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Abstract: The development of the Gleason grading system has proven to be an irreplaceable tool
in prostate cancer diagnostics within urology. Despite the advancements and developments in
diagnostics, there remains a discrepancy in the grading process among even the most experienced
pathologists. AI algorithms have demonstrated potential in detecting cancer and assigning Gleason
grades, offering a solution to the issue of significant variability among pathologists’ evaluations. Our
paper explores the evolving role of AI in prostate cancer histopathology, with a key focus on outcomes
and the reliability of various AI algorithms for Gleason pattern assessment. We conducted a non-
systematic review of the published literature to examine the role of artificial intelligence in Gleason
pattern diagnostics. The PubMed and Google Scholar databases were searched to gather pertinent
information about recent advancements in artificial intelligence and their impact on Gleason patterns.
We found that AI algorithms are increasingly being used to identify Gleason patterns in prostate
cancer, with recent studies showing promising advancements that surpass traditional diagnostic
methods. These findings highlight AI’s potential to be integrated into clinical practice, enhancing
pathologists’ workflows and improving patient outcomes. The inter-observer variability in Gleason
grading has seen an improvement in efficiency with the implementation of AI. Pathologists using AI
have reported successful outcomes, demonstrating its effectiveness as a supplementary tool. While
some refinements are still needed before AI can be fully implemented in clinical practice, its positive
impact is anticipated soon.
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1. Introduction

The development of the Gleason grade has proven to be an irreplaceable tool in
prostate cancer diagnostics within urology. Developed in 1966 by Donald Gleason, it has
gained almost universal acceptance by facilitating risk communication and enhancing treat-
ment decision-making [1,2]. The Gleason grade assesses the architecture or arrangement
of the malignant cells and incorporates factors, such as the degree of differentiation [3].
The Gleason score is calculated by summing two numbers, each highlighting different
Gleason grades. The first number depicts the grade of the primary cancer cell pattern, and
the second number is the grade of the next most common pattern. When only one Gleason
grade is present, it is doubled to form the score. This score is typically written in a format
like 3 + 4 = 7. In this example, the first 3 is the most common grade while the 4 shows the
second most common grade, giving a total Gleason score of 7.

However, the formula would be 4 + 3 = 7 if the predominant pattern was grade
4. Even though the total score remains 7, this configuration indicates a more aggressive
cancer. If there is a third, higher-grade, pattern, it replaces the secondary grade in the score
calculation. A Gleason score of less than 6 usually indicates a state of indolence within the
cancer, which constitutes a lack of clinical significance, but scores including 8 or above are
frequently related to poor tumor differentiation and an unfavorable prognosis [4].

In 2014, a revision of the Gleason scoring method was performed at the International
Society of Urological Pathology consensus meeting. The revisions included the percentage
of Gleason pattern 4 and the introduction of five new grades of prostate cancer, determined
by the Gleason score. Under the new grading system, Grade I consisted of Gleason scores
of 6 and below, with Grade II being defined by a Gleason score of 3 + 4 = 7. Grade III
included a Gleason score of 4 + 3 = 7, Grade IV with a Gleason score of 4 + 4 = 8, and finally
Grade V, which is composed of all Gleason scores between 9 and 10 [5].

Artificial intelligence (AI) focuses on creating autonomous systems capable of per-
forming tasks traditionally carried out by humans, employing advanced non-linear mathe-
matical simulations and simple components that mimic human neurons. This field starts by
exploring how the human mind perceives, understands, and executes cognitive functions,
such as intelligence, creativity, language comprehension, memory, pattern recognition,
vision, reasoning, and connecting information. AI aims to replicate these abilities to handle
a range of activities, from straightforward tasks, like object recognition, to more complex
functions, such as forecasting.

AI strategies involve learning from existing data without inherent biases, relying
on statistical models, and predicting future outcomes. This approach enhances decision-
making by making it more informed and efficient.

The aim of AI is to develop machines that can sense their surroundings and perform
actions to optimize their success. Achieving this involves various subfields, including
machine learning (ML), artificial neural networks (ANNs), deep learning (DL), natural
language processing (NLP), computer vision, predictive analytics, evolutionary and genetic
algorithms, expert systems, and speech processing [6].

In the healthcare sector, artificial intelligence (AI) encompasses a wide range of ap-
plications, systems, algorithms, and devices designed to assist healthcare providers by
leveraging computer systems and big data. Medical data are used to support doctors and
patients in making informed decisions and selecting the most appropriate treatments. AI
plays a crucial role in developing innovative methods for analyzing complex, data-intensive
tasks, utilizing various AI disciplines. In addition to enhancing patient care, AI also boosts
efficiency in research and development (R&D) and helps identify disease patterns and
correlations earlier than traditional methods [7].

Recently, there has been a significant surge in investment and interest in AI applications
within medicine, driven by growing evidence that AI can improve healthcare delivery.

Despite the advancements and developments in diagnostics, there is still a discrepancy
in the grading process among the most experienced [8]. The fruitful rise of AI has paved
the way for enhanced medical diagnostics. Recent research has significantly advanced
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the diagnosis of tumors across various organs, with a notable focus on prostate cancer.
The integration of deep learning (DL) with histopathology and radiology, particularly
magnetic resonance imaging (MRI), has become crucial in the grading of prostate cancerous
tissues [9]. This combination leverages the strengths of both imaging modalities to enhance
diagnostic accuracy and improve the assessment of cancer severity. The emergence of
digital pathology has enabled the creation of AI systems designed to assist pathologists
in analyzing prostate biopsies. These AI tools have demonstrated potential in detecting
cancer and assigning Gleason grades, offering a solution to the variable inconsistencies
which lie within the pathologists’ assessments [10].

2. Aim

This paper aims to explore the present role of artificial intelligence for targeted prostate
cancer histopathology by assessing and comparing the outcomes and reliability of multiple
AI algorithms geared toward Gleason pattern detection.

3. Method

We conducted a non-systematic review of the existing literature on the application
of artificial intelligence in diagnosing Gleason patterns. We explored the PubMed and
Google Scholar databases to gather insights on the latest advancements in AI and their
effects on Gleason pattern analysis. Various keyword combinations were employed to
pinpoint pertinent studies published up to 3 July 2024. Some keywords include artificial
intelligence, Gleason pattern, prostate cancer, and histopathology. Only those articles
matching our search criteria were considered relevant. Additionally, we excluded any
articles not published in English from our review.

The literature review was conducted according to established inclusion criteria. Ini-
tially, titles and abstracts were evaluated, followed by a thorough review of the full text
of selected articles based on these criteria. Additionally, the reference lists of the chosen
articles were manually reviewed to identify any relevant supplementary studies. Any
disagreements about article eligibility were resolved through discussion among the authors,
leading to a consensus decision.

Inclusion Criteria:

1. Articles related to artificial intelligence in urology;
2. Review papers and abstracts;
3. Original articles of full-text length, covering the diagnoses, treatment plans, and

results of urologic conditions.

3.1. Machine Learning Approaches for Automated Gleason Pattern Classification

Automation is an area of machine learning that allows the identification and categoriza-
tion of sections into their respective divisions. With highly sensitive and specific networks
being incorporated into Gleason-grade identification, the role of automated learning has
been given a spotlight. Ao et al. demonstrated that stimulated Raman scattering (SRS)
microscopy built on a deep learning model can automate diagnoses and sort needle biopsy
prostatic tissue according to Gleason scores. A diagnostic (convolutional neural network)
CNN trained on images from 61 patients achieved 85.7% accuracy in classifying Gleason
patterns of prostate cancer. Validation with an additional 22 independent cases yielded
84.4% accuracy. Using the deep learning-stimulated Raman scattering system, Gleason
scores for core needle biopsies from 21 cases showed 71% diagnostic consistency among
3 pathologists. With timely histopathology-compatible evaluations for FT therapeutics, the
study underscores the ability of deep-learning assisted SRS platforms to simplify prostate
cancer diagnosis [11].

A separate study compared an automated tumor assessment of prostate cancer histol-
ogy (ATARI) to a residual network with 101 layers of automated Gleason grading [12]. They
hypothesized that a machine learning model utilizing second-order features from digitized
histology images could distinguish prostate cancer from normal tissue. Additionally, they
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posited that a deep learning model would show varying classification accuracy in both
cancer detection and Gleason pattern differentiation. The results demonstrated that the
ensemble and ResNet models produced overall accuracies of 89% and 88%, respectively, in
identifying cancer versus non-cancer. Notably, only the ResNet model could distinguish
Gleason patterns in Cohort B. These findings indicate that while quantitative pathomic
features can identify cancer regions, deep learning models excel at distinguishing specific
Gleason patterns [13].

Ramamurthy et al. proposed a deep learning network based on EfficientNet architec-
ture that balances the underlying network dimensions and applies a compound scaling
method. The models were developed using H&E-stained tissue microarrays (TMAs) of
prostate cancer from the Harvard Dataverse dataset. This network surpassed existing
methods, achieving a kappa score of 0.5775 [14]. Bhattacharya utilized CorrSigNIA, which
integrates aligned MRI and whole-mount histopathology images from radical prostate-
ctomy patients to generate precise ground truth labels and identify correlated features
between radiology and pathology images.

This study targeted pathological characteristics identified in resected tissue that do
not differentiate between aggressive cancers (Gleason pattern ≥ 4) and indolent cancers
(Gleason pattern = 3) when they are present in mixed lesions. With an accuracy of over 80%,
CorrSigNIA performed exceptionally when differentiating between cancer and non-cancer
cases, achieving an AUC of 0.81 ± 0.31 for cancer identification within biopsy cohorts and
radical prostatectomy. Further results yielded an AUC of 0.82 ± 0.31 and 0.86 ± 0.26 when
identifying clinically significant cancers in these cohorts, respectively

CorrSigNIA consistently outperformed other methods across various metrics
and datasets.

In clinical practice, it can enhance prostate cancer detection and distinguish between
indolent and aggressive cancer components, thus aiding in targeted biopsies, minimizing
unnecessary procedures, and optimizing treatment planning [15]. Using digitized prostate
biopsy specimens, a computer aided diagnostic (CAD) system was developed for the
classification of automated grade groups, which would also classify the Gleason pattern
and the Gleason score.

Among the three CNN models, CNNL achieved the highest patch classification ac-
curacy at 0.76. The macro-averaged and weighted-average metrics spanned between 0.70
and 0.77. For the Gleason grade (GG) classification, the CAD system demonstrated an
accuracy of around 80% and recall for the Gleason grade (GG) classification, with F1 scores
ranging from 60% to 80%. To reinforce this, the precision and negative predictive value
(NPV) were approximated at almost 94%. These results were assessed against standard
models like ResNet50 and VGG-16 to emphasize the superior performance of the CNN in
classifying patches. The results from the proposed pipeline demonstrate its capability to
classify all five Gleason grades of prostate biopsy samples, outperforming standard CNNs.
The agreement between the CAD system and pathologists is on par with the inter-rater
reliability observed among pathologists [9].

3.2. Advanced Neural Networks for Gleason Pattern Recognition

Although the Gleason grading system is essential for managing prostate cancer, it
presents several challenges. The process is labor-intensive, time-consuming, and often
subject to significant variability among observers. Within this, there are often differing
assigned grades between core biopsies and prostatectomy samples, as core biopsies may
not fully capture the extent of the cancer [16]. These problems highlight the need for more
consistent and efficient methods of grading prostate cancer. With its capability to transform
visually intensive fields, AI has the potential to enhance both the speed and precision of
prostate cancer grading.

Among the various neural networks, South Korean-based DeepDx is a prostate AI
algorithm that employs deep neural networks to identify and systematically grade prostate
cancerous tissue. With the algorithm trained and validated on 1133 prostate core needle
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biopsies, it could identify and differentiate between non-cancerous and cancerous tissue,
highlighted by a Cohen’s kappa score of 0.91 in agreement with the reference standard.

For distinguishing malignant from benign cases, the algorithm performed with ac-
curacy, sensitivity, specificity, and a positive predictive value (PPV) of 96%, 99.70%, 88%,
and 95%, respectively. The consistency of the results was maintained when discriminating
between Grade Group (GG) ≥ 2 versus GG 1 and benign cases with an accuracy of 92%, a
sensitivity of 98%, a specificity of 85%, a PPV of 88%, and an NPV of 97%. When identifying
GG ≥ 3 from GG 1–2 and benign cases, DeepDx prevailed, with results showing 92%
accuracy, 95% sensitivity, 90% specificity, 87% PPV, and 96% NPV. The DeepDx Prostate AI
algorithm has demonstrated excellent potential to identify and grade prostate cancer in
digital histopathology images of whole-mount radical prostatectomy (RP) specimens. It
has demonstrated high levels of agreement with expert GU pathologists and performs well
in critical clinical tasks [17].

An alternative study found an improvement in the diagnostic accuracy for pathologists
who incorporated DeepDx, leading to an enhanced concordance relative to pathologists
who didn’t use the algorithm. This was seen more specifically in Gleason patterns 4 and 5
where the kappa value was elevated from 0.741 to 0.925 and the quadratic weighted kappa
also saw a rise from 0.621 to 0.876 with the incorporation of network. With a diagnostic time
reduced by 33.9%, the combination of these results highlights the precision and efficiency
of DeepDx in high-grade prostate cancer detection [18].

With 1133 cases of prostate core needle biopsy, Ryu et al. trained the same neural
network. They found a high level of diagnostic agreement between the system’s grade
group classification and the reference standard, as shown by the quadratic-weighted
Cohen’s kappa coefficient of 0.907. Additionally, the system’s tumor length measurements
demonstrated a stronger correlation (r = 0.970) with the reference standard compared
to the original hospital diagnoses (r = 0.900). When evaluating prostate biopsies, the
system has the potential to assist pathologists in reducing the risk of overdiagnoses or
underdiagnoses by offering second opinions on the Gleason score with pathologist-level
accuracy. Furthermore, it aims to support research on prostate cancer treatment and
prognosis by providing reproducible diagnoses based on consistent standards [19].

U-Net is another deep neural network utilized for the effective and accurate diagnosis
of prostate cancer, most specifically with prostate adenocarcinomas [20]. When evaluated
on whole image testing, the AI system and pathologists produced identical diagnoses for
21 out of 22 sections. When given the task of distinguishing cancerous from non-cancerous
areas, the AI system achieved an AUV of 96.8%, with the pixel accuracy across three
conditions maintaining an accuracy of 95.43% in clinically orientated analysis, 96.93% in
binary analysis, and 93.88% in different ISUP Gleason grades.

Additionally, the frequency-weighted Intersection over Union (IoU) values were
94.32% for binary analysis, 92.13% for clinically oriented analysis, and 90.21% for ISUP
Gleason grade analysis, reinforcing the AI system’s robust capabilities in assisting patholo-
gists make to a final decision [21].

To tackle inter-observer variability when evaluating the Gleason score, Damkliang
et al. [21] implemented an ensemble approach combining attention-based, traditional, and
residual-based U-Net algorithms. The model’s performance was assessed using the Jaccard
similarity coefficient, the Dice similarity coefficient, and the mean Intersection over Union
(IoU). The ARU-Net model achieved Jaccard coefficients of 0.81 for validation and 0.74
for testing. The mean IoU scores for both benign and malignant classes showed good
performance. When evaluating the task of malignant segmentation, the weighted mean
ensemble (WME) outperformed the individual models.

For slide 1346, the malignant probabilistic map accurately identified high-probability
cancer areas, satisfying pathologists. For slide 1929, re-annotation corrected a misclassified
area, improving detection accuracy. The AI-based tool demonstrated the potential to
differentiate between benign and malignant prostate tissue in digitized needle biopsy
images, aiding in Gleason pattern segmentation [22].
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When Gleason variability was compared directly to deep learning platforms, an inter-
observer variability of 0.6946 κ was obtained, with a 46% discrepancy in the sizes of the
areas annotated by the pathologists. The most thoroughly trained models achieved a κ score
of 0.826 ± 0.014 on the test set when trained with data from the same source, reinforcing
the expanding supportive capabilities of the learning program, which can provide a second
opinion to the pathologists [23]. Shao et al. proposed a risk stratification model based on
CNN to correctly reclassify 3.9% of low-risk patients as high-risk and 21.3% of high-risk
patients as low-risk patients when compared to Gleason grading systems, highlighting
the importance of machine learning (ML) in histopathological image assessment with risk
stratification [24].

Fogarty et al. developed a deep learning (DL) model to identify prominent Gleason
patterns using a curated data cohort and validated it on an independent dataset. The
histology images were divided into 14,509 tiles, with expert annotations for glandular
structures and assigned Gleason grades. Transfer learning was utilized for fine-tuning
several deep neural network architectures, initially trained on ImageNet, to adapt them to
histopathological discrimination. With a 52-patient baseline, the best DL model achieved
91% accuracy, an F1-score of 0.91, and an AUC of 0.96 in distinguishing cancer grade
(GS3/4) from benign tissue. Within a 40-patient test, the model achieved 68% accuracy and
an AUC of 0.71 for distinguishing between GS3 and GS4. The baseline scores presented
by the authors focus on distinguishing primary Gleason patterns in individual glands or
small patches of prostate whole slide images (WSI). The study demonstrates that a CNN
deep learning (DL) model can accurately discriminate malignant patterns from benign
tissue [25].

After an extensive ablation study, a ResNet18 CNN classifier utilizing transfer learning
was implemented with the goal of addressing the underlying issues associated with label
inconsistencies within Gleason grading accuracy. This was employed through a multi-label
deep learning classifier, which implemented an ensemble of three one-vs-all deep models
to detect Gleason grades (G3, G4, and G5) in histopathology images. With a 14% increase
in accuracy and a 4% rise in the F1-score, the multi-label ensemble classifier emphasized
its precision and reliability, further underscoring the potential for machine learning in a
clinical setting [26].

3.3. Comparative Analysis of Commercial and Public Learning Models for Histopathological
Image Analysis

The prostate cancer grade assessment (PANDA) challenge aimed to accelerate medical
imaging innovation by allowing the open comparison of various deep-learning models
to identify and classify their efficacy to validate the next generation of prostate cancer
diagnostics. The competition framework kept developers separate from the independent
evaluation process, reducing the risk of information leakage and providing an authentic
measure of the algorithms’ diagnostic capabilities. This approach demonstrated that
integrating AI with innovative study designs and thorough, predetermined validation
across various cohorts can effectively address complex and critical medical challenges [27].

The PANDA challenge assessed various public AI algorithms, including Kiminya,
BearlyBears, PND, NS_Pathology, and Vanda. Among them, PND, BarelyBears, and
NS_Pathology demonstrated superior performance. Specifically, PND achieved a quadratic
weighted kappa (QWK) score of 0.862, BarelyBears scored 0.845, and NS_Pathology had a
QWK of 0.760, reflecting high agreement with the pathologists.

Notably, NS_Pathology excelled in distinguishing tumors from benign tissue, with a
specificity of 94.50% and a sensitivity of 93.80%. At a clinically relevant threshold combining
benign tissue and Grade Group 1, NS_Pathology maintained high performance, with a
specificity of 91.50% and a sensitivity of 84.90%. PND and BarelyBears also performed well,
with PND achieving a specificity of 75.00% and sensitivity of 98.40%, while BarelyBears
achieved a specificity of 82.70% and a sensitivity of 96.70%. At a different threshold, PND
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showed a specificity of 80.30% and a sensitivity of 95.20%, while BarelyBears displayed a
specificity of 76.10% and a sensitivity of 100% [28].

Commercial algorithms, such as Paige Prostate and AIRA Prostate, have shown
promising results and underscore the potential of AI technology in clinical settings. No-
tably, the Paige Prostate AI has received FDA approval for use, highlighting its clinical
applicability [29]. Paige achieved a specificity of 87.90% at a sensitivity of 98.80%, while
AIRA Matrix demonstrated a higher specificity of 91.80% at the same sensitivity of 98.80%.
At the clinically relevant threshold where benign tissue and Grade Group 1 are considered
versus all other categories, Paige attained a specificity of 92.30% with a sensitivity of 93.40%,
and AIRA Matrix demonstrated a specificity of 90.40% with the same sensitivity of 93.40%.

Further, when evaluating the clinically relevant threshold of benign tissue, Grade
Group 1 and Grade Group 2 versus Grade Groups 3, 4, and 5, the AIRA Matrix reached
a specificity of 94.40% with a sensitivity of 92.90%. In contrast, Paige achieved a perfect
specificity of 100% but with a lower sensitivity of 71.40%. These results demonstrate the
efficacy of commercial AI algorithms in accurately identifying prostate cancer patterns,
further supporting their potential role within clinical decision making [28].

Commercial algorithms achieved the highest performance overall, with the best-
performing public algorithms demonstrating comparable results as their commercial coun-
terparts. On average, commercial algorithms exhibited a higher agreement with patholo-
gists compared to public algorithms on an identical dataset. When we look at commercial
algorithms in comparison, they tend to underestimate cases more frequently than aca-
demic ones. The discrepancy may be caused by the difference in optimization goals. The
PANDA challenge algorithms were specifically optimized for the kappa coefficient, while
commercial algorithms were optimized for clinical decision-making.

3.4. Multi-Omic and Radiomic Features for Gleason Pattern Prediction

Modern systems biology, leveraging “omics” technologies, holds great promise for
minimizing difficulties presented in the modern era of precision medicine. The applica-
tion of “omic” techniques to cancer research represents a ground-breaking approach for
identifying new biomarkers. This methodology could result in the discovery of unique
biomarker molecules and molecular signatures with promising clinical relevance [30].

Researchers utilize such technology to capture diverse molecular characteristics of bio-
logical systems with high throughput and resolution, resulting in the creation of extensive
and intricate datasets. By combining these various sources of biological data, we can gain a
deeper understanding of complex diseases like cancer. However, a significant challenge lies
in integrating the heterogeneous data produced into a single machine-learning model for
effective classification. A PaCMAP-embedded CNN for multi-omics data integration was
proposed by Qattous et al. [31], involving a novel approach that combines copy number
alteration (CNA), DNA methylation, and gene expression data to forecast the Gleason score.

Scientists use this technology to efficiently and precisely record a wide range of
molecular features of biological systems, generating large and complex datasets. Through
the integration of many biological data sources, we may enhance our comprehension of
complex diseases such as cancer. Despite this, the complexities of diverse data merging
into a unified machine learning model for efficient categorization remains, and Qattous
et al. presented a PaCMAP-embedded CNN for multi-omic data integration through the
incorporation of copy number alteration (CNA), DNA methylation, and gene expression
data to predict the Gleason score.

The model demonstrated a superior performance in comparison to the state-of-the-art
i-SOM-GSN model by integrating multi-omics data with a CNN architecture, achieving an
accuracy of 98.89% and an AUC of 0.9996. These results highlight the advanced role and
reliability of multi-omic data for predicting patient outcomes. A combination of PaCMAP
with RBG and a CNN assist in reducing the number of dimensions while enhancing
visualization and prediction technology, creating a robust framework for accurate prediction
encompassing different types of omics data [31].
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Innovative radiomic features allow for the extraction of biological data from standard
MRI image sequences. An independent study aimed to develop a new model using the
joint intensity matrix (JIM) to predict the Gleason score in prostate cancer patients. Five
JIM-derived features, including contrast, homogeneity, difference variance, dissimilarity,
and inverse difference, were found to be independent predictors of GS (p < 0.05). The
combination of JIM and GLCM analyses yielded the highest AUC values: 78.40% for
GS ≤ 6, 82.35% for GS = 3 + 4, and 64.76% for GS ≥ 4 + 3, emphasizing the complementary
value of JIM features to the gray level co-occurrence matrix [32].

Through multi-omics, Ning et al. [33] utilized the integration of biological domains
to provide a well-defined insight into prostate cancer that could predict the Gleason
grading of prostate cancer, facilitating precise patient stratification. By combining data from
radiomics, genomics, and proteomics, the study analyzed 146 newly diagnosed prostate
cancer patients who underwent PET/MR scans prior to radical prostatectomy. Isolation of
DNA was carried out through formalin-fixed paraffin-embedded tissue (FPPE) samples
from prostatectomy, and whole exome sequencing was conducted.

Through multi-omics, Ning et al. utilized the integration of biological domains to
provide a well-defined insight into prostate cancer that could predict the Gleason grading of
prostate cancer, facilitating precise patient stratification. By combining data from radiomics,
genomics, and proteomics, the study analyzed 146 newly diagnosed prostate cancer patients
who underwent PET/MR scans prior to radical prostatectomy.

Regarding proteomics, an immunohistochemical analysis was completed with PCa-
specific biomarkers. Among various ML-based approaches, the explainable boosting
machine (EBM) algorithm performed best, achieving a sensitivity of 75.00% and a specificity
of 88.00%, a PPV of 75.00%, an NPV of 88.00%, an accuracy of 83.00%, and an AUC of
0.81. The robustness of these metrics was confirmed using the 10-fold Monte Carlo cross-
validation. In comparison to needle biopsy for predicting Gleason grading, the EBM
model improved the sensitivity by 13%, NPV by 7%, accuracy by 2%, and the AUC by 4%.
Conversely, the specificity and PPV decreased by 4% and 6%, respectively. These results
demonstrate the superior accuracy of multi-omics-based machine learning in Gleason
grading compared to the current clinical baseline. Its use can target and refine clinical
decision-making, alongside personalized prostate cancer management [33].

Emerging studies have utilized machine learning to analyze radiomic features derived
from B-mode ultrasound, shear-wave elastography (SWE), and dynamic contrast-enhanced
ultrasound (DCE-US) to localize prostate cancer lesions. Prior to surgery, 50 men with
biopsy-confirmed PCa underwent transrectal ultrasound, SWE, and DCE-US. The images
were automatically segmented and registered, generating radiomic features from all imag-
ing modalities. A random forest classification algorithm was applied to these images. The
study reported an AUC of 0.75 for detecting PCa and an AUC of 0.90 for detection of
significant prostate cancer with Gleason scoring > 3 + 4 [34].

The benefit of a supplementary assessment through AI could alleviate the workload
of pathologists and permit the evaluation of more patients. When Ström et al. used deep
neural networks to evaluate the grading of 1631 biopsies, it achieved an AUC of 0.997
when distinguishing between malignant and benign tissues in an independent dataset.
Alongside this, an AUC of 0.986 was resultant in the external validation dataset [35].

To summarize our findings, we collected and displayed some of the intelligent models
in Table 1.
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Table 1. Inteligent models used for Identification and Comparison of Gleason Patterns in Prostate
Cancer Histopathology.

Study Objective Study Design Algorithm/Model Results

Ao et al. [11]

Gleason assorting of
prostate needle biopsy
and automatic
diagnosis

Images from 61 patients

Validation with
22 independent cases

Gleason scores of core
needle biopsies from
21 cases

• CNN
• Deep

learning-based
SRS

CNN: 85.7%

Validation of
independent case
accuracy: 84.4%

Deep learning-based
SRS: 71% diagnostic
consistency with
3 pathologists

Duenweg et al. [13]

Assess ML models for
differentiating
cancerous regions and
Gleason patterns in
prostate histology

Digitized histology
from 47 PCa patients,
training set of
31 patients, and testing
set of 16 patients

• ResNet model
• Bagged ensemble

model

ResNet accuracy: 88%

Bagged ensemble
model: 89%

Comparison: ResNet >
Bagged ensemble
model

Bhattacharya et al. [15]

Integrate MRI and
histopathology images
to differentiate
aggressive and indolent
prostate cancers

Evaluation on RP and
biopsy cohorts;
3 independent test sets

• CorrSigNIA: CNN
with correlated
MRI and
histopathology
features

Accuracy: 80%

ROC-AUC of general
cancer detection: 0.81

ROC-AUC of clinically
significant cancer:
0.82–0.86

Schmidt et al. [17]

Validate DeepDx
prostate AI for Gleason
grading on
whole-mount prostate
histopathology

500 tiles from 150
whole-mount RP
specimens

• DeepDx prostate
AI, trained on
biopsy images

Cancer detection:
Cohen’s kappa of 0.91

Gleason grading:
Cohen’s kappa of 0.89

Cancer detection: SNS
of 0.997 and SPC: 0.88

GG classification: SNS
of 0.98 and SPC of 0.85

Jung et al. [18]

Validate DeepDx
performance in prostate
cancer diagnosis and
grading

593 whole-slide images
of prostate biopsy;
130 normal and
463 adenocarcinomas

• DeepDx prostate
AI, artificial
neural
network-based
diagnostics
system

GGs kappa/quadratic-
weighted kappa:
0.713/0.922

GSs kappa/quadratic-
weighted kappa:
0.654/0.904

Zhang et al. [21]

Develop AI system to
diagnose prostate
cancer from
histopathological
specimen

896 whole-mount
sections from
160 patients.

826 sections from
148 patients in training
set

Testing set section from
12 patients

• Modified U-Net
for the image
segmentation

ROC-AUC: 96.8%

Pixel accuracy: 96.93%
(binary), 93.88%
(clinically oriented),
93.88% (ISUP Gleason
grade)

AI and pathologist
agreement on diagnosis
of 21/22 sections
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Table 1. Cont.

Study Objective Study Design Algorithm/Model Results

Fogarty et al. [25]

Develop a DL model to
analyze Gleason
patterns in prostate
cancer

Histology images
sectioned into
14,509 tiles

Deep neural network
trained on ImageNet
improved with
histology

GS3/4 vs benign: 91%
accuracy, 0.91 F1-score,
0.96 AUC from
52 patients

GS3 vs GS4: 68%
accuracy, 0.71 AUC
from 40 patients

Faryna et al. [28]

Comparison of the
performance of public
and commercial AI
Gleason grading
algorithm

Whole-slide prostate
biopsy images
including 5 public
algorithms from
PANDA and 2 from
commercial algorithms

10 pathologists

Public algorithms from
PANDA challenge and
2 commercial Gleason
grading algorithms

Pathologists’ quadratic
kappa: 0.777–0.916

AI algorithms’
quadratic kappa:
0.617–0.900

Comparison:
commercial algorithms
> public algorithms

Qattous et al. [31]

Multi-omics data
integration for Gleason
scoring to enhance
prognostics in cancer
diagnosis

Integration of CNA,
DNA methylation and
gene expression data
using PaCMAP

RGB for visualization

CNN for prediction

CNN for prediction
and PaCMAP for
dimensionality
reduction

Accuracy: 98.89%

AUC: 0.9996

Comparison:
outperforms the
i-SOM-GSN model

Ning et al. [33]
Prediction of Gleason
grading utilizing
multi-omics data

Retrospective study of
146 patients with PCa
with integration of
radiomics, genomics
and proteomics data

U-net-based
segmentation for
radiomics

Whole exome
sequencing for
genomics

Immunohistochemistry
for proteomics

EBM classification for
the integration

EBM model: SNS of
0.75, SPC of 0.88, PPV
of 0.75, NPV of 0.88,
ACC of 0.83, ACC of
0.83 and AUC of 0.81

Improvement of the
needle biopsy
predictions of SNS by
13%, NPV by 7%, ACC
by 2% and AUC by 4%

Ström et al. [35]

Develop an AI system
for detection of prostate
cancer, localization,
and Gleason grading

Digitized 6682 biopsy
slides from
976 participants and
271 slides from 93 men

23 pathologists

Deep neural networks
for detecting the
presence, extent and
Gleason grading for
malignant tissues

Cancer detection on
test dataset: AI
achieved AUC of 0.997
and 0.986 on external
dataset

Gleason grading with
expert pathologist:
Kappa of 0.62

AI’s prediction of
cancer length
correlated at 0.96 with
pathologist
measurements

3.5. Ethical and Practical Considerations in Implementing AI for Prostate Cancer Diagnostics

The practicality of the SRS platform permits easy tumor detection due to its use of
rapid Gleason scoring on prostate needle core biopsies. Given that it does not require
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complex tissue processing, it enables a more streamlined process. Despite this, we must
address further hindrances, such as the bulky configuration of the solid-state lasers and
expanding the training dataset to proceed with the aim of clinical implementation [11].

A secondary problem in prostate cancer diagnosis arises in observer inconsistency.
Reliability is hindered when using single pathologists to annotate both the training and
test datasets, or using a single slide scanner to generate digital slides can negatively affect
the reliability of the assessment. Furthermore, with no standardization of input image
dimension for the deep learning models, ResNet was fed small input images with more
detail, resulting in feature generation that poorly depicted the actual tissue detail [13].

Some studies obtained the dataset from an automated grading method rather than
from expert pathologists. While this reduces the inter- and intra-pathologist variability
in Gleason grading, this approach may not be able to capture the intricacies of expert
annotations. The MRI–histopathology system has inherent errors of approximately 2 mm
on the prostate border and 3 mm inside the prostate, which could affect the small lesions. In
addition to this, limiting the model to certain datasets creates an issue of a wider detection
capability with patients who may not be included in the specific demographic of results for
which the model is trained [15].

The lack of data also limited Schmidt et al., leaving the algorithm unable to predict
prostate cancer death in men who underwent RP. Furthermore, an emphasis on GG creates
a secondary problem of the cancer itself due to the lack of focus and attention on outcomes
such as metastasis or biological recurrence. The practical significance and applicability
of the healthcare findings were constrained and uncertain, given that the study did not
evaluate the real-world impact of the AI algorithm. Although efforts were made to manually
select tiles to guarantee diversity, there remains a risk of potential selection bias [17].

Generalizability also poses several weaknesses in design. Not only does using one
pathologist limit the reliability of the test results, but the study performed by Jung et al. only
evaluated the total duration of examining every 30 cases, not the duration of examining
each slide. Given that the differences at a granular level were not assessed, it would
inevitably affect the precision and applicability of the test results [18].

Damkliang et al. were presented with a recurring issue of overfitting, resulting from
the incapability of analyzing new data despite performing well on the training data. This
raises another concern: The model learns all the nuances, including the noise in the training
data, which compromises its efficacy when applied to new data. Despite the models’
successes in malignant tissue localization and identification, the binary basis training
inhibited them from correctly differentiating between GS, GP, and GG [22].

The scarcity of samples issues a challenge when attempting to accurately identify
more complex patterns, for example, when higher-grade Gleason pattern displays distinct
features, such as the reduced luminal size, and the model faces challenges to learn and
distinguish these patterns. This was predominantly seen in the PANDA Radboud public
dataset. however, it should be noted that some patches might contain multiple glands [25].

Some studies need further validation before they can be applied to clinical contexts.
The exclusion of pertinent tumor features, like convexity, volume, solidity, and eccentricity,
could potentially introduce bias due to manual segmentation. The use of publicly available
data sources with absent or limited supplementary clinical information, such as PSA and
MRI PI-RADS data, could be another reliability threat [32].

Despite the vast utility of radiomics, only a small subset of research is considered
relevant. The use of systematic biopsies in Wildeboer et al.’s [34] investigation is prone to
errors that could impact the SWE and DCE-US results. Alongside this, the study opted
toward the cognitive reading of images and videos rather than utilizing an automated pixel
value-based method. Moreover, the study was conducted at a single center and involved
only 50 patients with biopsy-proven prostate cancer, but validating the diagnostic efficacy
of machine learning across diverse patient populations requires prospective, multicenter
research [34].



Diagnostics 2024, 14, 2127 12 of 15

Despite the vast utility of radiomics, only a small subset of research is considered
relevant. The use of systematic biopsies in Wildeboer et al.’s [34] investigation is prone to
errors that could impact the SWE and DCE-US results. Alongside this, the study opted
toward the cognitive reading of images and videos rather than utilizing an automated pixel
value-based method.

4. Discussion

The central question of whether AI should be relied upon when making clinical
decisions in patient care, particularly in prostate cancer diagnosis, remains complex and
multifaceted. On one hand, AI models, such as convolutional neural networks (CNNs),
residual networks (ResNets), and U-Net architectures, have demonstrated significant
promise by achieving high accuracy rates, often comparable to or exceeding those of
human pathologists. For example, the DeepDx algorithm achieved a Cohen’s kappa score
of 0.91, indicating a strong agreement with pathologists, and demonstrated a remarkable
accuracy of 96% in distinguishing between malignant and benign cases, with a sensitivity of
99.7% and specificity of 88% [17]. Similarly, ensemble and residual-based approaches, such
as the 101-layer ResNet models, have achieved accuracies of 88% to 89% in differentiating
cancerous from non-cancerous tissues [12,13]. Moreover, hybrid models, like CorrSigNIA,
which integrates multi-modal imaging data from MRI and whole-mount histopathology,
have been shown to achieve over 80% accuracy in cancer identification, highlighting the
potential of AI to standardize Gleason grading, reduce inter-observer variability, and
improve diagnostic efficiency, thereby potentially enhancing patient outcomes [15].

However, despite these advancements, several significant challenges still hinder the
full clinical adoption of AI in prostate cancer diagnostics. A major concern is the variability
and quality of the data used to train these models. For instance, many studies rely on
relatively small and potentially biased datasets, which limits the generalizability of the AI
models across diverse populations. The PaCMAP-embedded CNN, while achieving high
accuracy and AUC scores (98.89% and 0.9996, respectively) through the integration of multi-
omics data, like copy number alterations, DNA methylation, and gene expression data, is
still constrained by the quality and diversity of its input data [31]. Similarly, models trained
on datasets with limited demographic representation, such as those seen in the Prostate
Cancer Grade Assessment (PANDA) challenge, may not perform as well in different
clinical settings. Although the PANDA challenge fostered innovation by comparing deep-
learning models, the models’ performance showed significant variability, with commercial
algorithms like Paige Prostate and AIRA Prostate achieving high specificity (87.9%) and
sensitivity (98.8%) but also demonstrating tendencies to underestimate certain cases more
frequently than academic models. These findings underscore the limitations of relying on a
limited set of data sources and emphasize the need for broader, more diverse datasets to
improve AI reliability in clinical practice [27,28].

Further complicating the question of AI reliance in clinical decision-making is the
issue of diagnostic inconsistencies and observer variability. For example, studies using
stimulated Raman scattering (SRS) microscopy for automated Gleason pattern classification
have achieved high accuracy rates (85.7% for classification and 84.4% on validation cases)
yet still demonstrated only 71% consistency with pathologists’ scores, suggesting that AI
systems may not yet be fully reliable for sole diagnostic use [11]. Similarly, while deep
learning models, like the Automated Tumor Assessment of Prostate Cancer Histology
(ATARI) and hybrid architectures such as those employing EfficientNet, have shown strong
performance metrics, their diagnostic consistency may still vary significantly depending
on the quality and source of training data [12–14]. Issues such as feeding models small
input images with more detail, which can result in feature generation that poorly depicts
actual tissue characteristics, further complicate the use of AI in clinical settings. Moreover,
problems such as overfitting, where models like those used by Damkliang et al. perform
well on training data but struggle with new data, raise concerns about the generalizability
of AI models to real-world clinical environments. This is particularly important in the
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context of higher-grade Gleason patterns, where AI models have difficulty distinguishing
between complex patterns due to limited sample sizes and inherent biases within the
training datasets, as seen in studies utilizing the PANDA Radboud public dataset [22,28].

The integration of AI into clinical workflows is also challenged by technical limitations
and a lack of standardization. For instance, the configuration of hardware used in AI
systems, such as the bulky solid-state lasers in SRS platforms, can be impractical for
routine clinical use [11]. Moreover, the lack of standardization in input image dimensions
for deep learning models, such as ResNet being trained on small, detailed images, can
lead to suboptimal feature extraction and reduced accuracy [13]. Additionally, while AI
models can help standardize certain aspects of prostate cancer grading, they may lack
the nuanced interpretative skills of experienced pathologists. For example, models that
utilize automated grading methods rather than expert annotations may fail to capture the
intricate details of tissue morphology that expert pathologists can recognize, potentially
affecting the accuracy and reliability of the diagnosis. Moreover, limitations in the accuracy
of MRI–histopathology correlations, such as inherent errors in prostate border delineation
(approximately 2 mm) and inside the prostate (approximately 3 mm), can introduce further
inaccuracies, particularly when detecting small lesions [15]. In addition, several studies
have highlighted the need for further validation before AI models can be applied broadly
in clinical contexts. The exclusion of critical tumor features, like convexity, volume, solidity,
and eccentricity, from some AI models could introduce bias due to manual segmentation,
while the use of public datasets with limited or missing supplementary clinical information,
such as PSA and MRI PI-RADS data, threatens the reliability of the AI systems [32]. The
lack of large, multicenter validation studies also limits the ability to assess AI efficacy across
diverse patient populations. As illustrated by the study conducted by Wildeboer et al.,
which used systematic biopsies prone to errors, the small sample size (50 patients) and
single-center design underscore the need for prospective, multicenter research to validate
AI performance across diverse clinical settings [34].

Thus, while AI has demonstrated potential to transform clinical decision-making in
prostate cancer diagnosis by improving diagnostic accuracy and reducing observer vari-
ability, it should currently be regarded as a complementary tool rather than a replacement
for human expertise. The limitations associated with data quality, model generalizability,
technical constraints, and the need for robust validation necessitate a cautious approach to
AI integration in clinical practice. Moving forward, the focus should be on developing more
robust, diverse datasets, enhancing model interpretability, and standardizing protocols
to ensure that AI systems provide both safe and effective in-patient care. Only then can
AI’s full potential be realized, providing a reliable support tool that augments, rather than
replaces, the critical judgment of experienced clinicians.

5. Conclusions

The role of AI algorithms in identifying Gleason patterns in prostate cancer is growing.
Recent findings have revealed that AI algorithms can make valuable contributions to
traditional diagnostic methods. These findings underscore the potential for integration of
AI into clinical practice, improving the workflow of pathologists and enhancing patient
outcomes. AI’s potential as an auxiliary tool for Gleason grading can help combat inter-
observer variability. Despite the scientific leap in the technological applications of AI
targeted for patient care, there remains key issues that must be addressed to ensure the
smooth transition from clinical trials to clinical practice. Sample sizes and overfitting
remain some of the most vulnerable areas of AI, drawing attention to the infancy and
prematurity of the program. Given time, the datasets will continue to facilitate more patient
information, allowing the AI to be trained on more diverse information, facilitating its
purpose in the era of precision medicine.
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