Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1986 Dec 15;240(3):871–878. doi: 10.1042/bj2400871

Chromatographic resolution of chicken phosvitin. Multiple macromolecular species in a classic vitellogenin-derived phosphoprotein.

R A Wallace, J P Morgan
PMCID: PMC1147500  PMID: 3827875

Abstract

Chicken phosvitin was prepared from egg yolk by a variety of published methods, including a modification of our own original procedure. Yolk granules and all phosvitin preparations have been previously found to contain major phosphoproteins at Mr 40,000 and 33,000 and minor satellite components when electrophoresed on polyacrylamide gradient gels and stained with Stains-all. However, only our current preparation contained three additional phosphoproteins (Mr 18,000, 15,000 and 13,000) that are also present in yolk granules. Our current phosvitin preparation also appeared to have additional components when compared with other preparations by size-exclusion and anion-exchange chromatography. Particularly complex but entirely reproducible patterns were obtained by hydrophobic-interaction chromatography. However, a cross-referencing of fractions eluted by size-exclusion chromatography to the other procedures employed, including gel electrophoresis, reinforced the notion that unfractionated chicken phosvitin contains at least five major components, designated B, C, E1, E2 and F for the Mr 40,000, 33,000, 15,000, 18,000, and 13,000 phosphoproteins, respectively. Stoichiometric considerations lead us to suggest that vitellogenin I gives rise to phosvitins C and F, vitellogenin II gives rise to phosvitin B, and vitellogenin III gives rise to either phosvitin E1 or E2, but not both. Thus, a fourth, as yet undetected, vitellogenin may exist for the chicken.

Full text

PDF
874

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALLGEN L. G., NORBERG B. A dielectric study of two acid polyelectrolytes, phosvitin and a polymetaphosphate. Biochim Biophys Acta. 1959 Apr;32:514–518. doi: 10.1016/0006-3002(59)90628-6. [DOI] [PubMed] [Google Scholar]
  2. BURLEY R. W., COOK W. H. Isolation and composition of avian egg yolk granules and their constituent alpha- and beta-lipovitellins. Can J Biochem Physiol. 1961 Aug;39:1295–1307. doi: 10.1139/o61-136. [DOI] [PubMed] [Google Scholar]
  3. Byrne B. M., van het Schip A. D., van de Klundert J. A., Arnberg A. C., Gruber M., Ab G. Amino acid sequence of phosvitin derived from the nucleotide sequence of part of the chicken vitellogenin gene. Biochemistry. 1984 Sep 11;23(19):4275–4279. doi: 10.1021/bi00314a003. [DOI] [PubMed] [Google Scholar]
  4. CONNELLY C., TABORSKY G. Chromatographic fractionation of phosvitin. J Biol Chem. 1961 May;236:1364–1368. [PubMed] [Google Scholar]
  5. Clark R. C. The isolation and compsotion of two phosphoproteins from hen's egg. Biochem J. 1970 Jul;118(3):537–542. doi: 10.1042/bj1180537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gottlieb T. A., Wallace R. A. Intracellular phosphorylation of vitellogenin in the liver of estrogen-stimulated Xenopus laevis. J Biol Chem. 1981 Apr 25;256(8):4116–4123. [PubMed] [Google Scholar]
  7. Grizzuti K., Perlmann G. E. Conformation of the phosphoprotein, phosvitin. J Biol Chem. 1970 May 25;245(10):2573–2578. [PubMed] [Google Scholar]
  8. JOUBERT F. J., COOK W. H. Preparation and characterization of phosvitin from hen egg yolk. Can J Biochem Physiol. 1958 Apr;36(4):399–408. [PubMed] [Google Scholar]
  9. Jirgensons B. Optical rotatory dispersion of nonhelical proteins. J Biol Chem. 1966 Jan 10;241(1):147–152. [PubMed] [Google Scholar]
  10. Lambin P. Reliability of molecular weight determination of proteins by polyacrylamide gradient gel electrophoresis in the presence of sodium dodecyl sulfate. Anal Biochem. 1978 Mar;85(1):114–125. doi: 10.1016/0003-2697(78)90281-6. [DOI] [PubMed] [Google Scholar]
  11. MacKenzie S. L., Martin W. G. The macromolecular composition of hen's egg yolk at successive stages of maturation. Can J Biochem. 1967 Apr;45(4):591–601. doi: 10.1139/o67-068. [DOI] [PubMed] [Google Scholar]
  12. Mok C. C., Grant C. T., Taborsky G. Countercurrent distribution of phosvitin. Biochemistry. 1966 Aug;5(8):2517–2523. doi: 10.1021/bi00872a005. [DOI] [PubMed] [Google Scholar]
  13. Ohlendorf D. H., Barbarash G. R., Trout A., Kent C., Banaszak L. J. Lipid and polypeptide components of the crystalline yolk system from Xenopus laevis. J Biol Chem. 1977 Nov 25;252(22):7992–8001. [PubMed] [Google Scholar]
  14. Perlmann G. E., Grizzuti K. Conformational transition of the phosphoprotein phosvitin. Random conformation beta structure. Biochemistry. 1971 Jan 19;10(2):258–264. doi: 10.1021/bi00778a010. [DOI] [PubMed] [Google Scholar]
  15. Renugopalakrishnan V., Horowitz P. M., Glimcher M. J. Structural studies of phosvitin in solution and in the solid state. J Biol Chem. 1985 Sep 25;260(21):11406–11413. [PubMed] [Google Scholar]
  16. SUNDARARAJAN T. A., KUMAR K. S., SARMA P. S. A simplified procedure for the preparation of phosvitin and vitellin. Biochim Biophys Acta. 1960 Feb 26;38:360–362. doi: 10.1016/0006-3002(60)91260-9. [DOI] [PubMed] [Google Scholar]
  17. Shainkin R., Perlmann G. E. Phosvitin, a phosphoglycoprotein. I. Isolation and characterization of a glycopeptide from phosvitin. J Biol Chem. 1971 Apr 10;246(7):2278–2284. [PubMed] [Google Scholar]
  18. Taborsky G. Effect of freezing and thawing on the conformation of phosvitin. J Biol Chem. 1970 Mar 10;245(5):1054–1062. [PubMed] [Google Scholar]
  19. Taborsky G., Mok C. C. Phosvitin. Homogeneity and molecular weight. J Biol Chem. 1967 Apr 10;242(7):1495–1501. [PubMed] [Google Scholar]
  20. Taborsky G. Optical rotatory dispersion and circular dichroism of phosvitin at low pH. Reversible transition between unordered conformation and beta structure. J Biol Chem. 1968 Nov 25;243(22):6014–6020. [PubMed] [Google Scholar]
  21. Timasheff S. N., Townend R. The circular dichroism of phosvitin. J Biol Chem. 1967 May 10;242(9):2290–2292. [PubMed] [Google Scholar]
  22. Wallace R. A., Morgan J. P. Isolation of phosvitin: retention of small molecular weight species and staining characteristics on electrophoretic gels. Anal Biochem. 1986 Sep;157(2):256–261. doi: 10.1016/0003-2697(86)90623-8. [DOI] [PubMed] [Google Scholar]
  23. Wallace R. A. Resolution and isolation of avian and amphibian yolk-granule proteins using TEAE-cellulose. Anal Biochem. 1965 May;11(2):297–311. doi: 10.1016/0003-2697(65)90018-7. [DOI] [PubMed] [Google Scholar]
  24. Wallace R. A. Vitellogenesis and oocyte growth in nonmammalian vertebrates. Dev Biol (N Y 1985) 1985;1:127–177. doi: 10.1007/978-1-4615-6814-8_3. [DOI] [PubMed] [Google Scholar]
  25. Wang S. Y., Williams D. L. Biosynthesis of the vitellogenins. Identification and characterization of nonphosphorylated precursors to avian vitellogenin I and vitellogenin II. J Biol Chem. 1982 Apr 10;257(7):3837–3846. [PubMed] [Google Scholar]
  26. Wang S. Y., Williams D. L. Identificiation, purification, and characterization of two distinct avian vitellogenins. Biochemistry. 1980 Apr 15;19(8):1557–1563. doi: 10.1021/bi00549a004. [DOI] [PubMed] [Google Scholar]
  27. Wiley H. S., Wallace R. A. The structure of vitellogenin. Multiple vitellogenins in Xenopus laevis give rise to multiple forms of the yolk proteins. J Biol Chem. 1981 Aug 25;256(16):8626–8634. [PubMed] [Google Scholar]
  28. Yusko S., Roth T. F., Smith T. Receptor-mediated vitellogenin binding to chicken oocytes. Biochem J. 1981 Oct 15;200(1):43–50. doi: 10.1042/bj2000043. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES