 
RMSD using the language model representation, notably in 
the modelling of the CDRH3 and CDRL3 loops, though this 
improvement is not statistically significant.

5 Uncertainty estimation
The ABodyBuilder2 model uses an ensemble of four models 
to provide a confidence score from the diversity between pre-
dictions. This approach has an increased computational bur-
den, as multiple models are required both at training and 
inference time. We instead estimate the intrinsic model accu-
racy by predicting the per-residue lDDT-Cα scores (Mariani 
et al. 2013), as implemented in the AlphaFold2 model 
(Jumper et al. 2021). This introduces a very small increase in 
the number of parameters, but circumvents the need for an 
ensemble of models. The pLDDT is obtained from the final 
single representation of the structure module. A multilayer 
perceptron with softmax activation predicts a projection of 
the local confidence into 50 bins. Training is achieved by dis-
cretising the predicted structure with per-residue lDDT-Cα 
against the ground truth structure and computing the cross- 
entropy loss, which is added to the original ABodyBuilder2 
loss with a weight of 0.01. A pLDDT score for the full vari-
able domain, or for specific regions, is obtained as an average 
of the corresponding per-residue pLDDT scores.

In Table 2, we give the Pearson correlation between the 
pLDDT score and the RMSD, averaged over each region of the 
variable domain. The ABodyBuilder2 model, with an uncer-
tainty score obtained from the ensemble model, has lower cor-
relation with RMSD than our pLDDT score. It is interesting to 
note here that the ABodyBuilder3-LM model, which uses 
ProtT5 embeddings as input, achieves a higher correlation than 
the one-hot encoding representation model, notably in the 
modelling of the CDRH3 uncertainty. We note however that 
when considering the Spearman correlation, shown in 
Supplementary Information S3, the difference between models 
is less marked. We provide a guideline for thresholding pLDDT 
for modelling the CDRH3 region in Fig. 2 (right), applied here 
on the full test set. Incorporating a threshold of a pLDDT above 
85, we retain approximately 32% of structures, with over 80% 
of those retained having a CDR-H3 RMSD below 2 Å.

6 Conclusions
In this article, we present ABodyBuilder3, a state-of-the-art 
antibody structure prediction model based on 

Table 1. Modelling accuracy as measured by mean RMSD in Angstroms, given for each CDR loop and framework region.a

CDRH1 CDRH2 CDRH3 Fw-H CDRL1 CDRL2 CDRL3 Fw-L

ABodyBuilder2 0.84 0.73 2.54 0.56 0.55 0.36 0.88 0.53
Baseline (OpenMM) 0.92 0.75 2.53 0.60 0.67 0.35 0.96 0.58
Baseline (Yasara) 0.90 0.74 2.49 0.59 0.58 0.37 0.92 0.57
ABodyBuilder3 0.87 0.70 2.42 0.58 0.61 0.39 0.93 0.58
ABodyBuilder3-LM 0.87 0.75 2.40 0.57 0.59 0.37 0.89 0.58

a Baseline models refer to a single model with our optimized implementation of the ABodyBuilder2 architecture trained on our updated curated dataset 
whereas ABodyBuilder2 refers to the original version which uses an ensemble of models and the prediction closest to the mean.
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ABodyBuilder2. We incorporated several improvements to 
the implementation, notably enhancing hardware accelera-
tion through vectorization, which significantly improve the 
scalability of our model. We also made changes to the data 
processing and structure refinement that lead to more accu-
rate predictions.

In addition, we show how leveraging a language model 
representation of the antibody sequence can improve the 
modelling of CDRH3. Though the improvement in RMSD is 
marginal, our model achieves more robust training. Finally, 
we demonstrate how the use of pLDDT head, combined with 
protein language model embeddings, can be used as a substi-
tute for an ensemble of models approach, which require sub-
stantially more training and inference compute.

It would be interesting to explore the use of self- 
distillation, which has shown to improve accuracy in general 
protein structure prediction models (Jumper et al. 2021), by 
pre-training our model on a large dataset of synthetic struc-
tures predicted from the paired Observed Antibody Space 
(Kovaltsuk et al. 2018, Greenshields-Watson et al. 2024). To 
even further improve the accuracy of the predictions and of 
the uncertainty estimates, one could also consider combining 
the pLDDT approach introduced in this article with an en-
semble of models, though this would be at the cost of in-
creased training and inference compute.
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