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Abstract
Single-cell transcriptome sequencing (scRNA-seq) is a powerful tool for describing the transcriptome dynamics 
of plant development but has not yet been utilized to analyze the tissue ontology of sweetpotato. This study 
established a stable method for isolating single protoplast cells for scRNA-seq to reveal the cell heterogeneity of 
sweetpotato root tip meristems at the single-cell level. The study analyzed 12,172 single cells and 27,355 genes 
in the root tips of the sweetpotato variety Guangshu 87, which were distributed into 15 cell clusters. Pseudo-time 
analysis showed that there were transitional cells in the apical development trajectory of mature cell types from 
stem cell niches. Furthermore, we identified novel development regulators of sweetpotato tubers via trajectory 
analysis. The transcription factor IbGATA4 was highly expressed in the adventitious roots during the development 
of sweetpotato root tips, where it may regulate the development of sweetpotato root tips. In addition, significant 
differences were observed in the transcriptional profiles of cell types between sweetpotato, Arabidopsis thaliana, 
and maize. This study mapped the single-cell transcriptome of sweetpotato root tips, laying a foundation for 
studying the types, functions, differentiation, and development of sweetpotato root tip cells.

Highlights
	• This is the first single-cell transcriptional atlas of sweetpotato root apex tissue.
	• Single-cell analysis of stem cell niche initiation showed unique transitional states.
	• Sweetpotato, Arabidopsis, and maize root tip cell types were correlated.
	• GATA4 may be involved in regulating sweetpotato root tip development.
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Introduction
Ipomoea batatas (L.) Lam. or sweetpotato, belonging 
to the order Ipomoea of the family Convolvulaceae [1, 
2], exhibits homologous hexaploidy (2n = 6x = 90) with 
a large genome. Sweetpotato tubers are starch rich and 
rank seventh among starch sources cultivated worldwide 
[3–5]. Sweetpotato is a short-day crop rich in multiple 
nutrients and the main crop in regions with barren soil, 
as the crop has high and stable yields and drought resis-
tance. In addition to it being an nutritious food source, 
sweetpotatoes are important energy sources for feed and 
serve as industrial raw materials. Thus, sweetpotatoes are 
important crops for world food production and highly 
competitive energy sources [6–8].

Tubers are the edible part of sweetpotatoes, and they 
have high economic value. Sweetpotato yield is posi-
tively correlated with the number of plants, the number 
of tubers per plant, and the weight of a single tuber [9]. 
However, sweetpotatoes exhibit self-incompatibility, hin-
dering their sexual reproduction, which can only occur 
through cross-breeding. Since the vegetative organs, 
such as the storage root and stem, of sweetpotato have 
strong regeneration ability and can maintain the traits 
of improved varieties, seedlings or stem segments with 
several nodes are commonly used for cultivation and 
reproduction. Tubers or leaves with petioles can also be 
used for propagation. The adventitious roots from sweet-
potato stem nodes, tubers, leaves, and petioles undergo 
secondary growth to form a secondary cambium and 
begin abnormal growth activities, resulting in the forma-
tion and expansion of root tubers [10]. The changes in 
cell types and molecular regulation mechanisms during 
sweetpotato root development are very important but 
have been less explored owing to their complexity. The 
development of single-cell RNA sequencing (scRNA-seq) 
technology has enabled high-level analysis of sweetpota-
toes at the transcriptome level.

scRNA-seq is a high-throughput sequencing technol-
ogy used to analyze the individual cell level [11]. The 
technology can be used to explore the expression pro-
file of individual cells at a high-throughput and single-
cell resolution while revealing the heterogeneity of cell 
populations and avoiding the gene expression signals of 
individual cells being obscured by the averages the cell 
population. Recent advances in scRNA-seq technology 
have enabled the analysis of gene expression patterns 
in heterogeneous tissues and organs at the single-cell 
level and have been widely applied in plants. However, 
the plant cell wall inhibits the separation and acquisi-
tion of single cells, thus hindering the application of this 
technology to plant tissues, though scRNA-seq technol-
ogy has been widely applied to diverse plant tissue [12, 
13]. Additionally, scRNA-seq has been used to explain 
the specific cell types of maize root tips involved in the 

response to nitrate signal [14] and to reveal the gene 
expression changes during root tip cell differentiation 
and fate regulation in Arabidopsis thaliana [15]. This 
technology has also been used to identify the LBD family 
core transcription factor responsible for stem root initia-
tion in tomatoes [16].

In this study, 13,966 protoplasts from sweetpotato root 
tips were used for scRNA-seq analysis, and gene expres-
sion profiles of 15 clusters were obtained. Transitional 
cells were identified in the differentiation and develop-
ment trajectory through pseudo-time analysis. The dif-
ferential characteristics of root-cell-type transcriptomes 
were examined by comparing scRNA-seq data between 
sweetpotato, A. thaliana, and maize.

Results
Sweetpotato root protoplast isolation and scRNA-seq 
analysis
Adventitious root tips of sweetpotato grown at 28℃ for 5 
days were cut into small pieces and transferred into 10 ml 
of an enzymatic solution containing cellulase, macerase, 
and hemicellulase. The suspension was shaken gently 
for 3 h to isolate protoplasts. More than 100,000 proto-
plasts were obtained after centrifugation and their cell 
viability was evaluated by trypan blue staining. Micro-
scopic observation showed that the proportion of living 
cells was more than 80% (Fig.S1). Total RNA was then 
extracted from the high-quality protoplasts and used 
for scRNA-seq on the 10x Genomics platform (Fig.  1a). 
After removing incompletely divided cells and low-qual-
ity cells, we obtained 12,172 single-cell transcriptome 
information; this comprised 370,228,781 reads, 75.0% of 
which mapped to the Ipomoea trifida (NSP306) reference 
genome. Expression of 27,355 genes was detected in the 
root sample. The median number of unique molecular 
identifiers (UMIs) per cell was 7142.5, and an average of 
2775.5 genes were expressed per cell (Table S1). To assess 
the robustness of scRNA-seq and the effect of protoplast 
isolation, conventional bulked RNA-seq was performed 
on root tips without protoplast isolation, and strong cor-
relations between the scRNA-seq pseudo-bulked expres-
sion data and bulked RNA-seq expression data (R = 0.71, 
P = 0) were observed (Fig. S2 ).

Identification of major cell clusters in sweetpotato root
To identify distinct cell populations of root tips, 12,172 
cells were classified into 15 major clusters, with the 
number of cells ranging from 59 to 1479 (Fig. 1b, c and 
Table S2). To assign cell identities to the clusters, first, 
we examined the transcript specificity of homologous 
known marker genes in A. thaliana roots [17–23], and 
the results of previous studies helped us to predict the 
cell types (Fig.  1d and Table S3). Finally, in situ RNA 
hybridization was performed on some representative 
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Fig. 1  Cellular heterogeneity cluster analysis of the sweetpotato root single-cell transcriptome. (a) Brief summary of the process of isolation of sweet-
potato root protoplast cells and their analysis using the 10x Genomics platform. (b) Classification of distinct sweetpotato root cell clusters visualized by 
t-SNE. Each dot indicates individual cells that are colored based on their cell cluster. (c) The flower plot shows the number of cells in the 15 cell clusters. 
(d) Bubble plot of representative cluster-specific marker genes in different cell types. (e) RNA in situ hybridization validation of representative cell type-
specific marker genes for the cortex, root cap, and epidermis cells; scale bars = 100 μm. (f) Classification of distinct sweetpotato root cell types visualized 
by t-SNE. Each dot indicates individual cells that are colored according to their cell type
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marker genes from this study (Fig.  1e and Table S12 ). 
After annotation, 15 clusters were categorized into ten 
cluster clouds corresponding to epidermis cells, colu-
mella cells, root cap cells, cortex cells, endodermis cells, 
xylem cells, phloem cells, quiescent center cells, stem cell 
niche cells, and proximal meristem cells (Fig. 1f and Fig. 
S3).

The cortex cell population consisted of five clusters 
(clusters 0, 2, 5, 8, and 12), the representative marker 
genes EARLI1, C/VIF2, AED3, EXPA1, ACR9, COPT6, 
and AHK4 were predominantly expressed. For stem 
cell niche cells, the representative marker genes his-
tone superfamily protein (HIS2A, H2B-3) were spe-
cifically expressed in clusters 1 and 10. CBF5 and Wdr3 
were identified as marker genes of quiescent center 
cells in A. thaliana and specifically expressed in clus-
ter 6. CYP84A1, CLE13, and itf13g12880 showed higher 
expression in cluster 3, as root cap cells marker genes. 
In proximal meristem cells, two marker genes (KN, 
CYCB1-4) were specifically expressed in cluster 9, and 
their homologs have been previously identified as specific 
marker genes of proximal meristem cells in Arabidopsis 
roots. DIR23 and PER3 were the representative marker 
genes in Arabidopsis endodermis cells, and they were 
specially expressed in cluster 7. PIN5, SWEET12, SCPL45, 
and DOF1 were expressed in clusters 11 and 13, respec-
tively, as the marker genes in phloem and xylem cells. 
PER27, PER16, and Os12g0114500 were the representa-
tive marker genes of the epidermal cells and expressed 
in cluster 4. Among the columella cells, itf05g23550 and 
BAM1 were specifically expressed in cluster 14 (Fig. S4). 
Altogether, the results indicate that the sweetpotato root 
was composed of highly heterogeneous cells.

Identification of new marker genes in each cell cluster
A total of 8,545 significantly up-regulated differen-
tially expressed genes (DEGs) were identified, with 59 
to 4,793 of these DEGs among each of the distinct clus-
ters (Fig.  2a). The greatest number of elevated DEGs 
was observed in the cortex cells (4,973 cells). The top 
five genes with the highest expression level in each 
cluster were identified, and the expression profiles are 
described in a heatmap (Fig.  2b and Table S4). The ten 
representative genes with the highest expression in each 
cell type were selected for display as a t-distributed sto-
chastic neighbor embedding (t-SNE) map (Fig. S5). Gene 
Ontology (GO) enrichment analysis revealed that all ten 
cell-type clusters were significantly enriched in the “met-
abolic process” and “cellular process” biological process 
categories. The molecular function annotation enrich-
ment results showed PM, SCN, and quiescent center cells 
were significantly enriched for the “structural molecule 
activity” terms. Root cap and xylem clusters were sig-
nificantly enriched for “catalytic activity” and “binding” 

(Fig. S6). Furthermore, Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analysis revealed that the PM, SCN, 
and quiescent center clusters were significantly enriched 
in the “ribosome” pathway. The epidermal, cortex, and 
endodermis clusters were significantly enriched in the 
“Metabolic,” “Carbon metabolism,” and “Biosynthesis of 
secondary metabolites” pathways. The columella clus-
ter was significantly enriched for “Alanine, aspartate and 
glutamate metabolism,” “Galactose metabolism,” and 
“Valine, leucine and isoleucine degradation” pathways. 
The phloem cluster was significantly enriched for the 
“Glycolysis/Gluconeogenesis” and “Ubiquitin mediated 
proteolysis” pathways. Root cap and xylem clusters were 
significantly enriched for the “Cysteine and methionine 
metabolism” and “ Nicotinate and nicotinamide metabo-
lism” pathways respectively (Fig. 2c).

The transition of meristematic cell clusters to mature cell 
types
To determine whether there is a transition state in the 
differentiation of stem cells into mature cell types, we 
further divided cluster 1 into 6 subclusters and analyzed 
the DEGs of these subclusters (Fig. 3a and Table S5). We 
found that UBC20 (itf07g01660) was enriched in sub-
cluster 1 − 0 of the proximal meristem cell, while EARLI1 
(itf13g08300, itf08g01110) and AED3(itf08g06010) were 
highly expressed in subcluster 1–1 of the cortex cell. 
Moreover, At3g16150, CBF5 (itf14g15280, itf04g29770), 
and Wdr3(itf05g22870) were significantly enriched in 
subclusters 1–2 and 1–3 of the quiescent center cell, 
while GASA14 (itf03g00970), CLE13 (itf13g22480), and 
CYP84A1 (itf05g24030) were significantly enriched in 
subcluster 1–4 of the endodermis cell, subcluster 1–5 of 
the root cap cell, respectively. Clusters exhibiting obvi-
ous mature cell characteristics were distinct from the 
stem cells, indicating an overall cluster arrangement 
reflecting the developmental time. Subclusters revealed 
the cell identity of some subclusters, but not as obvi-
ously as among clusters corresponding to the cortex, root 
cap, and endodermis cells, for example. The subclusters 
showed the gene expression patterns of stem cells and 
mature cell types. The expression levels of marker genes 
were mapped to the t-SNE visualization map of the 
sweetpotato root tip (Fig. 3c), and the genes were distrib-
uted in the meristematic cell cluster and the correspond-
ing mature cell type cluster. This indicated the proximity 
of mature and developmental cells with the same final 
fate. Thus, this study observed transitional cells during 
the development of sweetpotato root tip cells, which have 
the potential to differentiate into mature cell types.

Regulatory differences of the root apical meristem cells
Since increased cell division rate increases the probabil-
ity of spontaneous mutations during genome replication, 
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we analyzed whether there were differences in the cell 
division rate among sweetpotato root apical meristem 
(RAM) cells. The cell-cycle stage estimations gener-
ated during cell-cycle regression analysis indicated that 
compared with the stem cell niche, the fraction of meri-
stematic cells in the G2 phase increased significantly, 
indicative of higher cell division rates (Fig. 3b and Table 
S6). In addition, we observed that the dividing cells 
were mostly concentrated closer to the stem cell niches 
and meristematic cell clusters, and the proportion of G1 
phase cells was lower relative to those of other cell types. 

This indicated that stem cell niches and meristematic [24] 
cell clusters had higher cell division rates, revealing the 
cell division characteristics of adventitious RAM cells of 
sweetpotato.

The feedback inhibition pathway involving WOX5/
CLE40, similar to that involving WUS/CLV in the shoot 
apical meristem, was found in the A. thaliana RAM. 
In this pathway, the homologous polypeptide CLE40 
of CLV3 was perceived by the receptor ACR4 on the 
membrane, and the expression of WOX5 (WUSCHEL-
RELATED HOMEOBOX5) was inhibited, thus regulating 

Fig. 2  Identification of new marker genes within cell type clusters. (a) The number of differentially expressed genes (DEGs) in each cell type cluster. (b) 
Bubble plot showing the top five DEGs with the highest expression levels in each cell cluster. (c) Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways enrichment analysis of all clusters of DEGs
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Fig. 3  Subcluster analysis of stem cell niche cells. (a) The t-distributed stochastic neighbor embedding (t-SNE) map embedding of subcluster assign-
ments following a second round of clustering within stem cell cluster 1. (b) Cell clusters and corresponding cell cycle circos diagram. (c) The expression 
patterns of mature cell-type marker genes in the stem cell subcluster are distributed in the t-SNE map
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the homeostasis of distal root meristem [24]. Cells with 
IbWUS expression were not detected in the RAM of 
sweetpotato, while the homologous gene IbWOX8 was 
differentially expressed in clusters 3, 8, and 10. This indi-
cated that IbWOX8 may regulate meristematic cells and 
play an important role in root cap development. In addi-
tion, the expression of IbWOX5 was detected in clusters 
8 and 11, but its expression pattern was not cell type-
specific, inconsistent with the well-defined organization 
center. Therefore, our data contained no candidate WOX 
gene expressed in the Guangshu 87 RAM as the stem 
cell organizing center and no homolog of WUS in A. 
thaliana. To further verify these findings, we performed 
qRT-PCR analysis (Table S12) and found no expression 
of IbWUS and IbWOX5 transcripts in the root apical 
meristem. These results suggest that the canonical CLE40 
pathway has been lost in the Guangshu 87 RAM.

Pseudotime trajectory analysis of sweetpotato root tip 
cells
Single-cell RNA-seq allows for simultaneous unbiased 
analysis of each cell type at each developmental stage 
[25]. The present study conducted pseudo-time analysis 
across all cells to determine how central clusters differen-
tiate from the beginning of cell transition into mature cell 
types outside the cluster cloud (Fig. 4a). There were three 
main branches observed in the development process, 
which could be divided into five states (Fig. 4b). Root cap 
and epidermis cells (clusters 3 and 4) were mainly distrib-
uted in state 1, while stem cells (cluster 10) were mainly 
distributed in state 2, and endodermis cells (cluster 7) 
were mainly distributed in state 3. Moreover, root cor-
tex (clusters 0, 2, 5, 8, and 12), phloem (cluster11), and 
xylem (cluster13) cells were mainly distributed in state 4. 
State 5 mainly contained stem cells (cluster 1), proximal 
meristem cells (cluster 9), quiescent center cells (cluster 
6), and columella cells (cluster 14). Notably, the root tip 
development trajectory of sweetpotato started from state 
5 and gradually differentiated into two branches; one 
branch included epidermal and root cap cell types, while 
the other had stele and cortex cell types. In addition, the 
stem cells distributed in state 2 tended to differentiate 
into root cap cells (Fig. 4c).

Monocle2 was used to screen DEGs in all cells based 
on the pseudo-time value, differentiation status, and dif-
ferentiation fate of each cell. A total of 6,487, 10,421, and 
11,043 DEGs were obtained with respect to the pseudo-
time axis, different differentiation statuses, and different 
differentiation fates, respectively (Table S7). Further-
more, 4,941 core DEGs were specifically involved in 
multiple biological pathways in the cell development tra-
jectory (Fig. 4d and Table S7). A total of 267 important 
transcription factors (TFs) were identified from the 4,941 
core DEGs, which provided potential transcriptional 

dynamics for cell differentiation by participating in 
the Plant hormone signal transduction, MAPK signal-
ing pathway - plant, Plant-pathogen interaction and 
Circadian rhythm – plant pathways (Fig.  4e and Table 
S7). Additionally, interactive network analysis of these 
267 TFs showed that among them 36 TFs were in pro-
tein–protein interaction networks, including MYC2, 
WRKY33, WRKY40, TIFY10A, and EIN3, which play 
important roles in cell development of sweetpotato root 
tissue (Fig. 4f ).

The developmental trajectories of different cell types in 
sweetpotato root tips
The distal stem cells produce the root cap, and the lateral 
root cap cells lateral to the QC generate the epidermis; 
accordingly, the lateral root cap and epidermis share a 
common initial cell in dicots [26, 27]. Therefore, pseu-
dotime analysis was performed on the quiescent cen-
ter cells, stem cells (cluster 10), and root cap/epidermal 
cells (clusters 3 and 4). The development trajectory began 
from the quiescent center and stem cells (cluster 10), 
which gradually differentiated into epidermis cells and 
root cap cells (Fig. 5a). In addition, the branch-dependent 
genes were subjected to heatmap analysis, which identi-
fied five different modules (Fig. 5b and Table S8). The epi-
dermal cell-related genes were found mainly in module 5, 
which was enriched for roles in cell wall organization and 
sulfur amino acid catabolic process. The root cap cell-
related genes were found mainly in module 2, which was 
significantly enriched for involvement in oxidoreductase 
activity, response to acid chemicals, and response to toxic 
substances (Fig. 5b). Furthermore, 79 TFs were screened 
by analyzing 1,646 core DEGs, which showed expression 
trends that drove the differences in stem cells to root cap 
cell differentiation (Fig. 5f and Table S8).

Pseudotime analysis was also performed on the proxi-
mal meristem cells and stem cell niche cells to illustrate 
their differentiation trajectory, which has previously been 
analyzed by scRNA-seq of the Arabidopsis root and cot-
ton roots [18, 28]. Proximal meristem cells and stem cell 
niche cells were separately clustered at the two ends of 
the pseudotime backbone (Fig.  5c). The developmental 
trajectory began from the stem cell niche cells, which 
gradually differentiated into proximal meristem cells. 
Similarly, five gene modules were identified from the 
expression heat map. The proximal meristem/stem cell-
related genes were found mainly in modules 3 and 1. The 
genes were significantly enriched for roles in ribosome 
biogenesis, cellular amide metabolic processes, and ribo-
some assembly (Fig. 5e). Furthermore, 15 candidate key 
regulatory factors were identified by analyzing 795 DEGs 
(Fig. 5g and Table S9). The expression of the transcription 
factors ARF18, WRKY69, ERF3, and NAC081 increased 
gradually with differentiation time, which may be the key 
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Fig. 4  Pseudotime trajectory analysis of cell types in the sweetpotato root. (a) The color represents the pseudotime score. (b) The color represents the 
different states. (c) The color represents the different clusters. (d) A Venn diagram of the three differentially expressed gene (DEG) sets in root cells. (e) 
Heatmap of 267 core transcription factors (TFs) with cell state expression trend. (f) The interaction network of 36 differentially expressed TFs
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Fig. 5  Pseudotime trajectory analysis identified the trajectory map of different cell types. (a) Colored pseudotime trajectory of epidermis, root cap, qui-
escent center, and stem cells (cluster 10). (b) Pseudotime heatmap of Gene Ontology (GO) analysis of DEGs (P < 0.05). The bar color indicates the relative 
gene expression level. (c) Colored pseudotime trajectory of stem cell and proximal meristem cells. (d) Colored pseudotime trajectory of xylem, phloem, 
and stem cells (cluster 10). (e) Pseudotime heatmap of the GO analysis of DEGs (P < 0.05). The bar color indicates the relative gene expression level. f–h. 
A Venn diagram showing the core DEGs with respect to cell differentiation trajectory, cell differentiation states, and cell fate. (f) root cap/epidermis cell 
DEGs. (g) Stem cell DEGs. (h) Stele cell DEGs
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regulatory factors leading to the differentiation of stem 
cells into proximal meristem cells (Fig. S7).

The development of sweetpotato rootlets into tuber-
ous roots underwent two growth periods: the primary 
and the secondary cambium activity periods. During the 
primary cambium activity period, the primary cambium 
was formed between the primary xylem and phloem of 
the rootlets, which divided, thus forming secondary 
xylem and phloem. The secondary phloem is formed out-
wards, while the secondary xylem is formed inwards. In 
the secondary cambium activity period, secondary cam-
bium cells are generated inside the primary xylem ves-
sels, and the secondary cambium is formed inside the 
secondary xylem vessels and around the metaxylem ves-
sels, where it divides into several parenchyma cells. Since 
these two cambiums are located in the middle column 
of the root tip, we reconstructed the developmental tra-
jectory of the middle column cells. The developmental 
trajectory of stele cells showed that their differentiation 
began from stem cells (cluster 10) and differentiated into 

two branches. One of the branches differentiated into 
phloem cells, and the other differentiated into xylem cells 
(Fig. 5d). Subsequently, 48 candidate key regulatory fac-
tors (Fig. 5h) were screened by analyzing the 1,044 core 
DEGs across the pseudo-timeline, cell states, and cell 
fates (Table S10). Among these transcription factors, 13 
were unique to the fate of stele cell differentiation (Fig. 
S8).

Similarity among sweetpotato, A. thaliana, and maize cell 
types
Some tissues and organs exhibit similar functions among 
different angiosperms but with different characteristics. 
To assess the similarities and differences among angio-
sperms, we chose the root tip cell types of A. thaliana 
[29] and maize [14], representing dicots and monocots, 
respectively. We integrated the sweetpotato scRNA-seq 
data with the published data sets of A. thaliana and maize 
root tips, respectively, and re-clustered the cells into 18 
cell clusters (Fig. 6a, c). Additionally, t-SNE visualization 

Fig. 6  Comparison of sweetpotato with Arabidopsis thaliana and Zea mays root gene expression patterns. (a) The t-distributed stochastic neighbor 
embedding (t-SNE) visualization of sweetpotato with Arabidopsis thaliana (each color represents different species and different clusters, respectively). (b) 
The t-SNE visualization of sweetpotato with Zea mays (each color represents different species and different clusters, respectively). (c) Pearson’s correla-
tion coefficients of gene expression levels between sweetpotato and Arabidopsis thaliana. (d) Pearson’s correlation coefficients of gene expression levels 
between sweetpotato and Zea mays
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and Pearson correlation coefficient analysis showed that 
A. thaliana matched a specific subset of phloem cells and 
root cap cells of sweetpotato, indicating conservation of 
some functions of the phloem and root cap in these two 
species (Fig. 6a). Significant differences in the epidermis, 
xylem, and meristematic cell populations were observed 
between sweetpotato and A. thaliana. In addition, sweet-
potato cortical cells were highly correlated with all cell 
populations of A. thaliana, possibly because most genes 
in A. thaliana had the same expression patterns as those 
in the sweetpotato cortex (Fig.  6c). Stem cell niches, 
meristematic cells, and columella cells of sweetpotato 
had high correlations with stele cells but low correlations 
with epidermis and cortex cells of maize (Fig. 6b and d). 
These cell types also partially overlapped in the t-SNE 
space (Fig. 6b).

Moreover, we analyzed the DEGs of the three spe-
cies and found that seven DEGs were highly expressed 
in sweetpotato (Table S11). These included SAUR24 
(auxin-responsive protein SAUR21-like, itf12g12440), 
CDC40 (Transducin/WD40 repeat-like superfamily pro-
tein, itf01g23200), CDKG2 (cyclin-dependent kinase 
G-2 isoform X1, itf07g03880), HB1 (non-symbiotic 
hemoglobin 1, itf10g24670), CAM (calmodulin-like pro-
tein 8, itf13g20430), GATA4 (GATA transcription fac-
tor 4, itf04g02620), ARF (ADP-ribosylation factor A1F, 
itf07g04750), CAM1 (calmodulin-7-like, itf15g05000), 
and CDC25 (dual specificity phosphatase Cdc25, 
itf09g14530). The differential expression of these genes 
might have caused the differences in cell function and 
root morphology between sweetpotato, A. thaliana, 
and maize. The expression of root development-related 
genes in the adventitious roots of sweetpotato and root 
tips of A. thaliana and maize was analyzed using RT-
qPCR to further verify their expression patterns (Table 
S12). These genes were highly expressed in sweetpotato 
roots compared to A. thaliana and maize roots. In addi-
tion, expression levels of these genes were analyzed at the 
different developmental stages of the adventitious roots 
of sweetpotato. Genes such as GATA4, ARF, CDC40, 
CDC25, HB1, and SAUR24 were highly expressed in the 
early stage of adventitious root development, namely the 
GS87-1 stage, but gradually decreased with root differen-
tiation and development (Fig. 7). Similarly, CAM, CAM1, 
and CDKG2 were highly expressed in the GS87-2 stage 
of adventitious roots of sweetpotato, but their expression 
levels gradually decreased with the continued differentia-
tion and development of roots.

Discussion
Sweetpotato tubers are nutritious plant organs with high 
economic value, and they are critical for understanding 
the development process of the sweetpotato root system. 
The root apical meristem (RAM) is located at the root 

apex, and the stem cell niche [30], including the tissue 
center and surrounding stem cells, is the core of the RAM 
[31]. Root stem cells can produce various root cell types 
through cell division and differentiation. Thus, it is nec-
essary to define the main cell types in specific tissues at 
the anatomical and molecular levels to understand how 
stem cells produce different cell types. Therefore, we used 
scRNA-seq to sequence the transcriptome of the adventi-
tious root tips of sweetpotato and obtained high-level cell 
heterogeneity information based on the transcriptome 
data. This study preliminarily constructed the transcrip-
tome map of adventitious root tips of sweetpotato at the 
single cell level, revealed the cell heterogeneity of sweet-
potato root tip, and described the development trajectory 
of root tip cells. The study also identified the transitional 
cells involved in the differentiation and development 
processes of the stem cell niche into differentiated cell 
types. There was a lower correlation between the root 
tip cell types of the dicotyledonous plants sweetpotato 
and Arabidopsis thaliana and the monocotyledonous 
plant maize. Thus, the correlation between sweetpotato 
and A. thaliana was higher than that between either of 
them and maize. In addition, some root differentiation 
and development-related genes were screened, highlight-
ing that GATA4 may regulate the early development of 
sweetpotato root tips.

The technical difficulty for high-throughput scRNA-
seq of sweetpotato root tip tissues is preparing qualified 
single-cell suspension, which provides crucial insights 
into cell development at specific locations. This study 
established a high-quality protoplast preparation sys-
tem for sweetpotato root tips, providing the potential for 
genetic transformation, gene editing, and transient gene 
expression in protoplasts. Self-incompatibility and cross-
incompatibility are common in sweetpotatoes, but can be 
overcome by protoplast fusion cell hybridization, which 
provides important genetic resources for sweetpotato 
breeding [32]. High-throughput scRNA-seq was used to 
analyze the complex adventitious roots of sweetpotato, 
and the transcriptome map of the main root tip cell types 
was generated, providing the temporal and spatial expres-
sion dynamics of cell differentiation. A high-resolution 
map of more than 10,000 root cells captured all major cell 
types, including rare cell types, such as the resting center 
and meristem cells of the differentiation stage. Using this 
map, we were able to accurately predict the spatio-tem-
poral patterns of gene expression in the roots and pro-
vide valuable insights for gene expression and functional 
studies at the single-cell level. Several studies [18, 33–35] 
have shown that scRNA-seq can reveal the heterogeneity 
of cell populations and help to discover the intermediate 
states during biological differentiation and development. 
The present study found that the transcriptome of stem 
cells (cluster 1) expressed different cell markers, which 
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could be grouped into six subclusters. The DEGs in the 
six subclusters corresponded to their related differenti-
ated cells, but each subcluster expressed more than one 
cell type marker gene, indicating that early cells have 

different cell fates and that cell fate exhibits some insta-
bility. When performing the pseudo-time analysis on dif-
ferent cell types, these subclusters were merged into each 
group of cell types. The results showed that these stem 

Fig. 7  Expression of candidate sweetpotato root differentiation and development genes (expression levels of candidate genes in roots of sweetpotato 
in different developmental states compared with Arabidopsis thaliana and Zea mays roots; GS87-1, < 2 mm; GS87-2, 2–4 mm; GS87-3, 3–5 cm, GS87-4, 
9–12 cm, AT, Arabidopsis thaliana; ZMA, Zea mays
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cell subclusters were located at the initial position of the 
development trajectory of each cell type, further indicat-
ing that there were transitional cell types involved in the 
differentiation of root tip stem cells of sweetpotato into 
mature cell types.

A previous association analysis showed that the cell-
type transcription profiles of A. thaliana and rice were 
very different [36]. Only the root hair cell type had a high 
correlation between rice and A. thaliana, while the corre-
lation between cortex cells was more moderate, and those 
between other cell types were quite different. These spe-
cies-specific characteristics emphasize the importance of 
analyzing tissues of different species. Similarly, this study 
compared the cell types of sweetpotato, A. thaliana, and 
maize and found that the cell populations of sweetpotato 
were significantly different from those of A. thaliana and 
maize. These cell populations had less overlap in t-SNE 
space and exhibited several genes with different expres-
sion patterns. GATA transcription factors are a group of 
DNA binding proteins widely distributed among eukary-
otes, and they contain class IV zinc finger DNA binding 
motifs. In plants, the DNA motif of GATA is involved in 
light-dependent and nitrate-dependent transcriptional 
regulation. For example, GATA4 is involved in biologi-
cal processes such as light stimulation responses, cell 
differentiation, and positive regulation of RNA poly-
merase II promoter transcription in A. thaliana [37]. In 
sweetpotatoes, the GATA family genes may be regula-
tory factors associated with the development of tuberous 
root enlargement. Thus, this study analyzed the expres-
sion of GATA4, which may be involved in regulating the 
early development of sweetpotato root tips. Consistent 
with the traditional transcriptome data corresponding to 
sweetpotato tuberous root enlargement, the GATA4 gene 
was highly expressed in the early stage of root develop-
ment but gradually decreased with the development and 
enlargement of roots [38]. In addition, the expression of 
GATA4 in the stem cell niche, meristematic cell, and stele 
was higher than that of other cell types, probably because 
these cells are involved in root cambium activity which 
drives sweetpotato root development.

This study utilized scRNA-seq to quantify gene expres-
sion in various cell types, including single cells, provid-
ing important insights into cell development at specific 
stages and elucidating the complex gene regulatory net-
works controlling sweetpotato root development. Since 
the root development-related gene GATA4 screened 
in this study had not been functionally verified before, 
its regulatory mechanism could not be understood at a 
deeper level. Fluorescence-activated cell sorting technol-
ogy can be used to enrich specific cell types and verify 
gene function, thus enabling the detection of function 
and regulatory networks involved in different cell types. 
At present, methods such as glass microcapillary [39], 

microdissection [16], or fluorescence-activated cell sort-
ing (FACS) [40] have been successfully used to obtain 
target plant cell types and a small amount of single-cell 
transcriptome data. However, advances in plant cell 
isolation and scRNA-seq technology have enabled the 
application of single-cell transcriptomics to more plant 
cell tissues and species. Furthermore, combining various 
technologies with scRNA-seq technology could further 
deepen the understanding of plants at the molecular, sub-
cellular, cellular, and tissue levels, enabling the generation 
of high-resolution plant cell molecular spatiotemporal 
maps, thus promoting the study of basic plant science 
problems. Such technologies include assay for targeting 
accessible-chromatin with high-throughput sequencing 
(ATAC-seq) [41], high-through chromosome conforma-
tion capture (Hi-C) [42], spatial transcriptomics-seq (ST-
seq) [43], single-cell genome analysis [44, 45], epigenome 
analysis [46], and protein analysis [47] techniques. When 
coupled with scRNA-seq technology, these techniques 
can be used to investigate plants at the molecular, sub-
cellular, cellular and tissue levels, making it possible to 
infer high-resolution plant cell molecular spatiotemporal 
maps, which can promote the study of basic problems in 
plant science.

Method details
Plant materials and growth conditions
Sweetpotato (Ipomoea batatas [L.] Lam., cv. ‘Guangshu 
87’) plants were grown in the facilities of the Zhongluo-
tan Academy of Agricultural Sciences, Guangdong Prov-
ince, China (113.440470°N, 23.388464°E). ‘Guangshu 87’ 
is a high-quality and high-yield sweetpotato cultivar bred 
by the Guangdong Academy of Agricultural Sciences, 
and it ranks among the top five cultivated sweetpotato 
varieties in terms of planting area in China [48]. Branch 
cuttings (20 cm) of sweetpotato seedlings were soaked in 
sterile water for 5 days (28℃ with 12-h light/12-h dark 
cycles, with a light intensity of 13,000 lx) .

Isolation of protoplasts
Thirty tips (5  mm) of adventitious roots were cut into 
small pieces of about 1 mm and incubated in 10 ml of an 
enzyme solution (1.5% cellulase RS, 1.5% macerozyme 
R10, 1.5% hemicellulase, 0.4  M mannitol, 20 mM MES, 
and 0.1% bovine serum albumin [BSA]) in the dark. The 
cell solution was sequentially filtered through 70-µm 
(FALCON, Cat # 352350) and 40-µm (FALCON, Cat # 
352340) cell strainers after digestion at 28  °C for 3  h at 
80  rpm on an orbital shaker. Protoplasts were collected 
after being softly washed twice (centrifuged for 10  min 
at 300 × g) and were re-suspended in 0.4  M mannitol 
solution. Cell activity was detected via trypan blue stain-
ing, and the number of protoplasts was measured with a 
hemocytometer.
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scRNA-Seq library construction and sequencing
The root single-cell suspensions were loaded onto a 
Chromium Single Cell Instrument (10× Genomics, 
Pleasanton, CA) to generate single-cell gel-bead emul-
sions (GEMs). scRNA-seq libraries were constructed 
using the Chromium Single Cell 3′ GEM Gel Bead and 
Library Kit v3 (10x Genomics, Cat No./ID: PN-1000076 
and 1000078), as per the user guide (Chromium Single 
Cell 3ʹ Reagent Kits v3, CG000183 Rev A). The qualitative 
analyses of DNA libraries were performed with an Agi-
lent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, 
CA, USA), and the libraries were sequenced with an Illu-
mina Nova-Seq sequencer 6000 (Illumina, San Diego, 
CA, USA) by Genergy Biotechnology (Shanghai, China) 
using two 150-bp paired-end kits. The raw scRNA-seq 
datasets comprised 28 bp Read1, 150 bp Read2, and 8 bp 
i7 index reads.

RT-qPCR
Arabidopsis thaliana(Col-0 wild-type) and maize inbred 
line B73 seeds were planted in Murashige and Skoog 
medium (22℃ with 16-h light/8-h dark cycles and a light 
intensity of 11,000 lx). Whole roots were separated from 
shoots and collected in bulk for RNA extraction using the 
RNAprep pure plant kit (Tiangen, Beijing). Complemen-
tary DNA (cDNA) synthesis and genomic DNA (gDNA) 
removal steps were performed using FastKing gDNA dis-
pelling RT superMix (Tiangen, Beijing). Each obtained 
cDNA library served as a template for gene expression 
level analysis via real-time quantitative PCR on the ABI 
step one plus system. The relative expression level was 
calculated by the delta-delta Ct method (2−ΔΔCt). The 
primers for the target genes were designed using primer 
5 software (Table S12), and the β-actin gene was used as 
the internal control.

Pre-processing of raw scRNA-seq data
The raw files were analyzed by Cell Ranger 3.1.0 (10× 
Genomics), which pre-processed the raw scRNA-seq 
data by aligning reads and generating gene-cell matri-
ces. The sweetpotato genome (I. trifida v3 JBrowse) was 
downloaded from the sweetpotato genomics resource 
website (http://sweetpotato.plantbiology.msu.edu). The 
reference genome was generated by implementing ‘cell-
ranger mkref ’ with ‘‘–genome, –fasta and –genes’’ argu-
ments in Cell Ranger. However, ‘cellranger count’ with 
‘‘–id, –fastqs, –sample and –transcriptome’’ arguments 
were used to generate single-cell gene counts. More 
than 89.3% of reads in all the samples were successfully 
aligned to the I. trifida reference genome (v3 JBrowse) 
by the aligner STAR (Spliced Transcripts Alignment to 
a Reference, v. 2.6.0a). The gene-cell matrices were used 
as raw data for further analyses, where each row was a 

feature (gene expression level), and each column was a 
valid cell barcode.

Identification of highly variable genes
The gene-cell matrices of 13,966 cells were loaded 
into the Seurat package (v. 3.0.0.9) for analysis [49]. To 
remove the low-quality cells and likely multiple cap-
tures, we removed the cells with unique gene counts of 
> 5000 or < 200 and those with more than 5% mitochon-
drial sequence. Doublet GEMs were also removed using 
the tool DoubletFinder (v2.0.3) [50], which generates 
artificial doublets using the principal component (PC) 
distance matrix to find each cell’s proportion of artificial 
k-nearest neighbors (pANN) and ranks them accord-
ing to the expected number of doublets. After filtering, 
32,301 genes from 12,172 cells were used for further 
analysis. The scaled data were first normalized by ‘Log-
Normalize’ and used to identify the highly variable genes 
using ‘FindVariableFeatures’ with “vst” parameters in 
Seurat.

Dimension reduction and cell clustering
Principal component analysis (PCA) [51] was performed 
to reduce the dimensionality of the log-transformed 
gene-barcode matrices of the most variable genes. Cells 
were clustered via a graph-based approach and visual-
ized in two dimensions. The scRNA-seq datasets were 
explored using the t-SNE tool [52], which enabled the 
assignment of cells with similar local neighborhoods in 
high-dimensional and low-dimensional spaces. We also 
used t-SNE to identify differentially expressed genes 
(DEGs) between clusters. A likelihood-ratio test was 
used to identify differential expression when comparing 
a single cluster to all other cells. We also performed uni-
form manifold approximation and projection (UMAP) 
analysis to confirm the cell clusters identified by t-SNE. 
Specifically, the total number of PCs (npcs), dimensions 
(dims), the number of neighboring points (n.neighbors), 
and resolution and minimum distance (min.dist) param-
eters were tuned to represent the best approximation of 
the underlying topology of each subcluster.

Screening and identification of cluster marker genes
Cluster identification depends on marker genes. Geno-
typing multiple marker genes is necessary to determine 
their cell types [53]. DEGs or marker genes can be identi-
fied by differential expression analysis of clusters, which 
can also reflect the specificity of clusters. The FindAll-
Markers function of Seurat was used to identify marker 
genes for each cluster. The known marker genes of the 
cell types in sample tissues were screened based on the 
published literature and databases, and the upregulated/
down-regulated genes in each cluster were matched to 
identify the cell types of each cell subgroup.

http://sweetpotato.plantbiology.msu.edu


Page 15 of 17Zhao et al. BMC Plant Biology          (2024) 24:952 

Pseudotime analysis
The pseudo-time analysis [54] of cell differentiation 
and cell fate was performed using the Monocle R pack-
age (Version 3.0). For pseudo-time trajectory analysis, 
the raw count in the Seurat object was first converted 
into a CellDataSet object with the importCDS (object, 
import_all = F) function in Monocle. We then normalized 
the differences in mRNA recovered across cells using the 
‘estimateSizeFactors’ function and conducted the dif-
ferential expression analysis using ‘estimateDispersions’ 
function. First, the variance in the expression of each 
gene across cells was calculated by the ‘dispersionTable’ 
function. Variable genes were then chosen based on aver-
age expression level to define developmental progress. 
Second, we used the ‘differentialGeneTest’ function of 
the Monocle 2 package to order genes (qval < 0.01) that 
were likely to be informative for ordering cells along the 
pseudo-time trajectory. The ordered genes were then 
marked with the ‘setOrderingFilter’ function, and we 
reduced the dimensionality of the data to two (set myo-
blast, method = ‘DDRTree’). With the expression data 
in a lower dimensional space, the state transition of 
single cells was described by the ‘orderCells’ function. 
The cell trajectory was plotted by ‘plot_cell_trajectory’ 
in Monocle. The ‘orderCells’ function was implemented 
again, setting the ‘‘root_state’’ argument to specify an a 
priori beginning of the trajectory. The branch point was 
selected to analyze branches in differentiation trajecto-
ries. The pseudo-time-dependent or branch-dependent 
genes were analyzed using branched expression analy-
sis modeling (BEAM). The genes that were significantly 
branch-dependent were visualized by the ‘plot_genes_
branched_heatmap’ function.

Association analysis of multispecies scRNA-seq data
The data were obtained from A. thaliana single-cell tran-
scriptome sequences (GSE123013) and maize single-
cell transcriptome sequences (GSE183171) in the Gene 
Expression Omnibus (GEO) database. To compare the 
expression of genes between each group of species, we 
used OrthoMCL to define one-to-one homologous genes 
between each group (Supplementary Table 11). We used 
the homologous genes to arrange and cluster the cells by 
dimensionality reduction.

Differentially expressed gene functional analysis
Differentially expressed genes (DEGs) were identified 
using the Seurat package [22]. Thresholds of P < 0.01 
and |log2(fold change in expression)| > 0.36 were set as 
the thresholds for significantly differential expression. 
Gene Ontology (GO) annotation enrichment and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment analyses of DEGs were performed using R 
based on the hypergeometric distribution.

RNA in situ hybridization
RNA in situ hybridization was performed as previously 
described [55]. In brief, the specific targeting probes were 
designed by spatial FISH Ltd. (Table S12). Sweetpotato 
root tips were fixed with 4% paraformaldehyde and then 
covered with a reaction chamber to perform the follow-
ing reactions. After dehydration and denaturation of root 
tips with methanol, the hybridization buffer with specific 
targeting probes was added to the chamber for incuba-
tion at 37℃ overnight. Then, root tips were washed three 
times with PBST, followed by ligation of targeting probes 
in ligation solution at 25℃ for 3 h. Next, root tips were 
washed three times with PBST and subjected to rolling 
circle amplification by Phi29 DNA polymerase at 30℃ 
overnight. Subsequently, the fluorescent detection probes 
in hybridization buffer were applied to root tips. Finally, 
root tips were dehydrated with an ethanol series and 
mounted with mounting medium. After capturing images 
with a Leica THUNDER Imaging System (Leica, Wetzlar, 
Germany), 20× (NA = 0.80) signal dots were decoded to 
interpret RNA spatial position information.
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