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Abstract: Background/Objectives: Algorithms for quantifying liver fat content based on the ultra-
sound attenuation coefficient (AC) are currently available; however, little is known about whether
their accuracy increases by applying quality criteria such as the interquartile range-to-median ratio
(IQR/M) or whether the median or average AC value should be used. Methods: AC measure-
ments were performed with the Aplio i800 ultrasound system using the attenuation imaging (ATI)
algorithm (Canon Medical Systems, Otawara, Tochigi, Japan). Magnetic resonance imaging proton
density fat fraction (MRI-PDFF) was the reference standard. The diagnostic performance of the AC
median value of 5 measurements (AC-M) was compared to that of AC average value (AC-A) of
5 or 3 acquisitions and different levels of IQR/M for median values or standard deviation/average
(SD/A) for average values were also analyzed. Concordance between AC-5M, AC-5A, and AC3A
was evaluated with concordance correlation coefficient (CCC). Results: A total of 182 individuals
(94 females; mean age, 51.2y [SD: 15]) were evaluated. A total of 77 (42.3%) individuals had S0
steatosis (MRI-PDFF < 6%), 75 (41.2%) S1 (MRI-PDFF 6–17%), 10 (5.5%) S2 (MRI-PDFF 17.1–22%),
and 20 (11%) S3 (MRI-PDFF ≥ 22.1%). Concordance of AC-5A and AC-3A with AC-5M was excellent
(CCC: 0.99 and 0.96, respectively). The correlation with MRI-PDFF was almost perfect. Diagnostic
accuracy of AC-5M, AC-5A, and AC3A was not significantly affected by different levels of IQR/M or
SD/A. Conclusions: The accuracy of AC in quantifying liver fat content was not affected by reducing
the number of acquisitions (from five to three), by using the mean instead of the median, or by
reducing the IQR/M or SD/A to ≤5%.

Keywords: attenuation coefficient; ultrasound; MASLD; fat quantification; PDFF; liver steatosis;
accuracy studies; chronic liver disease

1. Introduction

It has been reported that metabolic dysfunction-associated steatotic liver disease
(MASLD) currently has a prevalence of 37.8% and is the leading cause of chronic liver
disease worldwide [1]. The disease may be asymptomatic until it reaches the advanced
stage with decompensation. It has been estimated that some 20% of individuals with
MASLD will develop metabolic dysfunction-associated steatohepatitis (MASH) [2]. On
the other hand, liver steatosis is a dynamic process that is reversible with appropriate
intervention, such as diet and lifestyle changes [3]. Moreover, a pharmacological treatment
for MASH patients has recently been approved [4].

Diagnostics 2024, 14, 2171. https://doi.org/10.3390/diagnostics14192171 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics14192171
https://doi.org/10.3390/diagnostics14192171
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0002-6344-697X
https://orcid.org/0000-0002-5075-5626
https://orcid.org/0000-0001-8021-0072
https://doi.org/10.3390/diagnostics14192171
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics14192171?type=check_update&version=1


Diagnostics 2024, 14, 2171 2 of 17

Due to the significant number of individuals with MASLD, the availability of non-
invasive tools for an early diagnosis of the disease is critical. Algorithms based on ultra-
sound (US) attenuation coefficient (AC) estimation have recently been implemented in
several US systems, and promising results for liver fat content quantification have been
reported in the literature [5].

AC estimation is often performed together with liver stiffness measurements. For the
latter, guidelines have recommended a standardized protocol to obtain reliable measure-
ments [6]. Among the several points suggested by this protocol, the interquartile range-to-
median ratio (IQR/M), which assesses the variability between consecutive acquisitions, is
the most important quality criterion. In fact, studies have shown that when this criterion
is not met, the accuracy of liver stiffness is significantly reduced [7–9]. For liver stiffness
measurements, guidelines recommend using the median value of five acquisitions [6].

Currently, data on the use of some quality criteria for AC estimation, such as number
of acquisitions, use of the median or mean value, use of IQR/M, or a similar criterion,
such as the standard deviation/average (S/A), i.e., the coefficient of variation, remain
scarce [10,11]. In particular, it is unclear whether the accuracy of AC in quantifying liver fat
content is affected by different settings of these quality criteria.

The World Federation for Ultrasound in Medicine and Biology (WFUMB) recently
published a guidance for liver fat quantification using US-based algorithms, which includes
a standardized protocol for AC measurement [5]. The protocol suggests using the median
or average value of three to five acquisitions with an IQR/M ≤ 15%. However, these
instructions were mostly based on experts’ experience rather than research data.

The objectives of this study were to evaluate whether there was any difference in the
accuracy of AC measurements when (a) the average value was used instead of the median;
(b) the number of acquisitions was reduced from five to three; or (c) different levels of
IQR/M or S/A were used.

2. Materials and Methods

For the purposes of this cross-sectional study, the data of individuals previously
enrolled in prospective studies comparing the diagnostic performance of attenuation
coefficient imaging with that of controlled attenuation parameter using magnetic resonance
imaging proton density fat fraction (MRI-PDFF) as the reference standard [12,13] were
pooled as a single observation for statistical analysis.

Baseline characteristics and routine biochemistry were collected for this cohort.
AC measurements were performed with the Aplio i800 US system using the atten-

uation imaging (ATI) algorithm (Canon Medical Systems, Otawara, Tochigi, Japan). ATI
quantifies the AC using a real-time color-coded map (Figure 1).

The length of the measurement box was set at 3 cm with the upper edge at 2 cm from
the liver capsule. The acquisitions were obtained in the right lobe of the liver, through
intercostal spaces and with the patient lying in the supine position. Five consecutive AC
acquisitions were performed by two expert operators (GF and LM).

MRI-PDFF was performed with a 1.5 Tesla system (Magnetom Aera, Siemens Healthi-
neers, Erlangen, Germany) using an 18-channel surface coil in combination with a 32-channel
coil. For each exam, a non-contrast, complex-based gradient-echo 3D sequence, that provides
whole-liver coverage, was obtained and a single breath-hold sequence with six echoes was
performed [12]. The detection of liver steatosis (S > 0), significant steatosis (S > 1), and severe
steatosis (S > 2) were defined by MRI-PDFF ≥ 6%, ≥17.1%, and ≥22.1%, respectively [14].

All patients gave written informed consent. The study protocol conformed to the
ethical guidelines of the current Declaration of Helsinki and received approval from the
Ethics Committee (23 August 2017, P-20170022247).

To assess whether the use of quality measures improves the diagnostic accuracy, the
diagnostic performance of AC was evaluated for median of 5 measurements (AC-5M) and for
cases with (a) average of 5 measurements (AC-5A), (b) average of the first 3 measurements
(AC-3A), (c) IQR/5M ≤ 5%, (d) IQR/5M ≤ 10%, (e) IQR/5M ≤ 15%, (f) IQR/5M > 15%,
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(g) SD/5A ≤ 5%, (h) SD/5A ≤ 10%, (i) SD/5A ≤ 15%, (j) SD/5A > 15%, (k) SD/3A ≤ 5%,
(l) SD/3A ≤ 10%, (m) SD/3A ≤ 15%, (n) SD/3A > 15%. AC-5M was considered as the
reference to compare the results with. As a quality criterion for the average of five or three
measurements, SD/A ratio was used because the interquartile range is a parameter not
related to the average.
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Figure 1. Attenuation coefficient implemented on the Aplio i-series ultrasound system (Canon Medi-
cal Systems, Japan). The attenuation coefficient values are color-coded, allowing the visualization
of areas of artifacts and to avoid including them in the measurement box. The reliability of the
measurement is displayed as an Rˆ2 value, which is a coefficient of determination, and the best
quality of the measurement is obtained with an Rˆ2 ≥ 0.90.

Statistical Analysis

Descriptive statistics were produced for demographic characteristics for this study
sample of patients. The Shapiro–Wilk test was used to test the normal distribution of
quantitative variables. When quantitative variables were normally distributed, the results
were expressed as the mean value and SD, otherwise median and IQR were reported.

Qualitative variables were summarized as counts and percentages. The Student’s t-test
compared means of normally distributed continuous variables, while the Mann–Whitney
U-test was used where continuous variables were non-normally distributed. Qualitative
variables were analyzed with the Chi-square test or Fisher’s exact test where appropriate.

Lin’s concordance correlation coefficient (CCC) was used to assess the degree of
agreement between median and average values of AC obtained from five measurements
as well as between the median of five and the average of three measurements. CCC
can be expressed as the product of Pearson’s r (the measure of precision) and the bias-
correction factor (Cb, the measure of accuracy) [15]. CCC ranges in values from 0 to +1.
Agreement was classified as poor (0.00–0.20), fair (0.21–0.40), moderate (0.41–0.60), good
(0.61–0.80), or excellent (0.81–1.00). The agreement between AC measurements was further
assessed by the Bland–Altman analysis with 95% limits of agreement (LoA). Differences
within mean ± 1.96 SD (LoA) indicated high agreement, allowing methods to be used
interchangeably if differences were not clinically significant [16].

Univariate Pearson’s r coefficient was used to test correlations between AC and MRI-
PDFF. The correlations were categorized as follows: 0.00 to 0.25, none or slight; 0.25 to
0.50, fair to moderate; 0.50 to 0.75, moderate to good; 0.75 to 1.00, almost perfect [17].
Comparison of correlation coefficients was performed with Fisher’s r to z Statistic [18].

The diagnostic performance of AC for staging liver steatosis compared to PDFF (refer-
ence standard) was assessed using receiver operating characteristic (ROC) curves and the
area under the ROC (AUROC) curve analysis. The optimal threshold was determined using
the Youden index to maximize sensitivity and specificity [19]. Comparisons of the AUROCs
were performed using the method described by DeLong et al. for correlated data [20].

Data analysis was performed using Jamovi 2.3.28 (Sydney, Australia), SPSS (version
25, IBM, New York, NY, USA), MedCalc (Software for Windows, Version 14.8.1, Ostend,
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Belgium), and R version 4.2.2 (Core Team 2022) statistical packages. R is a free software
environment for statistical computing and graphics.

3. Results

Overall, 182 individuals (94 females and 88 males; mean age, 51.2 years [SD: 15]) were
included. The baseline characteristics of this cohort are presented in Table 1.

Table 1. Baseline characteristics of the study cohort.

Variables Overall (n = 182) MR-PDFF < 6% (n = 77) MR-PDFF ≥ 6% (n = 105) p

Age, y 51.16 ± 15 47.2 ± 15.7 54.1 ± 13 0.002
Female, n (%) 94 (51.6) 51 (66.2) 43 (41) 0.001
BMI, kg/m2 29.8 ± 4.9 28.3 ± 4 30.9 ± 5.3 <0.001
Waist circumference 102.9 ± 12.4 97.2 ± 11.9 107.1 ± 11 <0.001
Diabetes, n (%) 30 (16.7) 6 (8) 24 (22.9) 0.009
AST, IU/L 21 (13) 18 (7) 24 (16) <0.001
ALT, IU/L 25 (20) 24 (16) 32 (29) <0.001
Glycemia, mg/dL 97 ± 18.6 89.6 (10.4) 103.2 (21.5) <0.001
Triglycerides, mg/dL 103 (69) 87.5 (39) 123 (97) <0.001
Cholesterol, mg/dL 192.6 ± 46.3 195.7 ± 46.9 190.1 ± 45.9 0.48
Platelet, 109/L 244 ± 65.4 251 ± 66.6 239.2 ± 65.1 0.27
GGT, IU/L 27 (27) 16 (14) 36 (33) <0.001
MRI-PDFF, % 7.2 (9.9) 3.7 (2.3) 13 (9.8) <0.001
AC-5M, dB/cm/MHz 0.68 ± 0.13 0.57 ± 0.06 0.76 ± 0.10 <0.001
AC-5A, dB/cm/MHz 0.68 ± 0.13 0.57 ± 0.06 0.76 ± 0.10 <0.001
AC-3A, dB/cm/MHz 0.68 ± 0.13 0.57 ± 0.06 0.76 ± 0.11 <0.001

Numbers in parentheses represent interquartile range unless otherwise specified. Abbreviations: AC-5M, attenua-
tion coefficient (median of five measurements); AC-5A, attenuation coefficient (average of five measurements);
AC-3A, attenuation coefficient (average of three measurements); AST, aspartate transaminase; ALT, alanine
transaminase; BMI, body mass index; GGT, gamma-glutamyl transferase; MRI-PDFF, magnetic resonance imaging
proton density fat fraction; p, probability of α type I error.

A total of 77 (42.3%) patients had S0 steatosis (MRI-PDFF < 6%), 75 (41.2%) had S1
steatosis (MRI-PDFF 6–17%), 10 (5.5%) had S2 steatosis (MRI-PDFF 17.1–22%), and 20 (11%)
had S3 steatosis (MRI-PDFF ≥ 22.1%).

All measurements were obtained with Rˆ2 ≥ 0.90, i.e., meeting the ATI algorithm’s
criterion for good quality measurements.

IQR/5M, SD/5A, and SD/3A were ≤30% for all AC measurements.
IQR/5M was >15% for 14 (7.7%) AC measurements, ≤15% for 168 (92.3%), ≤10% for

135 (74.2%), ≤5% for 44 (24.2%) AC measurements. SD/5A was >15% for none of the
AC measurements, ≤15% for 182 (100%), ≤10% for 178 (97.8%), ≤5% for 162 (89%) AC
measurements. SD/3A was >15% for 4 (2.2%) AC measurements, ≤15% for 178 (97.8%),
≤10% for 173 (95.1%), ≤5% for 116 (63.7%) AC measurements.

The concordance between AC-5M and AC-5A, and the concordance between AC-5M
and AC-3A were both excellent (CCC 0.991, 95%CI 0.989–0.994, Pearson’s r = 0.99, Cb 0.99
and CCC 0.96, 95%CI 0.95–0.97, Pearson’s r = 0.96, Cb 0.99, respectively) (Figure 2), but the
concordance between AC-5M and AC-5A was significantly better (z statistic 0.68, p < 0.001).
The mean of differences between AC-5M and AC-5A was −0.001 (LoA: −0.034 to 0.031)
while the mean of differences between AC-5M and AC-3A was −0.002 (LoA: −0.071 to 0.066)
(Figure 3).

The univariate analysis showed an almost perfect correlation of AC-5M and AC-5A
with MRI-PDFF (r = 0.85, p < 0.001 and 0.85, p < 0.001, respectively), with not a statistically
significant difference between the two AC values (p = 0.97). The correlation between AC-3A
and MRI-PDFF was still almost perfect (r = 0.78, p < 0.001) but slightly significantly lower
compared to that of AC-5M (p = 0.05) (Figure 4).
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Figure 3. Bland–Altmann plot of the differences between AC-5M and AC-5A (A), and AC-5M and
AC-3A (B) values. The dots represent the difference between paired AC-M and AC-A measurements
on the horizontal axis against the average of the paired AC-M and AC-A measurements on the
vertical axis. The continuous black line represents the mean of differences; the dotted red line
represents the zero line which indicates that for every point on this line the two methods give identical
results; the dashed black lines define the 95% limits of agreement with their 95% confidence interval
represented by the blue lines. AC-5M, attenuation coefficient (median of five measurements); AC-5A,
attenuation coefficient (average of five measurements); AC-3A, attenuation coefficients (average of
three measurements); dB/cm/MHz, decibel/centimeter/megahertz; SD, standard deviation.

The correlation of AC-5M, AC-5A, and AC-3A with MRI-PDFF did not significantly
change when different levels of IQR/M or SD/A were used (Table 2).

Table 2. Correlation coefficients of AC-5M, AC-5A, and AC-3A with MRI-PDFF after the application
of different quality criteria.

Observations r Coefficient p * z Statistic p **

AC-5M: 182 0.85 <0.001
IQR/5M ≤ 5%: 44 0.87 <0.001 −0.33 0.74
IQR5/M ≤ 10%: 135 0.85 <0.001 0.13 0.90
IQR/5M ≤ 15%: 168 0.85 <0.001 0.17 0.87
IQR/5M > 15%: 14 0.91 <0.001 0.87 0.38
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Table 2. Cont.

Observations r Coefficient p * z Statistic p **

AC-5A: 182 0.86 <0.001 0.35 0.72
SD/5A ≤ 5%: 162 0.86 <0.001 0.34 0.73
SD/5A ≤ 10%: 178 0.86 <0.001 0.35 0.73
SD/5A ≤ 15%: 182 0.86 <0.001 0.35 0.73
AC-3A: 182 0.78 <0.001 −2.00 0.05
SD/3A ≤ 5%: 116 0.82 <0.001 −0.83 0.41
SD/3A ≤ 10%: 173 0.82 <0.001 −0.93 0.35
SD/3A ≤ 15%: 178 0.78 <0.001 −1.98 0.05
SD/3A > 15%: 4 0.96 <0.001 0.69 0.49

* Comparison with correlation coefficient of AC-5M. AC-5M, attenuation coefficient (median of five measurements);
AC-5A, attenuation coefficient (average of five measurements); AC-3A, attenuation coefficient (average of three
measurements); IQR, interquartile range; MRI-PDFF, magnetic resonance imaging proton density fat fraction;
p *, probability of α type I error for correlation coefficient; p **, probability of α type I error for correlation
coefficients comparison; r coefficient, Pearson’s correlation coefficient; SD, standard deviation; z statistic, Fisher’s
to z statistic for correlation coefficient comparison.
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* Comparison with correlation coefficient of AC-5M. AC-5M, attenuation coefficient (median of five 
measurements); AC-5A, attenuation coefficient (average of five measurements); AC-3A, attenuation 
coefficient (average of three measurements); IQR, interquartile range; MRI-PDFF, magnetic reso-
nance imaging proton density fat fraction; p *, probability of α type I error for correlation coefficient; 
p **, probability of α type I error for correlation coefficients comparison; r coefficient, Pearson’s 

Figure 4. Scatter plot of AC-5M (A), AC-5A (B), and AC-3A (C) with MRI-PDFF, with r and linear
equation. Dots represent values of attenuation coefficient and MRI-PDFF values and the position
of each dot on the horizontal and vertical axis indicates values for an individual data point. The
continuous red line constitutes the best fit line with the continuous grey lines representing the
95% confidence interval. AC-5M, attenuation coefficient (median of five measurements); AC-5A,
attenuation coefficient (average of five measurements); AC-3A, attenuation coefficients (average of
three measurements); dB/cm/MHz, decibel/centimeter/megahertz; MRI-PDFF, magnetic resonance
imaging proton density fatty fraction; r, correlation coefficient.

The AUROCs of AC-5M, AC-5A, and AC-3A were 0.95 (0.92–0.98; p < 0.001), 0.95
(0.92–0.98; p < 0.001), and 0.94 (0.91–0.97; p < 0.001), respectively, for detecting S > 0 steatosis
(Figure 5), and 0.91 (0.87–0.96; p < 0.001), 0.91 (0.87–0.96; p < 0.001), and 0.89 (0.81–0.96;
p < 0.001), respectively, for detecting S > 1 steatosis (Figure 6).
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Figure 5. Comparison of receiver operating characteristic curves for AC-5M and AC-5A (A), and for
AC-5M and AC-3A (B) for S0 vs. S1–S3, as defined by MRI-PDFF ≥ 6%. AC-5M, attenuation coefficient
(median of five measurements); AC-5A, attenuation coefficient (average of five measurements);
AC-3A, attenuation coefficient (average of three measurements); AUROC, area under the receiver
operating characteristic (curve); CI, confidence interval; MRI-PDFF, magnetic resonance imaging
proton density fatty fraction; p, probability of α type I error.
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Figure 6. Comparison of receiver operating characteristic curves for AC-5M and AC-5A (A), and for
AC-5M and AC-3A (B) for S0–S1 vs. S2–S3, as defined by MRI-PDFF ≥ 17.1%. AC-5M, attenuation
coefficient,(median of five measurements); AC-5A, attenuation coefficient (average of five measure-
ments); AC-3A, attenuation coefficient (average of three measurements); AUROC, area under the
receiver operating characteristic (curve); CI, confidence interval; MRI-PDFF, magnetic resonance
imaging proton density fatty fraction; p, probability of α type I error.

There was not a statistically significant difference between the AUROC of AC-5M and
those of AC-5A and AC-3A for detecting S > 0 (z statistic 0.54, p = 0.59 and z statistic 0.62,
p = 0.54) and S > 1 (z statistic 0.09, p = 0.93 and z statistic 1.1, p = 0.27) steatosis.

For AC-5M, 22 (12.1%) individuals were misclassified for S > 0, and 42 (23.1%) indi-
viduals for S > 1.

The diagnostic performance with misclassified cases of different quality measures for
detecting S > 0 and S > 1 is shown in Tables 3 and 4, respectively.
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Table 3. Performance with misclassified cases of AC-5M, AC-5A, and AC-3A for detecting S > 0 liver
steatosis as defined by MRI-PDFF ≥ 6%.

Parameter Algorithm (Observations n) S0 vs. S1–S3

AUROC (95% CI)

AC-5M (overall) †

IQR/5M ≤ 5% (44)
IQR/5M ≤ 10% (135)
IQR/5M ≤ 15% (168)
IQR/5M > 15% (14)

AC-5A (overall) †

SD/5A ≤ 5% (162)
SD/5A ≤ 10% (178)
SD/5A ≤ 15% (182)
SD/5A > 15% (0)

AC-3A (overall) †

SD/3A ≤ 5% (116)
SD/3A ≤ 10% (173)
SD/3A ≤ 15% (178)
SD/3A > 15% (4)

0.95 (0.92–0.98)
0.97 (0.93–1.00) p = 0.33 *
0.93 (0.89–0.97) p = 0.51 *
0.94 (0.91–0.97) p = 0.89 *
0.96 (0.85–1.00) p = 0.87 *
0.95 (0.92–0.98) p = 0.93 *
0.95 (0.92–0.98) p = 1.00 *
0.95 (0.92–0.98) p = 1.00 *
0.95 (0.92–0.98) p = 0.93 *

----
0.94 (0.91–0.97) p = 0.66 *
0.92 (0.88–0.97) p = 0.29 *
0.95 (0.92–0.98) p = 1.00 *
0.94 (0.90–0.97) p = 0.67 *

1.00 (1.00–1.00) p < 0.001 *

Sensitivity % (95% CI)

AC-5M (overall) †

IQR/5M ≤ 5%
IQR/5M ≤ 10%
IQR/5M ≤ 15%
IQR/5M > 15% ˆ

AC-5A (overall) †

SD/5A ≤ 5%
SD/5A ≤ 10%
SD/5A ≤ 15%
SD/5A > 15%

AC-3A (overall) †

SD/3A ≤ 5%
SD/3A ≤ 10%
SD/3A ≤ 15%
SD/3A > 15% §

88.6 (80.9–94.0)
84.9 (68.1–94.9)
88.6 (80.1–94.4)
89.1 (81.4–94.4)
75.0 (19.4–99.4)
91.4 (84.4–96.0)
91.4 (83.8–96.2)
91.2 (83.9–95.9)
91.4 (84.4–96.0)

----
83.8 (75.4–90.3)
84.6 (74.7–91.8)
84.8 (76.2–91.3)
83.5 (74.9–90.1)
100 (15.8–100)

Specificity % (95% CI)

AC-5M (overall) †

IQR/5M ≤ 5%
IQR/5M ≤ 10%
IQR/5M ≤ 15%
IQR/5M > 15% ˆ

AC-5A (overall) †

SD/5A ≤ 5%
SD/5A ≤ 10%
SD/5A ≤ 15%
SD/5A > 15%

AC-3A (overall) †

SD/3A ≤ 5%
SD/3A ≤ 10%
SD/3A ≤ 15%
SD/3A > 15% §

87.0 (77.4–93.6)
90.9 (58.7–99.8)
80.9 (66.7–90.9)
86.6 (76.0–93.7)
90.0 (55.5–99.8)
84.4 (74.4–91.7)
84.1 (73.3–91.8)
84.2 (74.0–91.6)
84.4 (74.4–91.7)

----
92.2 (83.8–97.1)
84.2 (68.8–94.0)
91.9 (83.2–97.0)
92.0 (83.4–97.0)
100 (15.8–100)
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Table 3. Cont.

Parameter Algorithm (Observations n) S0 vs. S1–S3

PPV % (95% CI)

AC-5M (overall) †

IQR/5M ≤ 5%
IQR/5M ≤ 10%
IQR/5M ≤ 15%
IQR/5M > 15% ˆ

AC-5A (overall) †

SD/5A ≤ 5%
SD/5A ≤ 10%
SD/5A ≤ 15%
SD/5A > 15%

AC-3A (overall) †

SD/3A ≤ 5%
SD/3A ≤ 10%
SD/3A ≤ 15%
SD/3A > 15% §

90.2 (82.9–95.3)
96.6 (88.2–99.9)
89.7 (81.3–95.2)
90.9 (83.4–95.8)
75.0 (30.1–95.4)
88.9 (81.4–94.1)
88.5 (80.4–94.1)
88.6 (80.9–94.0)
88.9 (81.4–94.1)

----
93.6 (87.1–97)

91.7 (84.0–95.8)
93.3 (86.6–96.8)
93.5 (86.9–96.9)
100 (15.8–100)

NPV % (95% CI)

AC-5M (overall) †

IQR/5M ≤ 5%
IQR/5M ≤ 10%
IQR/5M ≤ 15%
IQR/5M > 15% ˆ

AC-5A (overall) †

SD/5A ≤ 5%
SD/5A ≤ 10%
SD/5A ≤ 15%
SD/5A > 15%

AC-3A (overall) †

SD/3A ≤ 5%
SD/3A ≤ 10%
SD/3A ≤ 15%
SD/3A > 15% §

84.8 (75.0–91.9)
66.7 (38.4–88.2)
79.2 (65.0–89.5)
84.1 (73.3–91.8)

90 (62–98)
87.8 (78.2–94.3)
87.9 (77.5–94.6)
87.7 (77.9–94.2)
87.8 (78.2–94.3)

----
80.7 (72.9–86.6)
72.7 (60.9–82)

81.9 (73.9–87.9)
80.2 (72.3–86.3)
100 (15.8–100)

LR+ (95% CI)

AC-5M (overall) †

IQR/5M ≤ 5%
IQR/5M ≤ 10%
IQR/5M ≤ 15%
IQR/5M > 15% ˆ

AC-5A (overall) †

SD/5A ≤ 5%
SD/5A ≤ 10%
SD/5A ≤ 15%
SD/5A > 15%

AC-3A (overall) †

SD/3A ≤ 5%
SD/3A ≤ 10%
SD/3A ≤ 15%
SD/3A > 15% §

6.82 (3.81–12.21)
9.33 (1.43–60.82)
4.63 (2.56–8.37)

6.63 (3.60–12.23)
7.5 (1.07–52.38)
5.87 (3.48–9.90)
5.73 (3.32–9.89)
5.77 (3.42–9.74)
5.87 (3.48–9.90)

----
10.76 (4.97–23.3)
5.36 (2.56–11.24)

10.46 (4.84–22.64)
10.44 (4.82–22.59)

----
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Table 3. Cont.

Parameter Algorithm (Observations n) S0 vs. S1–S3

LR− (95% CI)

AC-5M (overall) †

IQR/5M ≤ 5%
IQR/5M ≤ 10%
IQR/5M ≤ 15%
IQR/5M > 15% ˆ

AC-5A (overall) †

SD/5A ≤ 5%
SD/5A ≤ 10%
SD/5A ≤ 15%
SD/5A > 15%

AC-3A (overall) †

SD/3A ≤ 5%
SD/3A ≤ 10%
SD/3A ≤ 15%
SD/3A > 15% §

0.13 (0.08–0.23)
0.17 (0.07–0.38)
0.14 (0.08–0.26)
0.13 (0.07–0.22)
0.28 (0.05–1.54)
0.10 (0.05–0.19)
0.10 (0.05–0.20)
0.10 (0.06–0.20)
0.10 (0.05–0.19)

----
0.18 (0.11–0.27)
0.18 (0.11–0.31)
0.16 (0.10–0.26)
0.18 (0.12–0.28)

0

Total misclassified cases, n (%)

AC-5M (overall) †

IQR/5M ≤ 5%
IQR/5M ≤ 10%
IQR/5M ≤ 15%
IQR/5M > 15% ˆ

AC-5A (overall) †

SD/5A ≤ 5%
SD/5A ≤ 10%
SD/5A ≤ 15%
SD/5A > 15%

AC-3A (overall) †

SD/3A ≤ 5%
SD/3A ≤ 10%
SD/3A ≤ 15%
SD/3A > 15% §

22 (12 FN + 10 FP) (12.1)
6 (5 FN + 1 FP) (13.6)

19 (10 FN + 9 FP) (14.1)
20 (11 FN + 9 FP) (11.9)

2 (1 FN + 1 FP) (14.3)
21 (9 FN + 12 FP) (11.5)
19 (8 FN + 11 FP) (11.7)
21 (9 FN + 12 FP) (11.8)
21 (9 FN + 12 FP) (11.5)

----
23 (17 FN + 6 FP) (12.6)
18 (12 FN + 6 FP) (15.5)
21 (15 FN + 6 FP) (12.1)
23 (17 FN + 6 FP) (12.9)

0

*, AUROC comparison with AC-5M AUROC; †, IQR/M and SD/A were ≤30% for all AC measurements; ˆ, only 14
individuals had IQR/M > 15%; §, only 4 individuals had SD/3A > 15%. AC-5M, attenuation coefficient (median of
five measurements); AC-5A, attenuation coefficient (average of five measurements); AC-3A, attenuation coefficient
(average of three measurements); dB/cm/MHz, decibel/centimeter/megahertz; CI, confidence interval; FN, false
negative; FP, false positive; IQR/M, interquartile range to median ratio; SD/A, standard deviation to average
ratio; LR+, positive likelihood ratio; LR, negative likelihood ratio; MRI-PDFF, magnetic resonance imaging proton
density fat fraction; NPV, negative predictive value; p, probability of α type I error; PPV, positive predictive value;
S, steatosis grade; SD, standard deviation.

The diagnostic accuracy of AC-5M, AC-5A, and AC-3A for S > 0 was similar and did
not improve by applying any of the IQR/M or SD/A values. For S > 1, the overall number
of misclassified cases was lower for AC-3A independently form the application of any
SD/A value.
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Table 4. Performance with misclassified cases of AC-5M, AC-5A, and AC-3A for detecting S > 1 liver
steatosis as defined by MRI-PDFF ≥ 17.1%.

Parameter Algorithm (Observations n) S0–S1 vs. S2–S3

AUROC

AC-5M (overall) †

IQR/5M ≤ 5% (44)
IQR/5M ≤ 10% (135)
IQR/5M ≤ 15% (168)
IQR/5M > 15% (14)

AC-5A (overall) †

SD/5A ≤ 5% (162)
SD/5A ≤ 10% (178)
SD/5A ≤ 15% (182)
SD/5A > 15% (0)

AC-3A (overall) †

SD/3A ≤ 5% (116)
SD/3A ≤ 10% (173)
SD/3A ≤ 15% (178)
SD/3A > 15% (4)

0.91 (0.87–0.96)
0.89 (0.79–0.98) p = 0.65 *
0.90 (0.85–0.95) p = 0.72 *
0.91 (0.86–0.96) p = 0.86 *
0.96 (0.85–1.00) p = 0.42 *

0.91 (0.87–0.96) p = 1 *
0.92 (0.87–0.96) p = 0.93 *
0.92 (0.87–0.96) p = 0.90 *

0.91 (0.87–0.96) p = 1 *
----

0.89 (0.81–0.96) p = 0.65 *
0.90 (0.85–0.96) p = 0.79 *
0.92 (0.87–0.96) p = 0.76 *
0.88 (0.81–0.96) p = 0.57 *
1.00 (1.00–1.00) p ≤ 0.01 *

Sensitivity %

AC-5M (overall) †

IQR/5M ≤ 5%
IQR/5M ≤ 10%
IQR/5M ≤ 15%
IQR/5M > 15% ˆ

AC-5A (overall) †

SD/5A ≤ 5%
SD/5A ≤ 10%
SD/5A ≤ 15%
SD/5A > 15%

AC-3A (overall) †

SD/3A ≤ 5%
SD/3A ≤ 10%
SD/3A ≤ 15%
SD/3A > 15% §

93.3 (77.9–99.2)
100 (76.8–100)
92.9 (76.5–99.1)
93.1 (77.2–99.2)
100 (2.5–100)

96.7 (82.8–99.9)
96.2 (80.4–99.9)
96.3 (81.0–99.9)
96.7 (82.8–99.9)

----
80.0 (61.4–92.3)
82.6 (61.2–95.1)
80.8 (60.7–93.5)
78.6 (59.1–91.7)
100 (15.8–100)

Specificity %

AC-5M (overall) †

IQR/5M ≤ 5%
IQR/5M ≤ 10%
IQR/5M ≤ 15%
IQR/5M > 15% ˆ

AC-5A (overall) †

SD/5A ≤ 5%
SD/5A ≤ 10%
SD/5A ≤ 15%
SD/5A > 15%

AC-3A (overall) †

SD/3A ≤ 5%
SD/3A ≤ 10%
SD/3A ≤ 15%
SD/3A > 15% §

73.7 (65.9–80.5)
66.7 (47.2–82.7)
69.2 (59.5–77.7)
71.9 (63.7–79.2)
92.3 (64.0–99.8)
71.7 (63.8–78.7)
71.3 (63.0–78.8)
71.5 (63.6–78.6)
71.7 (63.8–78.7)

----
86.2 (79.7–91.2)
85.0 (76.0–91.5)
85.7 (79.0–90.9)
86.0 (74.9–91.1)
100 (15.8–100)
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Table 4. Cont.

Parameter Algorithm (Observations n) S0–S1 vs. S2–S3

PPV %

AC-5M (overall) †

IQR/5M ≤ 5%
IQR/5M ≤ 10%
IQR/5M ≤ 15%
IQR/5M > 15% ˆ

AC-5A (overall) †

SD/5A ≤ 5%
SD/5A ≤ 10%
SD/5A ≤ 15%
SD/5A > 15%

AC-3A (overall) †

SD/3A ≤ 5%
SD/3A ≤ 10%
SD/3A ≤ 15%
SD/3A > 15% §

41.2 (29.4–53.8)
58.3 (36.6–77.9)
44.1 (31.2–57.6)
40.9 (29.0–53.7)
50.0 (13.2–86.8)
40.3 (28.9–52.5)
39.1 (27.1–52.1)
37.7 (26.3–50.2)
40.3 (28.9–52.5)

----
53.3 (37.9–68.3)
57.6 (44.7–69.5)
50 (39.2%–60.8)
51.2 (40.3–62.0)
100 (15.8–100)

NPV %

AC-5M (overall) †

IQR/5M ≤ 5%
IQR/5M ≤ 10%
IQR/5M ≤ 15%
IQR/5M > 15% ˆ

AC-5A (overall) †

SD/5A ≤ 5%
SD/5A ≤ 10%
SD/5A ≤ 15%
SD/5A > 15%

AC-3A (overall) †

SD/3A ≤ 5%
SD/3A ≤ 10%
SD/3A ≤ 15%
SD/3A > 15% §

98.3 (93.8–99.8)
100 (83.2–100)
97.4 (90.8–99.7)
98.0 (93.1–99.8)
100 (73.5–100)
99.1 (95.0–100)
99.0 (94.5–100)
99.1 (95–100)
99.1 (95–100)

----
95.6 (90.7–98.4)

95.2 (89–98)
96.2 (92–98.2)

95.6 (91.3–97.8)
100 (15.8–100)

LR+

AC-5M (overall) †

IQR/5M ≤ 5%
IQR/5M ≤ 10%
IQR/5M ≤ 15%
IQR/5M > 15% ˆ

AC-5A (overall) †

SD/5A ≤ 5%
SD/5A ≤ 10%
SD/5A ≤ 15%
SD/5A > 15%

AC-3A (overall) †

SD/3A ≤ 5%
SD/3A ≤ 10%
SD/3A ≤ 15%
SD/3A > 15% §

3.55 (2.67–4.71)
3.00 (1.81–4.98)
3.01 (2.23–4.07)
3.32 (2.50–4.41)
13 (1.98–85.46)
3.42 (2.63–4.44)
3.35 (2.54–4.42)
3.38 (2.60–4.40)
3.42 (2.63–4.44)

----
5.79 (3.75–8.95)
5.49 (3.27–9.21)
5.65 (3.65–8.76)
5.61 (3.61–8.73)

----

LR−

AC-5M (overall) †

IQR/5M ≤ 5%
IQR/5M ≤ 10%
IQR/5M ≤1 5%
IQR/5M > 15% ˆ

AC-5A (overall) †

SD/5A ≤ 5%
SD/5A ≤ 10%
SD/5A ≤ 15%
SD/5A > 15%

AC-3A (overall) †

SD/3A ≤ 5%
SD/3A ≤ 10%
SD/3A ≤ 15%
SD/3A > 15% §

0.09 (0.02–0.35)
0

0.10 (0.03–0.40)
0.10 (0.03–0.37)

0
0.05 (0.01–0.35)
0.05 (0.01–0.37)
0.05 (0.01–0.36)
0.05 (0.01–0.32)

----
0.23 (0.11–0.48)
0.20 (0.08–0.50)
5.65 (3.65–8.76)
0.25 (0.12–0.51)

0
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Table 4. Cont.

Parameter Algorithm (Observations n) S0–S1 vs. S2–S3

Total misclassified cases, n (%)

AC-5M (overall) †

IQR/5M ≤ 5%
IQR/5M ≤ 10%
IQR/5M ≤ 15%
IQR/5M > 15% ˆ

AC-5A (overall) †

SD/5A ≤ 5%
SD/5A ≤ 10%
SD/5A ≤ 15%
SD/5A > 15%

AC-3A (overall) †

SD/3A ≤ 5%
SD/3A ≤ 1 0%
SD/3A ≤ 15%
SD/3A > 15% §

42 (2 FN + 40 FP) (23.1)
10 (0 FN + 10 FP) (22.7)
35 (2 FN + 33 FP) (25.9)
41 (2 FN + 39 FP) (24.4)
1 (0 FN + 1 FP) (14.3)

44 (1 FN + 43 FP) (24.2)
40 (1 FN + 39 FP) (24.7)
44 (1 FN + 43 FP) (24.7)
44 (1 FN + 43 FP) (24.2)

----
27 (6 FN + 21 FP) (14.8)
18 (4 FN + 14 FP) (15.5)
26 (5 FN + 21 FP) (15.0)
27 (6 FN + 21 FP) (15.2)

0

*, AUROC comparison with AC-5M AUROC; †, IQR/M and SD/A were ≤30% for all AC measurements; ˆ, only
14 individuals had IQR/M > 15%; §, only 4 individuals had SD/3A > 15%. AC-5M, attenuation coefficient (median
of five measurements); AC-5A, attenuation coefficient (average of five measurements); AC-3A, attenuation
coefficient (average of three measurements); dB/cm/MHz, decibel/centimeter/megahertz; CI, confidence interval;
FN, false negative; FP, false positive; IQR/M, interquartile range to median ratio; SD/A, standard deviation
to average ratio; LR+, positive likelihood ratio; LR, negative likelihood ratio; MRI-PDFF, magnetic resonance
imaging proton density fat fraction; p, probability of α type I error; NPV, negative predictive value; PPV, positive
predictive value; S, steatosis grade; SD, standard deviation.

4. Discussion

Several algorithms for the quantification of liver fat with ultrasound based on the AC
measurement have been developed and are currently available on the market; however,
the thresholds for detecting and grading steatosis are different between studies [21–54],
and some confounding factors that may affect the readings have been reported [5]. Among
them, there is the depth dependence of the AC measurement: a linear decrease of the AC
value with the depth has been observed, therefore a standardized protocol is crucial for
obtaining consistent results [55].

The influence of quality measures on the AC accuracy is still poorly understood.
Using the AC algorithm from another vendor (iATT, Fujifilm Healthcare, Japan),

it has been shown that the correlation with controlled attenuation parameter, assessed
with Pearson’s r, was affected by the IQR/M of the acquisitions, dropping from 0.75 for
IQR/M ≤ 15% to 0.60 for IQR/M > 15% [56].

Mirroring the quality criteria recommended for liver stiffness measurements, an
IQR/M ≤ 30% has been arbitrarily used in some studies evaluating the accuracy of AC
algorithms [12,57–60].

In our study, we found that the diagnostic accuracy of the AC algorithm was not
significantly affected by the IQR/M when this value was ≤30%. However, it should be
emphasized that only 14 cases had an AC value with an IQR/M > 15 to ≤30%, therefore
the finding is robust only for IQR/M values up to 15% and it validates the suggestion of
the WFUMB guidance for liver fat quantification [5].

To the best of our knowledge, this is the first study aimed at evaluating the effect
of different levels of IQR/M on the AC accuracy. The results of this study show that
it is not necessary to try to achieve an IQR/M lower than that recommended by the
WFUMB guidelines for fat quantification, namely ≤15%. For the average of five or three
measurements, SD/A was used as a quality criterion, and it was found that there were no
cases with SD/A > 15% with the average of five acquisitions, whereas only four cases had
SD/A > 15% with the average of three acquisitions. The results were the same as those
obtained with different levels of IQR/M.

Regarding the number of acquisitions, a study performed in 56 overweight and obese
adults using the ultrasound derived fat fraction (UDFF, Siemens Healthineers, Issaquah,
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WA, USA) algorithm, which combines the AC with the backscatter coefficient, showed
that there was not a significant difference in AUROCs based on the number of UDFF
measurements (3 vs. 5) [61]. Another study evaluating the performance of the AC-Canon
in 139 patients with MASLD found that mean AC values from 1, 2, 3, 5, and 7 valid
acquisitions were not significantly different for any grade of liver steatosis (S0 to S3), and
that there were no significant statistical differences between the AC values obtained with
different numbers of acquisitions in predicting steatosis grades [10].

In our study, we found that the percentage of misclassified cases for the detection
of steatosis (S > 0) with AC was similar when the median or average of five or three
acquisitions was used. Interestingly, we observed that misclassification improved in cases
with significant steatosis (S > 1) when the average of three acquisitions was used. The
interpretation of this result is difficult; however, some hypotheses can be formulated. The
average of five acquisitions may emphasize the higher variability in AC measurements
for cases with significant steatosis (S > 1) whose accuracy is evaluated by combining S2
and S3 grades (S0–S1 vs. S2–S3), so averaging five measures may lead to worse accuracy
than a simpler average of three measures. Another hypothesis is that some AC readings
may be affected by noise or physiologic variability in cases of higher degrees of liver
steatosis. Averaging of three readings may reduce the effect of extreme values and improve
steatosis estimation.

There are some limitations to this study. First, it was not possible to evaluate whether
the AC accuracy in diagnosing and grading liver steatosis was affected by values obtained
with a high variability in acquisitions, i.e., with an IQR/M ≥ 30%, because all measure-
ments in this study sample showed an IQR/M ≤ 30%. Studies performed with another
quantitative parameter, namely liver stiffness, have shown that the accuracy decreases
when the IQR/M is above 30%. However, the two metrics, i.e., AC values and liver stiffness
measurements, are obtained in a completely different manner, so the results obtained with
one of the two parameters cannot be directly applied to the other. Second, the generaliz-
ability of our findings may be limited to this specific AC algorithm, and the results may not
be applicable to other AC algorithms from different vendors. Third, the impact of quality
measures on the accuracy of AC in cases with severe steatosis (S > 2) was not assessed
because of the low number of individuals with S3 steatosis (n = 20). Fourth, this series
included a relatively small number of individuals with severe liver steatosis (S3), which
may have limited the strength of the findings for this group. Fifth, AC measurements were
performed by expert operators; hence, the results of this study may not be transferable to
the general population.

5. Conclusions

In our study population, the accuracy of AC in quantifying liver fat content was not
affected by reducing the number of acquisitions (from five to three), using the mean instead
of the median, or reducing the IQR/M or SD/A to ≤5%. The results of this research study
support the protocol for AC measurement suggested by the WFUMB guidance on liver fat
content [5], which was mostly based on experts’ experience at the time it was released. Our
results suggest that the risk of misclassification of cases with significant steatosis is reduced
when the mean AC value of three acquisitions is used. To confirm these findings, further
studies in real-world settings are needed.
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