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Simple Summary: This study aimed to identify prognostic factors by combining clinicopathologic
parameters with tumor microenvironment (TME) biomarkers in patients with locally advanced
rectal cancer (LARC) who underwent surgery following neoadjuvant chemoradiotherapy (nCRT).
We analyzed CD8+ T cells, CXCR3, CXCL10, and α-SMA using immunohistochemical staining and
incorporated AI-powered digital pathology to assess the spatial TME. Our findings showed that
high expression of CD8+ T cells, CXCR3 in tumor-infiltrating lymphocytes (TILs), and an inflamed
phenotype were associated with better recurrence-free survival (RFS). However, these factors were not
predictive of overall survival (OS). Patients with an immune-desert phenotype had a poor prognosis
regardless of pathologic stage or the administration of postoperative chemotherapy. These results
suggest that CD8+ T cells and AI-powered immune phenotypes, together with clinical factors, can
guide personalized treatment strategies in LARC patients post-nCRT and highlight the potential
benefits of modifying the tumor immune microenvironment (TiME) to reduce recurrence after surgery.

Abstract: Background/Objectives: The tumor microenvironment (TME) has emerged as a significant
prognostic factor. This study aimed to identify prognostic factors by combining clinicopathologic
parameters and the TME biomarkers in patients who underwent surgery following neoadjuvant
chemoradiotherapy (nCRT) for locally advanced rectal cancer (LARC). Methods: CD8+ T cells, CXCR3,
CXCL10, and α-smooth muscle actin (α-SMA) were analyzed via immunohistochemical staining. We
also incorporated AI-powered digital pathology to assess the spatial TME. The associations between
these biomarkers, clinicopathologic parameters, and survival outcomes were evaluated. Results:
CD8+ T cell expression, CXCR3 expression in tumor-infiltrating lymphocytes (TILs), and immune
phenotypes were correlated. LARC patients with a high expression of CD8+ T cells, CXCR3 in TILs,
and an inflamed phenotype had a significantly better prognosis than their counterparts did. In the
multivariate analysis, the expression of CD8+ T cells and the inflamed/immune-excluded phenotype
were significant tumor immune microenvironment (TiME) biomarkers for recurrence-free survival
(RFS) but not for overall survival (OS). Notably, patients with the immune-desert phenotype had a
poor prognosis regardless of pathologic stage, even if postoperative chemotherapy was administered
(p < 0.001). Conclusions: CD8+ T cells and AI-powered immune phenotypes, alongside clinical
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factors, can guide personalized treatment in LARC patients receiving nCRT. A therapeutic strategy to
modify the TiME after nCRT could help reduce recurrence after surgery.

Keywords: tumor microenvironment; rectal neoplasms; neoadjuvant therapy; biomarkers; artificial
intelligence

1. Introduction

Unlike colon cancer, the standard treatment for locally advanced rectal cancer (LARC)
includes neoadjuvant chemoradiotherapy (nCRT) before surgery to reduce local recurrence
and increase the organ preservation rate [1,2]. Recently, increasing pathological complete
response (pCR) has been attempted by adding total neoadjuvant therapy (TNT) to nCRT.
On the basis of these results, further studies are being conducted to explore radiation-
sparing approaches or de-escalation strategies according to the tumor response to avoid
adverse effects [3].

However, even while receiving the same treatment at the same stage, not all patients
can reach pCR after preoperative treatment because tumor responses can vary from person
to person owing to tumor heterogeneity. Thus, postoperative chemotherapy is administered
to patients with remnant tumors or a poor response after nCRT. The most important pa-
rameter for selecting patients requiring postoperative chemotherapy is the pathologic stage
(yp stage), such as high-risk stage II or III, including the tumor regression grade (TRG),
which represents the response to preoperative treatment [4]. Although standard adjuvant
(postoperative) chemotherapy, such as 5-FU monotherapy or oxaliplatin chemotherapy,
is performed after surgery, recurrence remains a major concern. Thus, an innovative
therapeutic strategy beyond current standard chemotherapy is urgently needed to over-
come treatment outcomes. Furthermore, there are still unmet needs to detect patients at
high risk of recurrence, sometimes leading to overtreatment in patients who do not need
adjuvant therapy.

From these perspectives, the exploration of novel, specific and accurate tumor biomark-
ers has advanced. Additionally, the focus of tumor biomarkers is shifting not only to the
tumor itself but also to the tumor microenvironment (TME). The TME is a highly complex
ecosystem in which tumor cells coexist with immune cells and nonimmune cells, such as en-
dothelial cells and stromal cells. The tumor immune microenvironment (TiME), especially
CD3+ and CD8+ T cells, is a critical component of colorectal cancer (CRC) progression [5].
Previous studies have shown the potential role of immune infiltrates in the prediction of
radio-responsiveness to nCRT in rectal cancer [6]. Particularly, CXCL10 is a chemokine that
plays a critical role in attracting immune cells, including CD8+ T cells, to sites of inflamma-
tion or tumors. CXCR3, a receptor expressed on the surface of activated CD8 T cells, binds
to CXCL10 and other related chemokines. This interaction facilitates the migration of CD8+
T cells to tumor, which can enhance the immune response in various pathological condi-
tion [7]. In addition to the TiME, the stroma produces and secretes growth factors, cytokines,
and chemokines that promote tumor progression and immune evasion. Fibroblasts are the
dominant component of the tumor stroma, with cancer-associated fibroblasts (CAFs), which
are activated by tumor cells, playing a key role in the TME, involving cancer-promoting
or cancer-restraining effects and metastasis [8–10]. Verset, L. et al. revealed the prognostic
significance of the CAF marker using a ratio of α-smooth muscle actin (α-SMA)/epithelial
area associated with decreased recurrence-free survival (RFS) in LARC patients [11].

However, the interpretation of rectal cancer requires caution because nCRT not only
directly kills tumor cells but can also modify the immune landscape. The release of tumor
antigens from dying cancer cells after nCRT can stimulate an antitumor immune response
by increasing cytokine levels and attracting immune cells to the tumor site (the antitumor
effect). In contrast, it can also induce the expression of immunosuppressive factors, which
might protect the remaining tumor cells. Most previous studies revealed biomarkers of the
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TME in tissues at diagnosis to predict the response to nCRT [6,12]. However, analyzing
tissue after nCRT might be more accurate than analyzing tissue at diagnosis because
tumor heterogeneity affects response. Additionally, identifying biomarkers through a
comprehensive analysis of clinical factors alongside the TME is crucial for improving
prognosis prediction.

Therefore, this study aimed to identify optimal biomarkers associated with the TiME,
stroma and clinicopathologic data through comprehensive analysis via a multifaceted
approach, including artificial intelligence (AI)-based digital pathology in LARC patients
following nCRT.

2. Materials and Methods
2.1. Patients and Samples

A total of 192 consecutive LARC patients treated with nCRT at Chonnam National
University Hwasun Hospital between January 2015 and December 2019 were reviewed. Of
these, 108 patients were included in this retrospective study (Supplementary Figure S1).

The inclusion criteria were (1) histologic diagnosis of primary rectal adenocarcinoma,
(2) clinical stage III at diagnosis, (3) absence of synchronous malignancy, (4) staging
workup including rectal MRI, (5) completion of long-course nCRT with fluorouracil-based
chemotherapy, (6) complete information of clinical/pathologic stages/adjuvant treatment
and survival and (7) achievable tissue samples from surgical resection specimens after nCRT
in the Biobank of Chonnam National University Hwasun Hospital (CNUHH), a member
of the Korea Biobank Network, with informed consent. We excluded patients with micro-
scopic or grossly noncurative resection, inadequate lymph node dissection (<12 lymph
node dissections), synchronous malignancies and <30 days of premortality hospitalization,
as well as those diagnosed with other malignancies during follow-up. The institutional
review board (CNUHH-2021-005) and the data review board (CNUHH-D2023-004) at
CNUHH approved this study.

2.2. Staging, Treatment, and Follow-Up

The staging workup for rectal cancer comprises digital rectal examination; endoscopy
with biopsy for histologic diagnosis; computed tomography (CT) scans of the abdomen,
pelvis, and chest; and rectal magnetic resonance imaging (MRI). The eighth edition of the
American Joint Committee on Cancer TNM staging system was used to assess clinical tumor
stages. For ambiguous lesions, positron emission tomography (PET)/CT was performed.

After being diagnosed with stage III rectal cancer, all patients underwent nCRT. During
nCRT, a total radiation dose of 50.4 Gy was applied in 28 fractions of 1.8 Gy. Additionally,
oral capecitabine (825 mg/m2 twice daily during the 5-plus-week course of radiotherapy)
was concurrently administered. After 6–8 weeks, the treatment response was assessed, and
total mesorectal excision was performed to surgically remove the residual tumor. Adjuvant
chemotherapy was subsequently administered according to the physician’s decision on the
basis of the surgical pathology and the patient’s general condition.

After completing adjuvant chemotherapy, physical examination, CT images, and serial
serum CEA levels were checked every 3–6 months for 5 years. Colonoscopy was performed
every 1–3 years depending on risk factors. For those who were lost to surveillance, official
survival data were obtained from the Ministry of the Interior and Safety of the Republic of
Korea, thus suggesting the completeness of survival status in the entire study population.

2.3. Pathologic Tumor Stage and Tumor Regression Grading

Surgical tissue samples from surgery patients were microscopically examined to
evaluate tumor responses to chemoradiotherapy. The eighth edition of the American Joint
Committee on Cancer TNM staging system was used to assess pathologic tumor stages.

Tumor regression grading (TRG) of the primary tumor treated with nCRT was semi-
quantitatively evaluated on hematoxylin and eosin (H&E)-stained slides according to
modified Dworak’s criteria as previously described [13]. The characteristics of each grade



Cancers 2024, 16, 3353 4 of 15

were as follows: TRG 1, predominant tumor cell mass (>50%) with obvious fibrosis or no
regression; TRG 2, dominantly fibrotic changes with few tumor cells or groups; TRG 3,
very few tumor cells (one or two microscopic foci < 0.5 cm in diameter); and TRG 4, no
tumor cells.

2.4. Immunohistochemical Staining

Two to three representative foci of the tumor and one focus of the matched non-
neoplastic mucosal tissue and metastatic lymph node (if applicable) in each case were
selected for TMA blocks. Tissue cores (2 mm in diameter) were obtained from each paraffin
block to make a TMA block. Immunohistochemistry (IHC) was performed on the TMA
slides via an autostainer (Bond-Max automated IHC/ISH stainer; Leica Biosystems, Wetzlar,
Germany) with primary antibodies against the following proteins: α-SMA (dilution 1:200;
catalog no. 19245, Cell Signaling Technology, Danvers, MA, USA), CXCR3 (dilution 1:2000,
catalog no. 288437, Abcam, Cambridge, UK), CXCL10 (dilution 1:1000, catalog no. 306587,
Abcam, Cambridge, UK), and CD8 alpha (dilution 1:1000, catalog no. 237709, Abcam,
Cambridge, UK). The immunoreactivity for α-SMA was categorized as mild or moderate
and marked by the value multiplied by the intensity and area. The immunoreactivity
for CXCR3 in TME was interpreted as 1, ≤33% of positively reactive lymphoid cells;
2, 34–67% of positive cells; and 3, >67% of positive cells. CD8 alpha immunopositivity
was interpreted as 1, <10% of positive cells; 2, 10–30% of positive cells; and 3, >30% of
positive cells. CXCL10 positivity was categorized as 0, no positive cells; 1, <5% positive
cells; and 2, >5% positively reacting cells. We identified TILs as the lymphocytes located in
the stroma surrounding the tumor in H&E and IHC slides. The evaluation of expression
was performed manually by an expert pathologist.

2.5. Neoadjuvant Rectal Score

The neoadjuvant rectal score (NAR) assesses the difference between the initial clinical
and pathological T stage and the presence or absence of nodal involvement after treat-
ment [14]. The calculation formula incorporates cT-, ypT-, and ypN-stage information,
applying discrete weighting values for each staging category as follows. The equation for
calculating the NAR is as follows:

NAR = [5ypN − 3(cT–ypT) + 12]2/9.61

where cT represents the clinical T stage (1, 2, 3 or 4), ypT represents the pathological T stage
(1, 2, 3 or 4) and ypN represents the pathological nodal status (0, 1 or 2). In the present
study, the score values of this population were categorized as low (<8), intermediate (8–16)
and high (>16), following the validation results of the NSABP-03 and CAO/ARO/AIO-04
trials [14,15].

2.6. Neutrophil-to-Lymphocyte Ratio

The neutrophil-to-lymphocyte ratio (NLR) was calculated by dividing the percentage
of neutrophils by the percentage of lymphocytes from the peripheral white blood cell
count. The differential blood counts before surgery were extracted from the patients’
electronic medical records. An NLR of ≥5 was considered elevated according to an earlier
report [16–18]. The cut-off values for the groups were defined by successively comparing
different NLR values for their impact on the prognostic significance of RFS, dividing the
two groups into low (<6) and high (≥6) NLRs.

2.7. AI-Based Immune Phenotype Analysis

Lunit SCOPE IO, an advanced AI-driven whole-slide image analyzer, was engineered
utilizing data from over 26 distinct tumor types and origins. The cell detection model was
constructed on the basis of 20,617 image patches sourced from 5609 whole-slide images
(WSIs), with 3798 patches designated for training purposes and 1811 patches reserved for
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validation. The tissue segmentation model was developed via 76,110 patches extracted
from 18,935 WSIs, with 15,936 patches allocated for training and 2999 patches allocated for
validation. A cumulative total of 2,828,448 cells and 1.07 × 1010 µm2 of cancerous tissue
and cancer stroma were annotated by board-certified pathologists.

Lunit SCOPE IO predicts cancer areas (cancer parenchyma), cancer stroma, and lym-
phocytes at the pixel level. It then identifies lymphocytes located in both the cancer area
and cancer stroma as TILs, which are used to differentiate immune phenotypes. Spatial TIL
densities were assessed by detecting cellular components and segmenting tissue regions
within H&E-stained whole-slide images. Each WSI, varying in dimension, was partitioned
into grids of 0.25 mm2 for meticulous analysis. The model estimated TIL densities and
classified immune phenotypes on the basis of the following criteria: inflamed, characterized
by an intratumoral TIL density ≥ 130/mm2; immune-excluded, defined as intratumoral
TIL density < 130/mm2 with stromal TIL density ≥ 260/mm2; and immune-desert, where
TIL densities fell below the specified thresholds in both regions. The representative immune
phenotype for each WSI was classified as inflamed if ≥33.3% of the grids within the WSI
exhibited the inflamed immune phenotype and immune-excluded if ≥33.3% of the grids
displayed the immune-excluded phenotype and the proportion of inflamed phenotype was
<33.3%; otherwise, the WSI was categorized as immune-desert.

2.8. Statistical Analysis

Analyses of associations among clinicopathological parameters were performed via
the chi-square test and Fisher’s exact test. Survival analyses were performed via the Kaplan–
Meier method, and curves were compared via the log-rank test. Overall survival (OS) was
defined as the time from the date of surgery to the date of death. RFS was defined as
the time from the date of surgery to the date of recurrence or death, whichever occurred
first. If neither event occurred at the time of analysis, the patient was censored. Factors
associated with OS and RFS were identified by univariate and multivariate Cox propor-
tional hazard regression models with hazard ratios (HRs) and 95% confidence intervals
(CIs). All variables from the univariate analysis with p-values < 0.05 were incorporated
into the multivariate Cox hazard regression model with a stepwise forward procedure.
Statistical analyses were performed via SPSS version 24.0 (IBM Corp., Armonk, NY, USA).
All p-values were two-sided, with p-values < 0.05 indicating statistical significance.

3. Results
3.1. Patient Population, Clinical Characteristics and Survival Outcomes

A total of 108 patients with a median age of 60 years were analyzed (Table 1). The
median follow-up was 59 months. During this time, 32 patients experienced recurrence, and
19 patients died due to disease recurrence. The 3-year RFS was 75.6% (95% CI: 67.17–84.03),
and the 5-year OS was 84.8% (95% CI, 77.15–91.65). Adjuvant chemotherapy included
oral capecitabine as 5-fluorouracil monotherapy (n = 41) or oxaliplatin-based combination
therapy (n = 55). Seven patients did not receive adjuvant chemotherapy. Survival outcomes
differed significantly based on whether adjuvant chemotherapy was administered (RFS:
p < 0.001, OS: p < 0.001). However, outcomes did not differ on the basis of the type of
adjuvant chemotherapy (i.e., 5-FU monotherapy or oxaliplatin-based combination therapy);
hence, we categorized the groups as either “none” or “adjuvant chemotherapy”. Table 2
summarizes the pathologic results after surgery.

Table 1. Clinical characteristics of the studied patient cohort.

Characteristics N (%)

Sex
Male 79 (73.1)

Female 29 (26.9)
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Table 1. Cont.

Characteristics N (%)

Age
Median (year) 60 (36–90)

<70 69
>70 39

Tumor site
upper-mid 77 (71.2)

low 31 (28.7)

Clinical stage at diagnosis

T Stage
T2–3 44 (61.1)
T4 42 (38.9)

N Stage
N0–1 62 (57.4)

N2 46 (42.6)

Adjuvant chemotherapy
None 12 (11)

5-FU monotherapy 41 (38)
5-FU + oxalipaltin 55 (51)

5-FU, 5-fluorouracil.

Table 2. Univariate and multivariate analyses associated with RFS and OS in patients with stage III
LARC after nCRT.

RFS OS

Characteristics N Univariate Analysis Multivariate Analysis Univariate Analysis Multivariate Analysis

HR (95% CI) p-Value HR (95% CI) p-Value HR (95% CI) p-Value HR (95% CI) p-Value

Sex
Female 29 1 1
Male 79 1.4 (0.7–3.0) 0.347 1.7 (0.6–5.1) 0.300

Age
<70 39 1 1
≥70 69 1.4 (0.7–3.0) 0.326 1.7 (0.6–4.6) 0.321

Site
Upper-mid 77 1 1
Low 31 2.5 (1.2–5.0) 0.010 2.4 (0.9–6.3) 0.077

Tumor grade
G 1–2 99 1 1
G 3 9 4.3 (1.6–11.3) 0.016 3.7 (1.3–11.0) 0.016 4.4 (1.2–15.6) 0.012

ypT
ypT 0–3 95 1 1
ypT 4 13 2.4 (1.0–5.8) 0.051 4.3 (1.5–12.4) 0.003

ypN
ypN 0–1 97 1 1
ypN 2 11 2.4 (0.9–6.3) 0.064 1.4 (0.3–6.0) 0.681

LVI
No 86 1 1
Yes 17 2.2 (1.0–4.7) 0.046 4.6 (1.6–13.3) 0.002 4.8 (1.5–15.5) 0.008

PNI
No 61 1 1
Yes 47 5.9 (2.5–13.6) <0.01 5.3 (2.2–13.1) <0.01 22.6 (3.0–170.6) <0.01 12.6 (1.6–98.8) 0.016

Tumor deposit
No 91 1 1
Yes 17 2.1 (1.0–4.6) 0.050 4.2 (1.6–11.3) 0.002
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Table 2. Cont.

RFS OS

Characteristics N Univariate Analysis Multivariate Analysis Univariate Analysis Multivariate Analysis

HR (95% CI) p-Value HR (95% CI) p-Value HR (95% CI) p-Value HR (95% CI) p-Value

MSI
N/A 13
Yes 92 1 1
No 3 1.2 (0.1–13.4) 0.876 21.0 (0–732) 0.249

CRM status
>1 mm 82 1 1
≤1 mm 26 3.9 (2.0–8.0) <0.01 3.1 (1.5–6.7) 0.004 6.7 (2.4–18.2) <0.01 3.9 (1.4–11.0) 0.011

mDworak TRG
1–2 62 1 1
3 46 2.2 (1.0–5.0) 0.048 2.1 (0.7–6.4) 0.088

NAR
<16 55 1 1
≥16 33 1.8 (0.9–3.6) 0.164 1.4 (0.5–3.7) 0.512

NLR
<6 88 1 1
≥6 20 2.4 (1.1–5.2) 0.024 2.5 (0.9–7.2) 0.080

Adjuvant
chemotherapy

Yes 96 1 1
No 12 6.2 (2.6–14.7) <0.01 5.1 (1.9–13.5) 0.001 10.6 (3.4–33.2) <0.01 6.9 (1.9–25.3) 0.003

CD8+ T cell
High, 2+, 3+ 95 1 1
Low, 1+ 13 4.7 (2.2–10.4) <0.01 2.3 (1.0–5.0) 0.046 2.4 (0.8–7.5) 0.128

CXCR3
High, 3+ 10 1 1

Low, 1+, 2+ 98 27.6
(0.3–249.6) 0.023 30.1 (0.7–233) 0.081

CXCL10
High, 3+ 22 1 1
Low, 1+, 2+ 86 1.1 (0.4–2.6) 0.640 1.3 (0.6–2.7) 0.473

α-SMA
High 2+, 3+ 74 1.8 (0.8–4.2) 0.055 1.2 (0.4–3.5)
Low 1+ 34 1 1 0.349

AI-immune
phenotype

Inflamed/Immune-
excluded 72 1 1

Immune-desert 36 3.3 (1.6–6.8) <0.01 2.7 (1.3–5.7) 0.010 4.3 (1.5–12.3) 0.004

Bold values indicate statistical significance set at p < 0.05; LVI, lymphovascular invasion; PNI, perineural invasion;
MSI, microsatellite instability; CRM, circumferential resection margin; mDworak TRG, modified Dworak tumor
regression grade; NAR, neoadjuvant rectal; NLR, neutrophil-to-lymphocyte ratio; AI, artificial intelligence; CI,
confidence interval; HR, hazard ratio; N/A, not applicable; RFS, recurrence-free survival; OS, overall survival.

3.2. Associations of the Clinicopathologic Parameters, TRG, NAR, and NLR, with
Survival Outcomes

Among these patients, tumor downstaging was observed in 47 patients (yp stage I = 11,
yp stage II = 36), whereas the remaining patients remained at yp stage III at diagnosis,
although there was improvement in the T and N stages. As expected, a lower yp stage
was associated with a higher TRG (p = 0.004) and a lower NAR (p < 0.001). Patients with
an NLR ≥ 6 had significantly poorer RFS than those with an NLR < 6. Additionally, a
higher NLR in blood was significantly associated with lower CD8 expression in tumor
tissues (p = 0.014).
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3.3. Immunohistochemical Staining for CD8+ T Cells and CXCR3 in TILs for Predicting RFS

Grade 3+ of CD8+ T cells was observed in 40 patients (37%), whereas grade 1+ of CD8+

T cells was observed in 13 patients (12%; Supplement Table S1). Survival analysis revealed
that patients with grade 2+ and 3+ of CD8+ T cells had similar survival curves, but those
with grade 1+ of CD8+ T cells were associated with significantly poorer RFS (p < 0.001,
Supplementary Figure S2A). Therefore, we categorized the groups as having either a low
expression of CD8+ T cells (grade 1+) or high expression of CD8+ T cells (grade 2+ and
grade 3+). Patients in the low-expression group of CD8+ T cells had poorer RFS (3-year RFS
rate of 23%) than those in the high-expression group of CD8+ T cells (3-year RFS rate of
81.3%), regardless of yp stage. We analyzed RFS only in the yp stage II patients (n = 80) to
explore the role of CD8 expression within the same stage and found a significant difference
in RFS between the two groups (p < 0.001).

In the case of CXCR3 in TILs, grade 3+ was observed in 10 patients (9%), whereas
grade 1+ was observed in 55 patients (51%). Survival analysis revealed that patients with
grade 1+ and grade 2+ CXCR3 had similar survival curves, but those with grade 3+ CXCR3
had better RFS (p = 0.066, Supplementary Figure S2B). On this basis, we categorized the
groups as having either a low expression of CXCR3 (grade 1+, grade 2+) or high expression
of CXCR3 (grade 3+). Similar to patients with CD8+ T cells, patients in the high-expression
group of CXCR3 had significantly longer RFS than those in the low-expression group of
CXCR3 (p = 0.023).

3.4. Correlation of the Immune-Desert Immune Phenotype with CD8+ T Cells and CXCR3 in TILs

We performed immune phenotype analysis via an AI-powered spatial TIL analyzer
from H&E images of the corresponding tumor samples, to analyze the TME comprehen-
sively. Only 7 patients (6%) exhibited an inflamed phenotype, whereas 36 patients (33%)
presented an immune-desert phenotype. This immune phenotype was a significant predic-
tor of RFS, with the following order of prognosis: inflamed > immune-excluded > immune-
desert (p = 0.001, Supplementary Figure S2C). For the multivariate analysis related to
RFS, we divided the groups into inflamed, immune-excluded, and immune-desert groups
(p = 0.005, Supplementary Figure S2D,E). As depicted in Figure 1, the expression of CD8+ T
cells, CXCR3 in TILs, and the immune phenotype were significantly correlated. Specifically,
the expression level of CXCR3 tended to gradually increase in the order of immune-desert,
immune-excluded, and inflamed phenotypes. This finding suggests a relationship in which
CXCR3 expression levels may serve as a marker indicative of the immune status within the
TME, influencing the observed immune phenotypes.

Unlike the expression of CD8+ T cells or CXCR3 in TILs, which was not correlated
with TRG, immune phenotypes were significantly associated with TRG. Specifically, TRG 3
was observed in patients with an inflamed phenotype (85.7%), whereas TRG 1 was more
prevalent among patients with an immune-desert phenotype (63.6%, p = 0.036, Figure 2).
In addition, even within the same TRG 2 group, different RFS rates were observed on the
basis of CD8+ T cell expression (p < 0.001) and immune phenotype (p = 0.037).

3.5. Univariate and Multivariate Analysis of Clinical Factors and the Tumor Immune
Microenvironment According to Survival

Among the significant risk factors identified in the univariate analysis of RFS, clinical
factors, including tumor grade (G3), perineural invasion (PNI), circumferential resection
margin (CRM) status, the administration of adjuvant chemotherapy and the expression
of CD8+ T cells, CXCR3, and Lunit SCOPE IO as TiME biomarkers remained significantly
associated with RFS in the multivariate analysis (Table 2). In contrast, while clinical
factors such as PNI, CRM status, and the administration of adjuvant chemotherapy were
significantly associated with OS in the multivariate analysis, TiME biomarkers did not
demonstrate statistical significance in this study.
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We conducted an additional stratified analysis based on adjuvant chemotherapy to
assess whether the prognostic significance of these biomarkers regarding recurrence is
influenced by adjuvant chemotherapy. As a result, even when adjuvant chemotherapy
was administered, CD8+ T cells, CXCR3 in TILs and AI-powered immune phenotype
analysis exhibited significant prognostic value for recurrence risk (Figure 3). Overall, we
developed a predictive model combining yp stage and TiME biomarkers, including CD8+

T cells or AI-powered immune phenotype. Patients with a high expression of CD8+ T cells
demonstrated better survival than other patients regardless of yp stage. In addition, patients
with either an inflamed or immune-excluded phenotype and yp stage I–II disease had a
significantly better 3-year RFS rates of 85.2% (95% CI:85.11–85.29) than patients without
these phenotypes, who had a 3Y-RFS rate of 56.0% (95% CI:55.83–56.17). However, patients
with the immune-desert phenotype had a poor prognosis regardless of yp stage (Figure 4).
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4. Discussion

The relationship between the TiME and prognosis in patients with colon cancer has
already been established in numerous studies [5,19,20]. However, the understanding of the
complex causal links between the TiME and survival outcomes in rectal cancer patients,
especially in the context of adjuvant chemotherapy, remains limited. Our study sheds
new light on the clinical significance of the TiME in recurrence the prediction of LARC
recurrence and highlights the potential role of novel digital biomarkers using AI-powered
digital pathology to predict patient prognosis.

Although the ADORE trial established oxaliplatin-based combination chemotherapy
as the most effective adjuvant chemotherapy for patients with yp stage II or III rectal cancer
after nCRT, recurrence remains a significant issue [21]. Our findings, which are consistent
with those of previous studies on colon cancer, underscore the importance of CD8+ T cells
in predicting disease-free survival in rectal cancer patients, even after nCRT. Notably, the
recurrence rate varies with CD8+ T cell expression, suggesting the need to improve the
TiME to reduce recurrence in LARC patients.

Recent studies have revealed that the density of CD3+ and CD8+ T cells among immune
cells in colon cancer is a good predictor of disease-free survival not only in microsatellite
unstable but also in microsatellite stable colon cancer [22,23]. Thus, an immunoscore, which
quantifies cytotoxic T cells in the TME by combining CD3+ and CD8+ T cell densities, was
incorporated into the 2020 ESMO Clinical Practice Guidelines for localized colon cancer to
refine prognosis in conjunction with TNM staging [24]. By validating the immunoscore
in a large-scale clinical trial, Sinicrope, F.A. et al. demonstrated that it could enhance
prognostication beyond clinical risk group classification in patients treated with adjuvant
5-FU and oxaliplatin chemotherapy in stage III colon cancer patients in the NCCCTG
NO147 clinical trial [25]. Our results are consistent with this report, highlighting the
importance of CD8+ T cells in patients with rectal cancer after nCRT. In particular, the
variance in the recurrence rate, which depends on the expression of CD8+ T cells present
even at the same pathologic stage, suggests that improvement of the TiME is necessary as
an adjuvant treatment.

For CD8+ T cells to effectively infiltrate the tumor site, chemokine receptors, such
as CXCR3, must interact with their corresponding chemokines (CXCL9, CXCL10 and
CXCL11). CXCR3 binds and traffics toward its IFNγ-inducible ligands, CXCL9, 10, and 11,
which are expressed primarily in activated CD8+ T cells, NK cells, and CD4+ TH1 cells and
play critical roles in recruiting and retaining T cells during infection, autoimmunity and
cancer [26]. Previous research has shown that CXCR3 is crucial for the efficacy of adoptively
transferred antitumor T cells and the mediation of tumor regression following anti-PD-1
therapy. Radiation therapy can enhance CXCR3-mediated T cell trafficking through IFN-
induced chemokine stimulation [27–29]. However, only a small percentage of patients
(strong positivity in only 9% of patients in our study) exhibited high CXCR3 expression after
nCRT, indicating that other factors, such as the TME composition, may regulate CXCR3.
For example, TGF-β, a tumor-promoting cytokine, can block T cell trafficking by repressing
CXCR3 expression [30]. Thus, modulating the TiME, including suppressing TGF-β, may
be necessary for recruiting CD8+ or CXCR3+ T cells to promote the antitumor TME. Our
multivariate analysis revealed that CD8+ T cells are powerful and definitive biomarkers that
serve as key effector cells in various TME conditions. Accordingly, therapeutic approaches
enhancing CD8+ T cell expression, such as promoting CXCR3 expression or inhibiting TGF-
β, are needed. A current clinical trial using LY2157299 (a TGF-βR inhibitor) in combination
with chemotherapy and radiotherapy may provide further insights into this hypothesis.

A major challenge in leveraging the TiME in clinical practice is the issue of spatial
or temporal heterogeneity. For example, the CXCR3-CXCL9-CXCL-10-CXCL-11 axis has
different effects on immune cells and tumor cells, and higher CXCR3 expression on tumor
cells, unlike that on immune cells, is associated with a worse prognosis [20,31,32]. Therefore,
we analyzed CXCR3 only in TILs to avoid conflicting interpretations. As a result, we found
that CXCR3 expression on TILs, together with that on CD8+ T cells, serves as a positive
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prognostic factor for RFS. To the best of our knowledge, this is the first report on the
prognostic role of CXCR3 in LARC patients.

As another approach to understanding the spatial TME and validating immune
biomarkers, we introduced the Lunit Score IO in this study. CD8+ T cell densities were
significantly correlated with the immune phenotype, reflecting the TiME. Prior studies have
demonstrated that computational TIL analysis of H&E-stained images is correlated with
patient prognosis in non-ICI-treated cancer patients. H&E-based immune phenotyping,
which reflects active antitumor immune responses, correlates with high IFNG pathway
activation. Computational TIL assessment offers a more objective, time-efficient, and
labor-saving analysis, minimizing interobserver variability and interpretation bias [33–35].
Additionally, adjuvant therapy might not be necessary for inflamed or immune-excluded
patients with yp stage I–II disease. Furthermore, inflamed, immune-excluded and immune-
desert phenotypes were strongly correlated with a decrease in CXCR3 expression. Thus, in
addition to CD8, CXCR3 has potential as a prognostic marker for the TiME, and further
validation studies for CXCR3 are needed in colorectal cancer.

The ultimate goal of understanding the TiME is to apply this knowledge to therapeutic
strategies. Our findings demonstrated that patients with low CD8+ T cell expression have a
relatively high recurrence rate even with oxaliplatin-based chemotherapy, indicating that
the use of cytotoxic chemotherapy alone is insufficient to overcome the immunosuppressive
TME. Furthermore, the fact that TiME biomarkers are significant in multivariate analysis
of RFS but not OS suggests that immunotherapy might be more effective as an adjuvant
treatment for reducing recurrence than for treating recurrent or metastatic disease. This
highlights the need to increase the number of CD8+ T cells with pre- or postoperative
immunotherapy to restore the TiME. Recent studies have shown exceptional responses
to neoadjuvant immunotherapy with botensilimab (anti-CTLA-4) and balstilimab (anti-
PD-1) for pMMR/MSS colorectal cancer, suggesting another approach to improve tumor
regression and restore the TiME [36].

Finally, our study re-evaluated clinical factors currently used within the same stage.
Despite its correlation with CD8+ T cell expression, the NLR alone is insufficient for
prognosis prediction; thus, new blood-based immune biomarkers are needed. Although
TRG and NAR are widely used, they have limitations in predicting recurrence in patients
with the same disease stage. Therefore, the development of a combined prediction model
that incorporates both clinical and TiME factors is warranted.

Our study has several limitations. First, the study had a retrospective design with
a small sample size. Thus, we plan to validate the role of AI-based digital pathology as
an immune digital biomarker. Further research is required to investigate the correlation
between these immune biomarkers and immune phenotypes, particularly through tran-
scriptomic analyses and other advanced techniques. Additionally, since the role of the
stroma was not addressed in this study, the co-expression of other CAF-related markers
must also be confirmed.

One of the strengths of our study is that it demonstrates the importance of the TiME
in identifying high-risk patients, even those with lower-stage disease. We confirmed the
prognostic utility for predicting recurrence by incorporating digital AI with CD8+ T cell
expression. As this approach can also provide stratification for postoperative adjuvant
chemotherapy in clinical practice, we plan to conduct further research for validation.

5. Conclusions

Our study emphasizes the importance of the TiME in identifying high-risk patients,
including those with lower-stage disease. By integrating AI-based analysis with CD8+

T cell expression, we confirmed the prognostic utility of these biomarkers in predicting
recurrence, thereby providing a basis for stratifying patients for postoperative adjuvant
chemotherapy in clinical practice. Further research is needed to validate these findings and
explore the role of additional TME components.
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