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Abstract: In recent years, various drug delivery systems circumventing the blood–brain barrier have
emerged for treating brain tumors. This study aimed to improve the efficacy of brain tumor treat‑
ment in boron neutron capture therapy (BNCT) using cerebrospinal fluid (CSF) circulation to de‑
liver boronophenylalanine (BPA) to targeted tumors. Previous experiments have demonstrated that
boron accumulation in the brain cells of normal rats remains comparable to that after intravenous (IV)
administration, despite BPA being administered via CSF at significantly lower doses (approximately
1/90 of IV doses). Based on these findings, BNCT was conducted on glioma model rats at the Kyoto
University Research Reactor Institute (KUR), with BPA administered via CSF. This method involved
implanting C6 cells into the brains of 8‑week‑old Wistar rats, followed by administering BPA and
neutron irradiation after a 10‑day period. In this study, the rats were divided into four groups: one
receiving CSF administration, another receiving IV administration, and two control groups with‑
out BPA administration, with one subjected to neutron irradiation and the other not. In the CSF
administration group, BPA was infused from the cisterna magna at 8 mg/kg/h for 2 h, while in the
IV administration group, BPA was intravenously administered at 350 mg/kg via the tail vein over
1.5 h. Thermal neutron irradiation (5 MW) for 20 min, with an average fluence of 3.8 × 1012/cm2,
was conducted at KUR’s heavy water neutron irradiation facility. Subsequently, all of the rats were
monitored under identical conditions for 7 days, with pre‑ and post‑irradiation tumor size assessed
through MRI and pathological examination. The results indicate a remarkable therapeutic efficacy
in both BPA‑administered groups (CSF and IV). Notably, the rats treated with CSF administration
exhibited diminished BPA accumulation in normal tissue compared to those treated with IV admin‑
istration, alongsidemaintaining excellent overall health. Thus, CSF‑based BPA administration holds
promise as a novel drug delivery mechanism in BNCT.

Keywords: boron neutron capture therapy (BNCT); cerebrospinal fluid (CSF); boron delivery; brain
tumor; glioma model rat; blood–brain barrier (BBB)

1. Introduction
Glioblastoma (GBM) is the most commonmalignant intracranial tumor, with a low

survival rate [1,2]. Despite treatment combining surgery and adjuvant radiochemother‑
apy, patients’ outcomes remain poor, with a 5‑year overall survival rate of 5.4% [3].
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Few therapies are effective for GBM due to distinct factors, including tumor invasive‑
ness, an immunosuppressive microenvironment, adaptive resistance to therapy, and
intratumoral heterogeneity [4,5].

Boron neutron capture therapy (BNCT) has recently garnered attention as a radiother‑
apy modality with few side effects [6–8]. The treatment involves the administration of a
boron drug to a patient, as BNCT is a radiation therapy with neutrons [9]. An important
feature of BNCT is that accumulated non‑radioactive boron (10B) in cells induces a neu‑
tron nuclear reaction within subcellular compartments (10 µm), leading to cell death. This
characteristic, known as “cell‑selective particle therapy”, cannot be achieved with other
radiotherapy methods. The ability of BNCT to minimize damage to normal brain cells
while potentially treating infiltrating brain tumors with invisible borders is particularly
noteworthy [10,11]; however, delivering sufficient 10B to brain tumor cells, which greatly
influences therapeutic efficacy, remains challenging.

To ensure the treatment efficacy of BNCT, it is crucial that adequate 10B is concen‑
trated in tumors in order to capture neutrons, trigger 10B (n,α)7Li reactions, and effectively
kill cancer cells. This is especially important when targeting tumors such as glioma, which
are protected by the blood–brain barrier (BBB) [12]. The BBB is integral in maintaining
brain function, as it selectively restricts the passage of substances, which often hinders drug
delivery to brain cells [13–15]. Moreover, reports suggest that the BBB may not be suffi‑
ciently compromised inGBMpatients for adequate penetration of treatment agents [16–18].
Effective delivery strategies are therefore highly sought after to apply BNCT to brain tu‑
mor patients [19]. Recent advances have led to the development of several systems for drug
delivery that bypass the BBB for brain tumor therapy [20–22]. Our laboratory has devel‑
oped a unique method for delivering a boron‑containing drug to brain cells. This method
utilizes cerebrospinal fluid (CSF) circulation, as its application is aimed for use in BNCT.
It has been named the “boron CSF administration method” (Figure 1). Our understand‑
ing of CSF circulation has evolved since the discovery of meningeal lymphatic vessels in
2015 [23]. It is recognized that the glymphatic system, which is a major pathway for CSF
clearance, facilitates bulk flow via the spinal and cranial nerves, enabling the transport of
therapeutic molecules to deep brain regions via the CSF microcirculation mechanism [24].

In our previous studies, important results have been obtained from various experi‑
ments based on theCSF administrationmethodusing boronophenylalanine (BPA), awidely
used boron drug in BNCT. In the initial study, using rats without transplanted tumors,
we found that the boron CSF administration method achieved brain cell boron accumu‑
lation equivalent to the intravenous (IV) administration method despite employing a sig‑
nificantly lower BPA dose (approximately 1/90 of the IV method dose) [25]. Continuous
BPA infusion into the CSF for at least 60 min was necessary to saturate the boron concen‑
tration in the CSF, and in BPA‑saturated CSF, boron uptake into brain cells was shown to
increase slightly with increasing BPA dosage, but with little correlation observed. Addi‑
tionally, melanoma model rats administered BPA via the CSF method exhibited a high
T/N ratio (the ratio of boron concentration in tumor cells to normal cells) [26]. In our
latest experiment, BPA accumulation in the brain parenchyma was visually confirmed
in mass spectrometry imaging analysis after over 60 min of CSF administration, and it
was also observed that cessation of BPA administration resulted in swift excretion of BPA
from the brain parenchyma [27]. These results suggested that BPA uptake into the brain
parenchyma may be influenced by the CSF compartment’s positive pressure during and
after drug administration.

Asmentioned above, CSF administration of BPA resulted in the efficient accumulation
of tumors even with low doses, as well as swift excretion from normal brain tissue. Based
on these findings, we hypothesized that the CSF administration method could achieve
equivalent or superior therapeutic effects compared to IV administration, even with a low
BPA dose. To demonstrate this hypothesis, in the present experiment, we designed a CSF‑
based administration protocol of BNCT for rat glioma models, and a thermal neutron irra‑
diation experiment was conducted at the Kyoto University Research Reactor (KUR).
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Figure 1. Photograph of boron CSF administration method in a rat (right) and schematic illustra‑
tion (left).

2. Materials and Methods
The protocol of the experiments in Section 2.1–Section 2.3 was approved by the An‑

imal Care and Use Committee for Osaka University (approval number 2023‑2‑1) and the
Institute for Integrated Radiation and Nuclear Science, Kyoto University (approval num‑
ber 2023‑16).

2.1. C6 Glioma Model Orthotopic Rats
In this study, eight‑week‑old male Wistar rats, each weighing approximately 180 to

200 g, were utilized, sourced from Japan SLC, Inc., Shizuoka, Japan. The C6 tumor cells
were obtained from Tohoku University and implanted into the rats’ brains using the fol‑
lowing procedure: A total of 4.0 × 105 cells/5 µL was prepared and injected at a rate of 1
µL per minute over a period of 5 min. The injection site was located 4 mm to the right of
the bregma, 0 mm caudal, and 4 mm ventral.

2.2. BNCT Effect on the CSF Administration Method of 10BPA
10BPA was generously provided by Itsuro Kato [28] and prepared as a fructose com‑

plex to enhance its water solubility (20 mg/mL BPA). The C6 rat glioma models were sup‑
plied for this experiment 10 days after implantation. The thermal neutron irradiation ex‑
periment was conducted at KUR (Institute for Integrated Radiation and Nuclear Science,
Kyoto University, Osaka, Japan).

Sixteen rat tumor models were randomly divided into four groups with four rats per
group: an untreated control group (non‑irradiation), a neutron‑irradiated control group
(irradiation only), and one group subjected to thermal neutron irradiation after the end of
BPA infusion via the IV route and another via the CSF route.

In the IV administration group, four rats received 350 mg/kg of BPA via the tail vein
over 1.5 h. In the CSF administration group, BPA was administered to four rats via the in‑
tracisternamagna at a rate of 8.0mg/kg/h for 2 h. All ratswere anesthetized via an intraperi‑
toneal injection of a mixture of anesthetics, including medetomidine (Nippon Zenyaku
Kogyo Co., Ltd., Fukushima, Japan) (0.15 mg/kg), midazolam (SANDOZ, Tokyo, Japan)
(2.0 mg/kg), and butorphanol (Meiji Animal Health Co., Ltd., Tokyo, Japan) (2.5 mg/kg).
These experimental conditions are summarized in Table 1.

During radiation treatment at KUR, all rat bodies, except for their heads, were at‑
tached to a plate lined with 6LiF ceramic tiles to shield against and reduce neutron irra‑
diation before the thermal neutron irradiation was performed. The C6 glioma rats were
irradiated with a 5 MW reactor at a heavy water irradiation facility for 20 min (average of
3.8 × 1012 neutrons/cm2). Following thermal neutron irradiation, all rats remained under
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the same experimental conditions as the control groups for seven days. The entire heads
of the rats, including their brains, were fixed in 10% paraformaldehyde for post‑treatment
MRI evaluation and histological evaluation of the glioma and their brains.

Table 1. Schematic of the experiment and the title of each group as used in Figures 2 and 3 (results).

Day 0 * Day 7 Day 10 Day 17

C6 Cell
Transplantation

MRI
(Pre‑BNCT)

BNCT MRI
(Post‑BNCT)

HE
StainingBPA Irradiation

Cold control group ** # A ‑ ‑ A′ A″

Hot control group *** 〇 B ‑ 20 min B′ B″

IV group 〇 C 350 mg/kg 20 min C′ C″

CSF group 〇 D 16 mg/kg 20 min D′ D″
* C6 cell transplantation day as day 0. ** The untreated control group (non‑irradiation) is defined as the cold
control group. *** Neutron‑irradiated control group (irradiation only) is defined as the hot control group.

2.3. Pre‑ and Post‑Treatment MRI Assessment
An ultrahigh‑field 7‑Tesla (7‑T) MRI system was used to obtain the MRI scans. This

system has a 1H volume transmit–receive coil (PharmaScan® 7T; Bruker, Ettlingen, Ger‑
many). For the in vivo axial T2‑weighted images (T2WIs), the turbo RARE (rapid acquisi‑
tion with the relaxation enhancement) sequence was employed. The parameters set were
as follows: (repetition time)/(echo time) ratio: (TR)/(TE) = 3200/33 ms; 20 slices; a RARE
factor of 8; a field of view of 32.0 × 32.0 mm2; 4 averages; a matrix size of 256 × 256; a
slice thickness of 1.0 mm; and a total scan time of 6 min and 50 s. The ex vivo axial T2WIs
were obtained using the turbo rapid acquisitionwith the relaxation enhancement sequence.
The following Turbo RARE sequence parameters were used: (repetition time) (echo time):
(TR)/(TE) = 3200/33 ms; 20 slices; a RARE factor of 8; a field of view of 32.0 × 32.0 mm2;
8 averages; a matrix size of 256 × 256; a slice thickness of 1.0 mm; and a total scan time of
13 min 39 s [29].

Pre‑treatment MRI scans of the C6 rat glioma models were performed 3 days before
the irradiation experiment (BNCT). The three‑day gap between the MRI scan and BNCT
was due to the time required for the MRI scan at Osaka University and the transportation
of the rats to KUR. If a given neutron irradiation facility has diagnostic imaging equipment,
it would be preferable to conduct the scans immediately before BNCT. Post‑treatmentMRI
scans were conducted 7 days after irradiation. The MR images were analyzed using Im‑
ageJ software (version 1.54i, https://imagej.net/, accessed on 24 September 2024). Regions
of interest (ROIs) were manually delineated within the tumor region of the brain section.
Tumor volume was calculated by summing the areas for each slice of the MR image (slice
thickness = 1.0 mm), and the average volume value determined by two observers was cal‑
culated for each sample.

2.4. Hematoxylin and Eosin Staining of C6 Rat Glioma Brain Sections
After approximately one month of decalcification of the entire heads of the rats, stan‑

dardparaffin‑embedded tissue sectionswereprepared andplacedon slides thatwere stained
with hematoxylin and eosin (HE) using standard histological procedures (Biopathology In‑
stitute Co., Ltd., Oita, Japan). All HE‑stained slides were observed using a fluorescent
microscope (BZ‑X810; KEYENCE CORPORATION, Osaka, Japan).

2.5. Boron Concentrations in Various Normal Tissues of Rat Heads Administered BPA via Both
the CSF and IV Methods

As a reference for BNCT in Section 2.2, we measured the boron concentration in nor‑
mal tissues of rat heads without tumor implantation. First, BPA was administered follow‑
ing the same protocol as the above experiments. In this experiment, BPAwas administered

https://imagej.net/
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via the cisterna magna in 5 rats and via the tail vein in 5 rats. After administration, the buc‑
cal mucosa, tongue, eyeball, and brain were promptly collected from each individual. The
collected sampleswere stored at−80 ◦Cuntil the boron concentrationwasmeasured using
inductively coupled plasma–atomic emission spectrometry (ICP–AES).

2.6. Statistics
The estimated parameter values, including tumor volume, are presented as

means ± SDs. Differences between groups in the estimated parameters were evaluated
using a one‑way ANOVA followed by Dunnett’s test, with the analysis conducted in
Prism 10 (Version 10.2.3; GraphPad Software, San Diego, CA, USA).

3. Results
In this study, we investigatedwhether administering BPAviaCSF in BNCT is effective

at therapeutic levels even with lower dosages. Using MRI and pathological examination,
we compared tumor volumes and therapeutic efficacies before and after BNCT in both
IV‑ and CSF‑based methods. Figure 2 illustrates the tumor volume ratio before and after
BNCT for each group. As shown in Figure 2, significant therapeutic effects are observed
in both the IV and CSF administration groups compared to the control groups.
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Figure 2. The figure illustrates the ratio of tumor volumes before and after BNCT for each group.
Compared to the control groups (A′/A and B′/B), both the CSF (D′/D) and IV (C′/C) groups exhibit
a suppressed increase in tumor size (**: p < 0.01, *: p < 0.1).

The MR images for each group are depicted in Figure 3. Compared to the control
groups, inhibition of tumor growth is observed in the groups administered BPA (via both
IV and CSF).

However, all rats in the IVmethodgroup experienced significantweight loss (Figure 5)
and exhibited considerable debilitation oneweek after BNCT. Conversely, the CSFmethod
group showed a relatively closer resemblance to the control group, with weight recov‑
ery observed.
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Figure 3. The T2WIs show representative examples of rat heads before and after BNCT in each
group. It can be observed that increases in tumor size are suppressed in the IV (C,C′,C″) and CSF
(D1–D4,D1

′–D4
′,D1″–D4″) groups compared to the control groups (cold (A,A′,A″) and hot (B,B′,B″)).
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In the present study, some rats exhibit not only inhibited tumor growth but also a sig‑
nificant reduction in tumor volume as early as one week after BNCT with the IV BPA ad‑
ministration, highlighting the notable effectiveness of this therapy in rat models. Figure 4
demonstrates the remarkable histologically normal tissue levels post‑treatment. When
comparing the two administration methods, based on pathological examination, the IV
method with a BPA dose of 350 mg/kg demonstrates better performance over the CSF
method with a dose of 8 mg/kg/h (total 16 mg/kg), albeit only slightly.
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Figure 4. The figures represent an example of the IV group. (a) T2WIs after BNCT. (b–d) Show
thin sections of rat brain tissue stained with HE depicting the brain’s condition after BNCT with the
IV administration of BPA. (b) Shows 6× magnification under a microscope. Some hemorrhaging
(−→) is observed in the striatal area, but there is minimal evidence of inflammatory cell infiltration.
(c) Shows 400×magnification under a microscope (the area enclosed by the rectangle in Figure (b)).
The image indicates that the fiber bundles in the cerebral cortex near the hemorrhagic lesion (�) are
at normal levels. (d) Shows 400× magnification under a microscope. Unlike the other samples, no
signs of demyelination are observed in this specimen.

Figure 6 shows the concentration of boron accumulation in normal tissues of rat heads
following the infusion of BPA via the tail vein and cisterna magna under conditions iden‑
tical to those of the BNCT in this study. Particularly noteworthy is the significant boron
accumulation observed in oral tissues with the IV administration of BPA, whereas CSF
administration results in comparatively lower boron accumulation in normal tissues.
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Figure 6. This figure shows the boron concentrations in various normal tissues of rat heads when
BPAwas administered via both the CSF and IVmethods, following the same administration protocol
as in the irradiation experiment.

4. Discussion
In this study, we demonstrated that harnessing CSF circulation for BPA is likely to

be an efficient method for administering boron drugs in BNCT. Tumor growth was sup‑
pressedmore effectively in the CSF group than in the control groups andwas similar to the
IV group. Moreover, the IV group required a significantly higher dose of BPA, leading to
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worse general conditions in rats due to side effects on normal cells. In contrast, there were
minimal impacts on normal cells in the CSF group, indicating that CSF administration of
BPA is a biologically friendlier method with a superior performance to IV administration.

4.1. Why Does BPA Accumulate in Brain Tumors Despite Small Doses of CSF
After substances are exchanged with brain interstitial fluid, they become associated

with the efferent paravascular glial lymphatic (glymphatic) system (perivascular space on
the venous side) that carries the CSF, as well as the recently described meningeal lym‑
phatic system [30]. It has recently been discovered that solutes may flow into the brain
parenchyma, with astrocyte expression of aquaporin 4 (AQP4) playing an important role
in regulating perivascular CSF inflow and outflow (via the glymphatic pathway) [31–33].
This flow (bulk flow) generated by AQP4, as shown in Figure 7, is essential for removing
substances no longer needed by brain cells into the CSF [34]. Based on these findings, we
hypothesized that by administering BPA via CSF, BPA can be delivered directly from the
CSF to the brain interstitial fluid and then to brain tumors, even though the dose is low.
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However, it remains unclear within the scope of this study whether this pathway is
dependent on the pressure in the CSF compartment, the drug concentration in the CSF
or brain tissue, or other factors. Assuming that drug administration from the CSF is in‑
fluenced by cerebral pressure or drug concentration, predicting the relationship between
the dose and amount accumulated in the brain is not only complicated, but the adminis‑
tration of drugs that have side effects at very small doses may also be dangerous. There
are several limitations to the types of drugs that can be administered via CSF, including
concerns about intracranial pressure and neurotoxicity. On the other hand, in BNCT, BPA
commonly used via the IV route has been proven to have minimal side effects, even when
administered in doses as high as 30 g/60 kg of adult human body weight. In other words,
BPA can be considered a drug with a wide safety margin, which suggests that it may be
a promising candidate for administration via CSF in BNCT. Furthermore, due to concerns
about toxicity and cost, many chemical compounds that have been studied with the as‑
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sumption of IV administration, yet have not advanced in drug development, may have
potential for use via the CSF route because the required dosage is smaller. In future re‑
search, it is necessary to consider whether the irradiation protocol currently used in clin‑
ical practice, which involves the continuous infusion of boron drugs, can also be applied
to CSF‑based administration. Additionally, emphasis on the field of neuroscience will be
crucial to elucidate the specific factors involved in enabling BPA administered via CSF to
deliver large amounts of boron to tumors.

4.2. Boron Concentration in Normal Tissues and the T/N Ratio in BNCT
In our study, we observed significant tumor regression in several rats who received

IV administration of BPA; however, we noted a notable decrease in body weight one week
after irradiation in this group (Figure 5), indicating an overall decline in health. Figure 6 il‑
lustrates the concentration of boron accumulation in normal tissues of rat heads following
the infusion of BPA via the tail vein and cisternamagna under conditions identical to those
of our study. As shown in the figure, there was a substantial accumulation of boron in the
oral mucosa and tongue, particularly in the IV infusion group. Based on previous exper‑
iments, it was suggested that the rats subjected to BNCT after BPA IV administration in
our study may have experienced difficulty in food intake post‑treatment due to potential
adverse effects. Specifically, it is challenging to restrict neutron irradiation to the tumor
alone in small animals, resulting in the irradiation of the entire head with neutrons. Con‑
sequently, radiation exposure to the radiation‑sensitive oral mucosa leads to a decrease
in quality of life (QOL). While limiting neutrons in human BNCT may partially mitigate
oral mucosal exposure, the significant accumulation of boron in normal tissues needs to
be considered [35].

Conversely, the accumulation of boron in normal tissues of the head was minimal in
the case of CSF infusion, as depicted in Figure 6. Post‑treatment, we observed an increase
in body weight similar to that of the control group. The present CSF‑based results showed
that the reduction rate of brain tumors (relative tumor volume) was similar to that of IV
administration. What deserves attention here is that the phenomenon could result in an
increase in the T/N ratio. In order to achieve therapeutic efficacy in BNCT, not only the
boron amount in tumor cells but also the T/N ratio is crucial. In this study, despite the very
low dose of BPA administered via CSF, results comparable to those of the IV method were
achieved while maintaining the overall good condition of the rats. This suggests that CSF
administration can offer a significant advantage in achieving a high T/N ratio for BNCT,
as it results not only in a relatively high amount of boron delivered to the brain tumor but
also in minimal boron accumulation in normal tissues.

4.3. BPA Pharmacokinetics and Pharmacodynamics in Brain Tissue
In our previous study, we investigated the pharmacokinetics of BPA in brain tissue

by administering BPA via IV or CSF for 1 h in normal rats. After BPA infusion into the
CSF was stopped, it was shown that the boron concentration in both the CSF compartment
and normal brain cells decreased rapidly (Figure 8) [26]. This phenomenon can be easily
explained by the fact that the primary function of the CSF is to facilitate drainage from the
brain. On the other hand, BPA remained in the brain tissue for an extended period after
IV administration. These results strongly support the findings regarding rats’ bodyweight
changes in normal tissues discussed in Section 4.2. Additionally, we previously confirmed
that BPAadministered at 4mg/kg/h viaCSF in brain tumormodel rats (melanoma) resulted
in a similar level of boron accumulated in tumors to IV administration at 350 mg/kg/h [26].
This result is consistent with the pharmacodynamic analysis in the current experiment.
From these findings, it can be concluded that BPA administration via CSF can achieve
therapeutic effects comparable to those of IV administration with a lower dose and that
rapid excretion of BPA from the CSF may result in a significantly higher T/N ratio for
CSF administration.
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5. Conclusions
In this study, we investigated whether administering a small amount of BPA into

the CSF could achieve therapeutic effects equivalent to those achieved via IV administra‑
tion. CSF administration not only demonstrated this effect, but the overall condition of
the rats was also good. It also has the advantage of being used in smaller amounts. Due
to toxicity concerns, chemical compounds studied for IV administration that have not pro‑
gressed in drug development might be viable for CSF administration because they require
a smaller dosage. Furthermore, CSF administration can significantly improve the T/N ra‑
tio for BNCT by delivering the required boron to brain tumors and reducing accumulation
in normal tissues. However, there are several limitations to CSF administration, andmany
factors affecting this route remain poorly understood. The knowledge of CSF circulation
is increasing year by year, and, in the future, this administration method may be crucial
in the application of BNCT to brain tumors. Simultaneously, further research on CSF cir‑
culation is necessary. In future studies, BNCT via the CSF will be conducted using drugs
containing higher concentrations of boron than BPA, and it will be necessary to further
investigate which factors, including brain pressure and boron concentration in the CSF,
increase delivery to brain tumors.
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