
Examining the Effects of Environment, Geography, 
and Elevation on Patterns of DNA Methylation Across 
Populations of Two Widespread Bumble Bee Species
Sam D. Heraghty  1,*, Sarthok Rasique Rahman  1,2, Kelton M. Verble  1, Jeffrey D. Lozier  1

1Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, USA
2Department of Ecology and Evolutionary Biology, 106A Guyot Hall, Princeton University, Princeton, NJ  08544

*Corresponding author. E-mail: samd.heraghty@hotmail.com.

Accepted: September 23, 2024

Abstract

Understanding the myriad avenues through which spatial and environmental factors shape evolution is a major focus in bio
logical research. From a molecular perspective, much work has been focused on genomic sequence variation; however, recently 
there has been increased interest in how epigenetic variation may be shaped by different variables across the landscape. DNA 
methylation has been of particular interest given that it is dynamic and can alter gene expression, potentially offering a path for a 
rapid response to environmental change. We utilized whole genome enzymatic methyl sequencing to evaluate the distribution 
of CpG methylation across the genome and to analyze patterns of spatial and environmental association in the methylomes of 
two broadly distributed montane bumble bees (Bombus vancouverensis Cresson and Bombus vosnesenskii Radoszkowski) 
across elevational gradients in the western US. Methylation patterns in both species are similar at the genomic scale with 
∼1% of CpGs being methylated and most methylation being found in exons. At the landscape scale, neither species exhibited 
strong spatial or population structuring in patterns of methylation, although some weak relationships between methylation and 
distance or environmental variables were detected. Differential methylation analysis suggests a stronger environment associ
ation in B. vancouverensis given the larger number of differentially methylated CpG’s compared to B. vosnesenskii. We also 
observed only a handful of genes with both differentially methylated CpGs and previously detected environmentally associated 
outlier SNPs. Overall results reveal a weak but present pattern in variation in methylation over the landscape in both species.
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Introduction
The increasing availability of genomic data has led to an 
explosion of research examining the effect of spatial and 
environmental factors on molecular evolution in natural 

landscapes (Storfer et al. 2018; Dorant et al. 2022). To 
date, most studies have focused on how DNA sequence- 
based variation such as single nucleotide polymorphisms 
(SNPs) or structural variants such as small indels are 
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associated with environmental variables (Ahrens et al. 
2018; Cayuela et al. 2021; Hartke et al. 2021). However, in
creasing attention is being given to the role of epigenetic 
variation as a factor that can shape species responses to en
vironmental pressures (Mccaw et al. 2020; Gao et al. 2022; 
Carvalho 2023). Epigenetics refers to a suite of mechanisms 
that can change gene expression without altering the se
quence of DNA itself and includes noncoding RNAs, histone 
modification, and DNA methylation. DNA methylation, 
or the addition of a methyl group (CH3) to a cytosine in cer
tain contexts, has received much attention because DNA 
methylation has been shown to alter gene expression and 
because methylation patterns can change during an or
ganism’s lifespan (Harrison et al. 2022; Nakamura et al. 
2023). There is also some evidence that methylation pat
terns can shift in response to environmental conditions, 
which may ultimately represent a possible mechanism 
for tolerating rapid climate changes (Chano et al. 2021; 
Gupta and Nair 2022; Carvalho 2023). For example, there 
is evidence in corals that changes in methylation may 
be adapting to variable thermal conditions (Dixon et al. 
2018; Rodríguez-Casariego et al. 2020). Additionally, 
methylation may act to guide mutation of genes that yield 
adaptative phenotypes in response to certain environmen
tal stimuli (Flores et al. 2013). Work in Daphnia exposed to 
pollution also identified changes in DNA methylation that 
may help populations persist (Harney et al. 2022), which 
suggests that DNA methylation maybe useful across a var
iety of different environmental stressors.

DNA methylation is a common form of epigenetic 
modification; however, methylation may serve different 
roles in different lineages. For instance, mammalian gen
omes tend to be highly methylated (70% to 80% of 
CpG’s), with consistently high methylation save for near 
promoters (Sharif et al. 2010; Li and Zhang 2014) and 
methylation has a role in gene silencing (Smith and 
Meissner 2013). Alternatively in arthropods, methylation 
is much less frequent [∼0% to 14% of CpG’s, with most 
methylation in gene bodies (Bewick et al. 2017; Lewis 
et al. 2020)], and the purpose of methylation is less clear, 
although unlike mammals highly methylated genes can be 
expressed (Lewis et al. 2020). There is mixed evidence for 
DNA methylation being involved in both alternative spli
cing [noted in mealybugs, ants, and honeybees (Bonasio 
et al. 2012; Li-Byarlay et al. 2013; Bain et al. 2021)], im
mune response in honey bees (Li-Byarlay et al. 2020), 
and the evolution of sociality (Yan et al. 2015; Bewick 
et al. 2017). Thus, more work is needed to better under
stand DNA methylation in arthropods, including how pat
terns vary within and among species.

Species with broad geographic ranges that encompass 
substantial environmental heterogeneity can be tools to 
understand mechanisms of adaptation or plasticity that 
can be shaped by local environmental pressures. Species 

with montane distributions may be especially useful as 
differences in environmental conditions can emerge at 
both small and large spatial scales (Rahbek et al. 2019a, 
2019b). Bumble bees (Hymenoptera: Apidae: Bombus) 
are a globally distributed genus of insects that are ecologic
al and economically important pollinators (Greenleaf and 
Kremen 2006; Strange 2015; Cameron and Sadd 2020). 
There has been much research on potential environmental 
adaptation in bumble bees using a variety of different gen
omic (Kent et al. 2018; Theodorou et al. 2018; Sun et al. 
2020; Heraghty et al. 2022) and transcriptomic approaches 
(Pimsler et al. 2020; Liu et al. 2020a; Liang et al. 2022). 
However, there has been limited work studying how 
DNA methylation is involved in environmental adaptation 
(Dillon and Lozier 2019; Rahman and Lozier 2023). Most 
studies of methylation in bumble bees have been involved 
in understanding possible roles of methylation in sociality 
and caste development (Lockett et al. 2016; Li et al. 
2018; Bain et al. 2021) although there are some exceptions, 
like work examining the effect of neonicotinoids on methy
lation (Bebane et al. 2019). Despite the relatively low levels 
of methylation in bumble bees (∼1% of CpG’s) (Marshall 
et al. 2019, 2023; Pozo et al. 2021; Rahman and Lozier 
2023), variable CpG methylation still may have a role in 
coping with environmental stress. Prior work in Bombus 
found that colony identity better explains individual 
methylation patterns than social caste, which suggests 
genomic background strongly influences methylation pat
terns (Marshall et al. 2019). Therefore, it is possible that 
selection could act on the genome to change methylation 
patterns, which in turn could affect gene expression or 
other processes.

Bombus vancouverensis Cresson and Bombus vosnesens
kii Radoszkoswki are two species of common bumble bee 
found in western North America (Fig. 1, Cameron et al. 
2011). These two species have partially overlapping ranges 
in California, Oregon, and Washington, United States, but 
also have some unique aspects to their distributions. 
Bombus vancouverensis has a broader geographic range 
across the western United States and Canada, but in the 
west coast states is generally associated with narrower dis
tributions of several environmental variables (especially tem
perature), whereas B. vosnesenskii has a smaller geographic 
range but appears to have a more flexible niche that allows 
persistence across a wider range of habitats and environ
mental conditions in the region (Jackson et al. 2018). For 
example, although B. vancouverensis is observed across 
a broad range of elevations, because of a preference for 
cooler temperatures its elevational breadth is dependent 
on latitude, where bees in the southern parts of the range 
(e.g. Sierra Mountains in southern California) are restricted 
to high elevations and northern populations can be found 
closer to sea level. In contrast, B. vosnesenskii can be found 
at a broader range of elevations throughout its distribution 
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(Koch et al. 2012; Jackson et al. 2018). Several studies have 
examined these two species to gain insight into similarities 
and differences in their ecology and evolution, and in 
most cases B. vancouverensis tends to show clearer and 
more consistent associations in traits and genetic variation 
with spatial–environmental gradients. For example, B. van
couverensis exhibits greater population structure compared 
to near-panmixia in B. vosnesenskii (Jackson et al. 2018; 
Heraghty et al. 2023, 2022), B. vancouverensis exhibits 
greater variation in morphological traits associated with 

elevation (Lozier et al. 2021), and whole genome studies 
have found stronger signals of environmental association 
across the genome of B. vancouverensis (Heraghty et al. 
2023, 2022). Evaluating differences in methylation across 
the range of both species will be a useful addition to further 
understand how differences in species distributions and 
demography can influence molecular evolution.

In this study, we aim to build on prior genomic work 
on DNA sequence variation across the B. vancouverensis 
and B. vosnesenskii ranges by characterizing genome-wide 

Fig. 1. Maxent range map of both species (Bombus vancouverensis [left] and Bombus vosnesenskii [right]; photos on inset) using presence data from 
Cameron et al. (2011).  Circles indicate sampling localities. The y axis indicates degrees latitude and the x axis indicates degrees longitude.
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5′-CpG-3′ DNA methylation from broad latitudinal and 
altitudinal gradients. We then focus on comparing the 
overall distribution of genome-wide CpG methylation of 
each species to test for spatially or environmentally asso
ciated methylation that might reveal consistent differences 
in methylation among populations. Overall, we seek to 
identify and compare landscape level patterns in DNA 
methylation between a species with weak gene flow that 
occupies a broader range of environmental conditions (B. 
vosnesenskii) and a species with stronger population struc
ture and tends to be distributed in narrower climatic zones 
at relatively high elevations in the region (B. vancouveren
sis). Specifically, we aim to test the hypothesis that DNA 
methylation variation will parallel previous genomic results 
by exhibiting stronger spatially and environmentally asso
ciated differentiation in B. vancouverensis.

Results

Sequencing Data Summary

A total of 53 and 54 female workers from 13 unique localities 
each for B. vancouverensis and B. vosnesenskii were used for 
whole-genome enzymatic methylation sequencing (Fig. 1, 
supplementary table S1, Supplementary Material online). 
Sequencing produced 27,750,092.6 (±5,219,102.81 SD) 
paired reads per sample for B. vancouverensis (∼14×  cover
age) and 43,544,649.6 (±14,655,370.3 SD) reads per sample 
for B. vosnesenskii (∼22×  coverage). After filtering for B. van
couverensis, 11,351,115 total CpG’s (both methylated and 
unmethylated) were retained for the full CpG set, with 
11,161,598 retained (Table 1) after removal of SNPs from pre
vious range-wide whole genome resequencing (Heraghty 
et al. 2022). For B. vosnesenskii, 26,120,126 CpG sites 
were retained in the full set, with 23,170,123 (Table 1) re
tained after SNP removal (Heraghty et al. 2023). This differ
ence between species was driven by sequencing depth 
differences leading to fewer CpGs passing filters in B. vancou
verensis. The average percent methylation was 0.783% and 
0.777% across all CpG sites in B. vancouverensis and B. vos
nesenskii, respectively, matching results indicating low CpG 

methylation levels in other bumble bees (Marshall et al. 
2019, 2023; Pozo et al. 2021; Rahman and Lozier 2023). A 
total of 327,915 and 601,896 SNPs were called by BISCUIT 
(Zhou 2024) from the enzymatic methyl-seq data for B. van
couverensis and B. vosnesenskii respectively.

Distribution of Methylated CpGs within the Genome

Of the total CpGs, 87,673 (0.79%) and 194,247 (0.84%) 
were retained (Table 1) in the dataset containing CpG’s 
with at least 30% methylation averaged across all indivi
duals (Meth30 dataset) for B. vancouverensis and B. vosne
senskii, respectively. In the high variability HVar dataset 
(CpG’s with methylation values with >2 SD and that are 
called as methylated in at least 4 individuals), 270,025 
and 669,523 CpGs were retained (Table 1) for B. vancou
verensis and B. vosnesenskii, respectively. The SNP filter ex
cluded a relatively small number of methylated CpGs in 
B. vancouverensis [4,839 (5.2%) and 14,982 (5.2%) from 
Meth30 and HVar datasets, respectively (Table 1)], with a 
slightly higher proportion of CpGs excluded in B. vosne
senskii [21,914 (10.1%) and 86,581 (12.9%) sites from 
Meth30 and HVar datasets (Table 1)]. The majority of 
CpG sites sequenced (methylated and unmethylated) 
were in introns and intergenic regions (Fig. 2). However, 
the distribution of methylated CpGs was heavily biased to 
genic regions in both species (e.g. 87% in B. vancouveren
sis and 83% for B. vosnesenskii in the SNP filtered variable 
dataset), especially exons (Fig. 2, supplementary table S2, 
Supplementary Material online). The differences in distribu
tion are significant based on Chi-square analysis which 
found significant differences (P < 2.2e−16) in all compari
sons (supplementary table S2, Supplementary Material
online).

Methylome-wide Variation Across the Landscape

Using the SNPs generated by BISCUIT we detected substan
tial isolation by distance in B. vancouverensis (Mantel r =  
0.57, P = 0.001) but not B. vosnesenskii, indicating the 
sequencing data for the individuals used in this study re
covers the previously reported results of relatively strong 

Table 1 The number of CpG’s found in each dataset for each species after the appropriate filters were applied

B. vancouverensis B. vosnesenskii Criteria

Total CpGs 11,351,115 26,120,126 All CpGs (methylated and unmethylated) retained after basic filtering
Total CpGs with SNP filter 11,161,598 23,170,123 All CpGs (methylated and unmethylated) retained after basic filtering + SNP filter
CpGs in Meth30 87,673 194,247 CpG’s with a minimum average methylation value of 30% across all individuals
CpGs in Meth30 with 

SNP filter
82,834 172,333 CpG’s with a minimum average methylation value of 30% across all individuals +  

SNP filter
CpGs in Hvar 270,025 669,523 CpGs with methyation > 2 SD + have nonzero methylation in at least 4 individuals
CpGs in Hvar with SNP filter 255,043 582,942 CpGs with methyation > 2 SD + have nonzero methylation in at least 4 individuals  

+ SNP filter

The criteria column details the filtering criteria used for each dataset (see Materials and Methods for details)
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population structure in B. vancouverensis and weak struc
ture in B. vosnesenskii (Jackson et al. 2018; Heraghty et al. 
2022) (supplementary fig. S1, Supplementary Material
online). Both species exhibited a positive relationship be
tween methylation dissimilarity and both geographic 
and genetic distance, and although some correlations 
were significant, overall relationships were weak and de
pended on filtering criteria (e.g. HVar vs. Meth30 and 
SNP filter vs. no filter) (Fig. 3). The strongest relationships 
were observed in B. vancouverensis when comparing 
methylation dissimilarity against geographic (Mantel r =  
0.10, P = 0.003) and genomic distance (Mantel r = 0.12, 
P = 0.01) for the Meth30 dataset that focused on more 
highly and consistently methylated CpG’s, although simi
larly positive but insignificant relationships were also ob
served in the HVar dataset (Fig. 3). For B. vosnesenskii, a 
significant, albeit weak, relationship was detected only 
for the SNP-filtered HVar dataset and geographic distance 
(Fig. 3a). As for SNP-based population structure, the over
all trends in methylation suggest that B. vancouverensis 
has stronger “methylation population structure” than B. 
vosnesenskii, although even in B. vancouverensis, methy
lation dissimilarity does not approach the degree of 
population-level SNP differentiation observed for this spe
cies (supplementary fig. S1, Supplementary Material on
line; Heraghty et al. 2022).

We used redundance analysis (RDA) to identify the vari
ation in overall methylation patterns in each sample that 
could be explained by environmental, spatial, and popula
tion structure variables (PC1). The difference between spe
cies was somewhat clearer when visualized using the RDAs. 
For B. vancouverensis, the full RDA model [model contain
ing all predictors: BioClim climate variables, elevation, 

latitude, longitude, and PC1 from a principal component 
analysis (PCA) of BISCUIT SNPs to account for population 
structure] showed samples clustering broadly into northern 
and southern groups largely along RDA2 and some effects 
for specific variables. The PC1 and mean annual tempera
ture (BIO1) were largely similar to latitude, which was ex
pected given that temperature is generally inversely 
related to latitude and the previously identify population 
structure being on a latitudinal gradient (Jackson et al. 
2018; Heraghty et al. 2022). Samples also loosely clustered 
along the elevation vector, most clearly apparent for the 
positively loading southern higher elevation samples along 
RDA1 (Fig. 4), similar to SNP results (Heraghty et al. 2022). 
The full RDA model was also significant and showed some 
latitudinal separation (largely along RDA1) for B. vosnesens
kii. Most of the other variables also were loading along 
RDA1, although isothermality (BIO3) was primarily loading 
along RDA2. For both species, the full models were able to 
account for similar amounts of observed variation with 
20.7% and 17.2% of variation explained for B. vancouver
ensis and B. vosnesenskii, respectively. Of the partial mod
els, the environmental model (BioClim variables and 
elevation) performed best for both species, accounting 
for 62.1% and 58.0% of the explainable variance for B. 
vancouverensis and B. vosnesenskii, respectively (Table 2). 
The partial model accounting for geography (latitude and 
longitude), while significant, accounted for much less of 
the explainable variation (∼5% for both species) and the 
population structure (PC1 from PCA of SNP data) model 
was insignificant in both species. There was minimal con
founded variation (∼1% of explainable variation). SNP fil
tering had a negligible impact (supplementary table S3, 
Supplementary Material online).

Fig. 2. The distribution of CpG’s in genomic features across all sequenced CpG’s, methylated CpG’s, and variables CpG’s both with and without SNP filtering. 
The height of the bar indicates the total number of CpG’s found in a given feature for a given dataset. Numbers indicate the portion of sequenced CpG’s 
located in that feature that was methylated.
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CpG-level Differential Methylation

Analysis of CpGs that were differentially methylated in asso
ciation with specific environmental variables identified more 

significantly differentially methylated CpGs (q ≤ 0.05) in 
B. vancouverensis than in B. vosnesenskii (Table 3). In 
B. vancouverensis, the largest number of differentially 

Fig. 3. Relationship between methylation dissimilarity and both geographic and genomic distance across the HVar and Meth30 datasets as well as with 
and without SNP filtering for B. vancouverensis (a) and B. vosnesenskii (b). Results of the Mantel test for each relationship are printed with the corre
sponding scatter plot.
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methylated CpG’s were found to have a statistically sig
nificant associated with elevation (280 and 300 for SNP fil
tered and unfiltered respectively, Table 3). Both latitude 
(n = 108 and n = 124 for SNP filtered and unfiltered, re
spectively) and annual mean temperature (BIO1) (n = 92 
and n = 97 for SNP filtered and unfiltered, respectively) 
also were associated with relatively large numbers of 
differentially methylated CpG’s. For B. vosnesenskii, the 

largest number of differentially methylated CpG’s was 
associated with latitude in the unfiltered dataset (n =  
30). In the SNP-filtered dataset, the largest number of dif
ferentially methylated CpG’s was associated with BIO3 
(n = 15). Few CpG’s were associated with BIO1 (n = 0 and 
n = 4 for SNP-filtered and unfiltered, respectively) or annual 
precipitation (BIO12) (n = 3 and n = 6 for SNP-filtered and 
unfiltered, respectively).

(a) (b)

Fig. 4. Results of full RDA model for a) B. vancouverensis and b) B. vosnesenskii using the SNP filtered dataset for both species with individuals colored by the 
latitude of their sampling locality. The following abbreviations are used for the BioClim variables: BIO1, annual mean temperature; BIO2, mean diurnal range; 
BIO3, isothermality; BIO12, annual precipitation; PC1, PC1 axis from a PCA analysis of SNP data to represent population structure.

Table 2 Summarized results of pRDA data for both focal species

Model Inertia R2 P(>F) Proportion of explainable variance Proportion of total variance

B. vancouverensis
Full model 10,591,543 0.0205 0.001 1 0.207
Environment 6,575,573 0.0129 0.001 0.621 0.128
Geography 2,728,061 0.00727 0.001 0.258 0.053
Structure 1,188,863 0.000443 0.424 0.112 0.023
Confounded 99,046 … … 0.009 0.002
Total unexplained 40,675,527 … … … 0.793
Total inertia 51,267,070 … … … 1

B. vosnesenskii
Full model 13,356,586 0.0167 0.001 1 0.172
Environment 7,739,843 0.0114 0.001 0.579 0.01
Geography 3,810,203 0.00521 0.005 0.285 0.049
Structure 1,664,682 −0.000315 0.614 0.125 0.021
Confounded 141,858 … … 0.011 0.002
Total unexplained 64,388,098 … … … 0.828
Total inertia 77,744,684 … … … 1

Inertia is synonymous with variance. Model significance is reported in the P(>F) column with significant models (P < 0.05) being denoted by bold text. Proportion of 
explainable variance is the ratio between the inertia of a given model and the full model. The proportion of total variance is the ratio between inertia accounted for in 
a given model and the total inertia in the dataset.
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When considering the genes containing differentially 
methylated CpGs, SNP filtering had a relatively small effect 
in B. vancouverensis, with most (n = 347 [89.2%]) genes 
identified as containing differentially methylated sites 
found in both the SNP filtered and unfiltered datasets 
(Fig. 5a); 7 and 35 genes with differentially methylated 
CpGs were unique to the SNP filtered and unfiltered data
sets, respectively. SNP filtering had a more substantial ef
fect in B. vosnesenskii, although this is likely in part due to 
the relatively small number of differentially methylated re
gions detected generally (Fig. 5b); only 3 genes with differ
entially methylated CpGs were shared by the SNP filtered 
and unfiltered data sets, and 14 and 25 genes were unique 
to the SNP filtered and unfiltered datasets, respectively 
(Fig. 5b).

Gene ontology (GO) analysis for B. vancouverensis re
tained 296 biological process terms after summarization 
with REVIGO (Supek et al. 2011) using the list of genes con
taining differentially methylated CpG’s identified in both 
the filtered and unfiltered datasets (n = 352). Several key 
clusters of biological processes appear in the GO results in
volving terms, such as development (e.g. terms like tissue 

development [GO:0009880], and animal organ morpho
genesis [GO:0009887]), RNA processing (e.g. terms like 
RNA splicing [GO0008380], mRNA splicing via spliceosome 
[GO:0000398]), and hypoxia (e.g. terms like response to 
hypoxia [GO:0001666] and response to oxygen levels 
[GO:0070482]). Because there were only four genes 
found in both filtered and unfiltered dataset in B. vosne
senskii, instead of summarizing gene function with a GO 
approach we elected to evaluate the function of each of 
the 4 genes manually. To do this, we assessed the puta
tive gene function by first determining if there was a 
homologous gene in Drosophila melanogaster using the 
blast_rec function in the orthologr v.0.4.2 R package 
(Drost et al. 2015) and then searched for available infor
mation on FlyBase. Two of the four genes had homolo
gous genes in D. melanogaster with one of the genes 
being LOC117239631 which is homologous to Dp1 and 
is involved in processes like mRNA translation (Nelson 
et al. 2007). LOC117237625 is homologous to sli which 
is involved in several different developmental processes 
including neuronal and tracheal development (Rothberg 
et al. 1990; Englund et al. 2002).

Table 3 Summary of the number of individual CpGs identified as differentially methylated with each variable using either the filtered or not filtered dataset 
(FDR corrected q < 0.05)

No filter Filter

Variable B. vancouverensis B. vosnesenskii B. vancouverensis B. vosnesenskii

Annual mean temp. (BIO1) 97 4 92 0
Mean diurnal range (BIO2) 20 N/A 21 N/A
Isothermality (BIO3) 33 12 21 15
Annual precipitation (BIO12) 42 6 52 3
Elevation (m) 300 14 280 10
Latitude 124 30 108 9

(a) (b)

Fig. 5. Venn diagrams comparing the number of genes recovered as differentially methylated without or without the SNP filter in a) B. vancouverensis or 
b) B. vosnesenskii. All comparisons also include lists of genes with previously identified environmentally associated outlier SNPs (Heraghty et al. 2022, 2023).
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Discussion
We used enzymatic methylation sequencing to evaluate the 
distribution of methylated CpGs across the genome and 
variation in methylation across the geographic range of 2 
broadly distributed bumble bee species. Consistent with 
prior results in bumble bees and many other invertebrates 
(Bewick et al. 2017; Rahman and Lozier 2023), methylation 
was present at <1% of CpGs in both focal species, with 
most of the methylated CpGs being in gene bodies, espe
cially in exons. Overall spatial or environmentally associated 
patterns of differential methylation among populations 
within the species were not particularly striking and were 
generally less dramatic than previously examined SNP vari
ation across the landscape in these species, although some 
patterns were evident. In particular, differences in methyla
tion were more pronounced in B. vancouverensis than in 
B. vosnesenskii, including many CpGs significantly asso
ciated with elevation that reemphasizes the potential rele
vance of this spatial–environmental dimension for this 
species observed in earlier studies of genotypic and pheno
typic variation (Pimsler et al. 2020; Lozier et al. 2021; 
Heraghty et al. 2023, 2022).

General patterns of methylome-wide differentiation 
across the ranges of both species were generally weak 
(Figs. 3 and 4). Previous work using genomic SNPs sug
gests that population structure in B. vancouverensis is on 
a north south gradient that loosely breaks down into a 
southern population (California) and a northern popula
tion (Oregon and Washington) with strong isolation by 
distance and environment (Jackson et al. 2018; Heraghty 
et al. 2022). The RDA recovered a somewhat similar pat
tern, with individuals generally clustering into northern 
and southern groups, although this clustering is less 
than observed in the genomic data (Jackson et al. 2018; 
Heraghty et al. 2022). Signatures of isolation by distance 
are also smaller than for SNP data in the same B. vancou
verensis samples (supplementary fig. S1, Supplementary 
Material online), suggesting that spatial population struc
turing is not as prevalent in methylation as in genome 
sequence variation. In B. vosnesenskii, a similar set of gen
omic analyses found little population structure at the 
range-wide scale (Jackson et al. 2018; Heraghty et al. 
2022), which is consistent with the minimal structure 
also found in the methylation data presented here.

In addition to spatial–environmental predictors of 
methylation, we also aimed to directly test the hypothesis 
that genetic background shapes methylation by examining 
differences in methylation in relation to genetic distance 
among individuals. Previous work in bumble bees has 
found a high level of intercolony variation in methylation, 
suggesting that genetic background may play a role in epi
genetic processes (Marshall et al. 2019). Given population 
genetic structuring, especially in B. vancouverensis, such 

relatedness effects might be expected to extend to the 
population level and potentially result in “epialleles” that 
could be targeted by selection, although it remains unclear 
if such a phenomenon exists in Bombus (Marshall et al. 
2019). Similar to the isolation-by-distance results (Fig. 3), 
relatively little variation was explained by the Mantel tests 
comparing methylation dissimilarity and genomic distance, 
but relationships were all positive and at least some com
parisons were significant. This suggests that there may be 
some impact of genetic background on methylation at 
the range-wide scale, but the inherently noisier quantitative 
methylation data have a great deal of individual-specific 
variation that may require larger sample sizes for robust 
conclusions to be drawn. Thus, more work will be necessary 
to specifically test the ways in which genetic background 
may facilitate variation in methylation among individuals 
and populations (Chapelle and Silvestre 2022), as well as 
to identify optimal data filtering and CpG inclusion strat
egies for low-methylation species like bumble bees.

At least some methylation variation was associated 
with environmental variables in each species, however, 
both methylome-wide (e.g. Fig. 4, Table 2) and at individ
ual CpGs. The CpG-level differential methylation was once 
again much clearer in B. vancouverensis than in B. vosne
senskii. Of particular interest was that the largest number 
of significant CpGs was associated with elevation in 
B. vancouverensis, which is intriguing given prior studies 
indicating elevation as an important driver of multiple 
evolutionary processes in this species. For example, high 
elevation regions are associated with gene flow reductions 
(Jackson et al. 2018) as well as shifts in body size and wing 
loading that may benefit flight in challenging high-altitude 
conditions (Lozier et al. 2021). In addition, genome-wide 
outlier analysis in B. vancouverensis identified genes con
taining multiple SNPs associated with elevation and may 
indicate local adaptation, in particular the gene Mrp4 
that is involved in resistance to hypoxia (Heraghty et al. 
2023), a key stressor at altitude (Dillon 2006). GO results 
for differentially methylated CpGs in B. vancouverensis 
also indicate several terms related to hypoxia (e.g. re
sponse to hypoxia [GO:0001666] and response to oxygen 
levels [GO:0070482]). One possible role for the large num
ber of CpGs associated with elevation may thus be a 
mechanism for regulating gene expression to counteract 
hypoxic conditions (Harrison et al. 2018). The lack of envir
onmentally associated differential methylation in B. vos
nesenskii is similar to genomic studies which found few 
environmentally associated SNPs (Jackson et al 2020, 
Heraghty et al 2023), which creates an interesting ques
tion for B. vosnesenskii. Recent models suggest an in
crease in range and abundance as climate change 
continues to progress (Soroye et al. 2020; Jackson et al. 
2022) and have also suggested that increases in tempera
ture may be the key mechanism underlying these 
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increases. Although there is variation in CTmin across the 
range of this species (Pimsler et al. 2020), there is little evi
dence suggesting that temperature is strongly shaping 
molecular variation (Heraghty et al. 2023). Given that 
CTmin may be important in understanding range expan
sions (e.g. increased temperatures means populations 
can move further north before experiencing limiting tem
peratures), more work will be needed to understand the 
molecular mechanisms may drive variation in this trait.

One of the major objectives of this study was to compare 
2 bumble bees species provide insights into how differ
ences in environmental niche (greater specialization to 
higher elevations in B. vancouverensis vs. greater habitat 
generalism in B. vosnesenskii) may influence evolution of 
DNA methylation variation. The greater level of environ
mental association observed at CpGs for B. vancouverensis 
relative to B. vosnesenskii has also been observed in gen
omic SNP data (Heraghty et al. 2023, 2022) and morpho
logical data (Lozier et al. 2021), suggesting that to some 
extent different processes act in parallel, although the 
strength of such associations clearly varies. It is possible 
that DNA sequence and methylation may act in concert 
to achieve adaptive physiologies across the landscape how
ever, the small overlap in genes with differential methyla
tion and environmentally associated SNPs suggests that 
any possible parallels that emerge across a species range 
are likely involving different mechanisms. Further, even in 
B. vancouverensis, the spatial and environmental asso
ciated population structure in the methylome is weaker 
than other data types, which together with other studies 
finding similar relationships between genomic and epigen
etic data (e.g. Richards et al. 2012, Sheldon et al. 2018 sug
gest the ultimate drivers of methylation variation across 
species ranges may be complex and not easily predicted 
solely from patterns of genomic variation). However, other 
studies have identified stronger correlations between gen
omic background and variation in methylation, including 
data in bumble bees that found high methylation variation 
between colonies with colony of origin better explaining in
dividual CpG methylation patterns than caste differences 
between individuals (Marshall et al. 2019). It may be the 
case that study design, particularly using wild or laboratory 
animals and the number of samples representing distinct 
colonies or populations, may influence the power to detect 
some methylation patterns compared to other types of vari
ation, and it may be that taxonomic groups with more 
widespread methylation have greater genetic control over 
the distribution of this methylation (Chapelle and Silvestre 
2022). Understanding the relative contributions of the gen
etic background and DNA methylation patterns to environ
mental adaptation in wild populations will likely continue to 
be an important area of research (Husby 2022).

Regardless of the causes of inter-individual and inter- 
population variation in DNA methylation, there is not yet 

a clear consensus on the role of this epigenetic mechanism 
in the evolution of arthropods, and we still cannot explain 
how differences in DNA methylation may be ultimately im
pacting the biology of the focal bumble bee species. Our re
sults did find most of the DNA methylation to be occurring 
in gene bodies, which is consistent with other arthropods 
(Bewick et al. 2017; Rahman and Lozier 2023). There are 
some theories regarding the role of gene body methylation 
including potential interactions with other epigenetic 
factors (Glastad et al. 2014, 2015), alternative splicing 
(Li-Byarlay et al. 2013; Marshall et al. 2019; Lewis et al. 
2020), and the seesaw hypothesis (increases/decreases in 
methylation to drive decreases/increases in gene expres
sion) (Dixon et al. 2018; Dixon and Matz 2022). However, 
more work will need to be done to understand the evolu
tionary role of DNA methylation in this lineage, such as 
the importance of environmental pressures as causal 
forces in driving flexible methylation variation at the individ
ual level and whether selection can act on “epialleles” to 
produce more stably inherited and locally adapted methyla
tion patterns (Burggren 2016; Bewick et al. 2017) that in
fluence some other downstream molecular process.

Finally, there are several important caveats to our results. 
First, methylation patterns are tissue specific with different 
tissues having different methylation profiles. Given the 
role of thoracic muscle in flight and thermal regulation 
(Heinrich 1977), we considered this tissue to be a useful 
starting point for beginning to assess variation in methyla
tion since these 2 processes are likely linked to the environ
ment (Pimsler et al. 2020; Rahman and Lozier 2023). 
However, a comprehensive understanding of how methyla
tion varies with the environment will require studying 
other tissue types. For instance, differential methylation in 
the fat body might be more likely to be found in genes 
linked to metabolic functions (Arrese and Soulages 2010). 
Incorporating data on queens and males in wild populations 
may also be important, since these may also impact methy
lation profiles (Yan et al. 2015; Harrison et al. 2022) and 
these life stages are active at unique times during the season 
and experience distinct environmental pressures from work
ers (Woodard 2017). Second, research into methylation pat
terns of nonmodel organisms in natural settings poses 
unique challenges compared to controlled experiments, 
such as noise due to unaccounted for differences in individ
ual environmental exposure and life history, such as age 
(Yan et al. 2015; Harrison et al. 2022; Renard et al. 2023). 
Controlling for these differences may require specific experi
mental design choices, like employing sampling strategies 
to minimize differences between samples or simply increas
ing sample size. Alternatively, as done in this study as well as 
others (Liew et al. 2020; Rahman and Lozier 2023), applying 
minimum methylation thresholds may help reduce such 
noise, but sensitivity of results to the method of filtering sug
gests multiple criteria should be evaluated. Finally, another 
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concern is overall sampling design of methylation studies, 
including sequencing depth. A recent bisulfite sequencing 
study between 2 populations from extreme ends of the 
range in B. vosnesenskii found over 2,000 differentially 
methylated genes (Rahman and Lozier 2023) compared to 
the <100 found here. However, that study (Rahman and 
Lozier 2023) followed a case–control design compared to 
our continuous predictor design and had many times great
er sequencing depth (∼76×) than in this study (∼14×  for 
B. vancouverensis and ∼22×  B. vosnesenskii) which to
gether may enhance power to identify subtle differential 
methylation that might be common in bumble bees (Pozo 
et al. 2021). For example, Rahman and Lozier (2023) were 
able to detect many differentially methylated CpGs using 
a threshold of 10%, which would have been difficult here 
due to our lower sequencing depth and minimum depth 
threshold. Thus, although we gain several insights with 
our current data, higher sequencing effort than might 
typically be applied to genomic data will be needed to de
tect many methylation differences, even for methods like 
Enzymatic Methyl Seq that are less damaging to DNA than 
methods like bisulfite sequencing.

In conclusion, we provide more evidence that patterns in 
DNA methylation are relatively conserved across insects 
based on the overall low number of methylated CpGs iden
tified here and that methylation occurs primarily in exons. 
Our results also provide some of the first insights into 
how methylation varies across the landscape in wild popu
lations of bumble bees. We do find some clear patterns, like 
the association between methylation and elevation in 
B. vancouverensis. This will be a useful starting point for 
future studies that can more rigorously identify the specific 
effects different stimuli might have on DNA methylation as 
well as how these sorts of effects might differ depending on 
the genomic background. Given the relative lack of popula
tion structure in the methylation data, it may be that methy
lation does not play a major role in local adaptation, 
although our results do not exclude the possibility that 
methylation may be in involved in complementary pro
cesses like plasticity that could serve to help individuals 
cope with environmental stresses. We also provide some 
methodical considerations for future studies that may also 
be using field caught samples as well as provide some pos
sible solutions. Overall, the results suggest there is indeed 
variation in methylation across the landscape that has pos
sible biological implications and consequently merits fur
ther study.

Materials and Methods

Sample Collection and DNA Extraction

Sampling sites were located on a latitudinal range of 
37.217° to 48.651°N for B. vancouverensis and 36.619° 

to 45.627°N for B. vosnesenskii and covered a wide eleva
tional breadth of 447 to 2,678 m for B. vancouverensis and 
68 to 2497 m for B. vosnesenskii (supplementary table S1, 
Supplementary Material online). Female workers were col
lected by net and transferred to vials of 100% ethanol kept 
on ice in the field, and ultimately stored at −80 °C until DNA 
extraction. Qiagen DNeasy blood and tissue kits (Hilden, 
N.R.W., Germany) were used to extract DNA from thoracic 
muscle tissue. DNA methylation libraries were prepared 
using the NEB Enzymatic Methyl Seq kit (Ipswich, MA, 
USA). All samples were spiked with 1 μL of methylated 
pUC19 control DNA and 1 μL of unmethylated lambda 
DNA to assess the success of methylation conversion. 
Samples were sequenced across 2 lanes on an Illumina 
NovaSeq 600 sequencer (Psomagen, Rockville, MD, USA).

Bioinformatic Processing

Trim Galore! v0.6.6 (Krueger 2015) was used to trim and 
remove low quality reads using conservative hard trim
ming flags due to possible issues with the conversion 
process that can reduce quality at ends of reads: –q 20 – 
clip_R1 10 –clip_R2 15 –three_prime_clip_R2 10 –length 
50. Trimmed reads were aligned to against the B. vancou
verensis (NCBI RefSeq ID: GCF_011952275.1) and B. vos
nesenskii (NCBI RefSeq ID: GCF_011952255.1) genomes 
(Heraghty et al. 2020) using bwa-meth v0.2.2 (Pedersen 
et al. 2014). The alignment files were then converted into 
binary format (BAM) and sorted using SAMtools v1.10 (Li 
et al. 2009). PCR and optical duplicates were removed 
using the markduplicates command in Picard Tools 
v2.20.4 (Broad Institute 2019). Methylation was detected 
using MethyDackel v0.6.1 (https://github.com/dpryan79/ 
MethylDackel) with the –minDepth 6 flag to only consider 
bases with a sequencing depth of at least 6 reads. We 
also generated a filtered dataset where putative SNP variant 
sites were removed bioinformatically within MethylDackel 
using the –maxVariantFrac 0.50 –minOppositeDepth 3 
flags. This filtered dataset was then further filtered by re
moving SNPs previously detected in recent range-wide 
whole genome resequencing for both species (Heraghty 
et al. 2022, 2023) (supplementary data, Supplementary 
Material). To ensure the possible impact of SNPs on CpG 
motifs was fully removed, we also removed sites from the 
MethylDackel output files that were adjacent to each SNP 
(±1 bp) using the GenomicRanges v1.48.0 R package 
(Lawrence et al. 2013) in R v4.2.0 (R Core Team 2002). 
All subsequent analyses were done on both the unfiltered 
and SNP-filtered datasets.

MethylDackel output files were read into R using the 
methylKit R package v1.20.0 (Akalin et al. 2012) for further 
filtering. MethylKit requires samples be assigned to a treat
ment group, so for the purposes of importing, uniting, and 
downstream data processing to filter methylations calls for 
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other analyses, B. vancouverensis samples were assigned 
to either a northern or southern group which corre
sponded to previously identified patterns in population 
structure using genomic data (Heraghty et al. 2022). 
Bombus vosnesenskii does not have such significant popu
lation structure but does exhibit weak isolation by distance 
that is most evident with latitudinal separation at large 
scales (Heraghty et al. 2023); we thus elected to split sam
ples into northern and southern groups based on the 
mean latitude of sampling localities (40.2°N, with samples 
above this latitude being classified as “northern” and 
samples below that latitude being classified as “south
ern”) to account for the minimal population structure 
when classifying the imported datasets into methylKit. 
Note that these sample groups are only used for import
ing, joining, and filtering MethylDackel sample outputs 
in methylKit, not for any statistical analysis, so these as
signed groups should not impact downstream analyses. 
For each species, methylKit was utilized to remove any 
sites with unusually high coverage (>99% percentile of 
coverage) by using the filterByCoverage command and 
to normalize read counts using the normalizeCoverage 
function (median method). Finally, the data for each sam
ple were combined into a single methylBase object using 
the unite command, which only retained CpG sites found 
in 70% of samples in a given group to ensure that in
cluded sites were represented across the spatial range of 
the species (e.g. a CpG position had to be sequenced in 
at least 70% of individuals in northern and southern 
B. vancouverensis groups). This produced a file for all 
sequenced CpGs (methylated and unmethylated).

Characterizing the Distribution of Methylated CpGs in 
the Genome

The united methylKit output file for each dataset for each 
species was transformed into a percent methylation matrix 
using the percMethylation command in methylKit and used 
to calculate overall percent methylation for each species. In 
addition to evaluating the all CpG data set, to assess the dis
tribution of methylated CpGs in the genome of each spe
cies, the percent methylation matrix was also filtered to 
include only CpGs with ≥30% methylation on average 
across all samples (hereafter referred to as the “Meth30 da
taset”). This procedure thus focused on moderately to 
highly methylated sites in the genome and reduced noise 
in differential methylation analyses from CpG sites harbor
ing low levels of methylation, which represent most 
CpGs across bumble bee genomes (Marshall et al. 2019; 
Rahman and Lozier 2023). Analysis of the Meth30 dataset 
provides insight into general patterns of methylation across 
the range of both species. The threshold of 30% was 
selected after manual inspection of the data, which sug
gested this value was useful in reducing statistical noise 

from low methylation sites that may reflect sequencing er
ror or occasional poor enzymatic conversion.

We also compared results to a dataset of “highly variable 
sites” generated using a threshold of two standard devia
tions (SD > 2) of percent methylation (hereafter referred 
to as the “HVar dataset”). The HVar dataset represents 
CpGs that have relatively higher variation in percent methy
lation across all samples and may be more likely to reveal 
differential responses to environmental or spatial variables 
(e.g. similar to a minor allele frequency in SNP-based outlier 
analyses; Rahman and Lozier 2023). Although this removed 
most low-variability CpGs, due to the low overall methyla
tion proportion across the genome, even after the SD filter 
we noted some methylated sites were still only observed in 
1 or 2 samples with low percent methylation values. We 
thus enforced a secondary requirement for the HVar data
set that all CpGs had to be methylated in ≥4 individuals. 
This eliminated low-frequency methylated sites or those 
that might be erroneously identified as variable based on 
a single low methylation site in a single individual which 
could arise from an error in enzymatic conversion or se
quencing, with this threshold selected to strike a balance 
between removal of too many CpG sites and retention of 
sites consistently methylated in multiple samples. At the 
end of these processing steps, we had 6 data sets for 
each species: SNP-filtered/All-CpGs, unfiltered/All-CpGs, 
SNP-filtered/Meth30, unfiltered/Meth30, SNP-filtered/ 
HVar, and unfiltered/HVar.

To evaluate how CpGs were distributed across the gen
ome, general feature format (.gff) files were generated 
from the gene transfer format (.gtf) files on NCBI RefSeq 
(Heraghty et al. 2020) for each genomic feature of interest 
(exon, intron, start codon, stop codon, 3′ untranslated re
gion [UTR], and 5′ UTR). We used AGAT v.0.7.0 to retain 
features for only the longest transcript (Dainat 2023). The 
intersect command from BEDTools v.2.30.0 (Quinlan and 
Hall 2010) was used to produce feature-specific annotation 
for individual CpGs in each dataset. CpG sites that did not 
intersect any genomic features were classified as intergenic. 
Chi-square tests were performed using the chisq.test func
tion in R to compare the distributions all CpGs between dif
ferent feature categories.

Spatially and Environmentally Associated Differential 
Methylation

Differential Methylation

In previous genome-wide SNP studies in B. vancouverensis 
and B. vosnesenskii, we identified significant effects of spa
tial and environmental variation in both species (Jackson 
et al. 2020; Heraghty et al. 2023, 2022). To assess 
the role of geography and environmental variation in shap
ing methylation patterns, we first tested for differential 
methylation associated with several spatial and 
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environmental variables using the MethylSig v.1.6.0 R pack
age (Park et al. 2014). The raw BedGraph output files gen
erated by MethylDackel were read into a BS-seq object and 
filtered to retain only CpG sites found in the HVar dataset 
described above. Predictor variables were then selected to 
represent spatial and bioclimatic variation across the 
sampled range for both species. We used latitude to re
present spatial variation, which represents the major geo
graphic axis of sampling in this study and is a major 
spatial predictor of SNP variation (Jackson et al. 2018). 
For environmental variables, we used the same variables se
lected in prior studies of SNP variation (Heraghty et al. 
2022, 2023), in which bioclimatic environmental variables 
(BioClim variables) were selected from the WorldClim2 da
taset (0.5 arc-minute resolution) (Fick and Hijmans 2017) 
using a variable reduction strategy to minimize correlations. 
For B. vancouverensis, these included BIO1, Mean Diurnal 
Range (BIO2), BIO3, and BIO12. For B. vosnesenskii, BIO1, 
BIO3, and BIO12 were selected. For both species, elevation 
was also included in the analysis. Although elevation is of
ten correlated with other bioclimatic variables, it can cap
ture some unique environmental variation of interest 
(such as reduced air pressure and lower oxygen levels 
(Dillon 2006)) and prior research in bumble bees indicates 
elevation may produce unique genomic signatures not ob
served in other variables (Sun et al. 2020; Liu et al. 2020b; 
Heraghty et al. 2022).

We ran differential methylation tests specifying each 
spatial and environmental variable as a numerical covariate 
using the diff_dss_fit and diff_dss_test functions in 
MethylSig. The resultant P-values were transformed into 
q-values to account for multiple testing using the qvalue 
v2.26.0 R package (Storey et al. 2022). A given CpG site 
was considered to be significantly differentially methylated 
at a false discovery rate corrected threshold of q ≤ 0.05. 
Individual CpGs with statistically significant differential 
methylation were intersected with the previously gener
ated genomic feature files to identify genes harboring dif
ferentially methylated sites. To identify general trends in 
function of differentially methylated genes, we conducted 
a GO enrichment analysis via the go_enrich function in the 
GOfuncR v.1.16.0 R package. Species-specific GO terms 
were obtained from the Hymenoptera genome database 
(Walsh et al. 2021), with differentially methylated genes 
being considered as candidate genes and all other genes 
specified as the background set. GO terms with P-value  
< 0.01 were retained and subsequently summarized with 
REVIGO web server (Supek et al. 2011) using the “medium 
(0.7)” stringency filter. Differentially methylated genes 
were also compared against a list of genes (n = 45 for 
B. vancouverensis and n = 51 for B. vosnesenskii) previous
ly identified as being associated with environmental vari
ables based on whole genome SNP data (Heraghty et al. 
2022, 2023).

Methylome-wide Associations with Space, Environment, 
and Genetic Variation

As a second approach to detect general differentiation in 
methylation with spatial separation or environment (as op
posed to differential methylation at individual CpG sites), 
we conducted methylome-wide analyses of isolation by dis
tance and environment. We generated methylation dis
tances among samples for each species by first imputing 
missing data in both the Meth30 and HVar datasets to fa
cilitate downstream analyses that required datasets with 
no missing data. Imputation was conducted using the 
imputePCA function of the R package missMDA v.1.19 
(Josse and Husson 2016), which uses an iterative PCA algo
rithm and has been shown to perform well on methylation 
datasets (Lena et al. 2020). We then used the imputed data 
to generate a pairwise matrix of Gower’s dissimilarity 
among individuals using the daisy function in the R package 
cluster v.2.1.4 (Maechler et al. 2022). Gower’s dissimilarity 
is a flexible metric for assessing sample differences, with 0 
being identical and 1 being completely different (Gower 
1987; Lin et al. 2015; Koch et al. 2016). Pairwise geograph
ic distances were calculated between each individual and 
each sampling site using the distm function in the geo
sphere v.1.5-18 R package (Hijmans 2022). Mantel tests 
were used to test for significant correlations between geo
graphic distance and methylation dissimilarity using the 
mantel function with 1,000 permutations from the vegan 
v.2.6-4 R package (Oksanen et al. 2022).

Given previously noted connections between an 
individual’s genetic background and CpG methylation 
(Marshall et al. 2019; Chapelle and Silvestre 2022), we 
also identified SNPs from the methyl-seq data to directly 
compare genetic and methylation differences among indi
viduals. SNPs were called from the trimmed sequencing 
reads using BISCUIT v.1.2.0 (Zhou 2024), following 
the author’s suggested workflow (https://huishenlab. 
github.io/biscuit/). First, trimmed reads were aligned to 
the reference genome via the BISCUIT align command, 
SAMBLASTER v.0.1.26 was used to sort and mark duplica
tions, and then the SAMtools view command was used to 
create final alignment files in BAM. Second, SNPs were 
called using the pileup command in BISCUIT and filtered 
using BCFtools v.1.17 (Li et al. 2009) to retain biallelic sites 
with less than 25% missing data and a base quality score Q  
> 30. The gl.dist.ind function from the dartR v.2.7.2 R 
package (Gruber et al. 2018) was used to generate genetic 
distances between individuals. As a method of quality con
trol we also performed a PCA on a subset of SNPs with no 
missing data (2,969 SNPs for B. vancouverensis and 3,200 
SNPs for B. vosnesenskii) using the gl.pcoa command in the 
dartR package. We used Mantel tests to test the signifi
cance of the association between the individual-level 
genomic distance and Gower’s dissimilarity matrices as 
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described above. We also conducted a Mantel test using 
the individual genomic distance and geographic distance 
matrices to confirm prior results regarding genetic isolation 
by distance for each species (Heraghty et al. 2022, 2023).

Finally, we conducted partial redundancy analysis (pRDA) 
to identify patterns of methylome-wide variation that could 
be explained by environmental variables, geographic vari
ables, and population structure. This approach is useful in 
obtaining both the total amount of variation accounted for 
by all explanatory variables as well as each for different sub
sets of environmental (BioClim variables and elevation, re
ferred to as env) or geographic (latitude and longitude, 
referred to as geo) variables (Capblancq and Forester 
2021). To account for population structure, we included 
the first principal component (PC) axis from the PCA analysis 
of the BISCUIT SNP data (referred to as pop). The model run 
using all explanatory variables is referred to as the full model 
(F ∼ env + geo + pop) and accounts for the total amount of 
variation that can be explained by all variables. We then 
ran three partial models to account for the individual effects 
of environment (F ∼ env | [geo + pop]), geography (F ∼ geo | 
[env + pop]), and population structure (F ∼ pop | [env + geo]) 
respectively while factoring in the effect of the other condi
tioned variables (e.g. the geography models asses the 
amount of variation only explained by geographic variables).
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